FOREWORD

INTRODUCTION

MALONIC ACID DIESTERS

Dimethylmalonate, 108-59-8 Diethylmalonate, 105-53-3

SIDS Initial Assessment Report

For

SIAM 20

Paris, France, 19 – 22 April 2005

1.	Chemical Name:	Category of malonic acid diesters: Dimethylmalonate and
2	CAS Number	108-59-8
4.	CAS Number.	105-53-3
3.	Sponsor Country:	Germany
		Contact Point:
		BMU (Bundesministerium für Umwelt, Naturschutz und
		Reaktorsicherheit)
		Contact person: Drof. Dr. Illrich Schlottmann
		Prof. D1. Unich Schloumann Poetfach 12.06.29
		D-53048 Bonn
4.	Shared Partnership with:	Degussa AG, Germany
5	Roles/Responsibilities of	-
5.	the Partners:	
	Nome of industry sponsor	Degussa AG Germany
•	Aconsortium	Contact:
	/consolitium	Dr. Svlvia Jacobi
		S-ESH-CSM, Postcode 266-001
		Rodenbacher Chaussee 4
		63457 Hanau-Wolfgang
•	Process used	See next page
6.	Sponsorship History	
	How was the chemical or	By ICCA HPV initiative
•	category brought into the	
	OFCD HPV Chemicals	
7	Programme?	
	Programme? Proview Process Prior to	last literature search (undate):
7.	Review Process Prior to	last literature search (update): 18 November 2004 (Human Health): databases medline toxline:
7.	Review Process Prior to the SIAM:	last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms
7.	Review Process Prior to the SIAM:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search
1.	Review Process Prior to the SIAM:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA
8.	Review Process Prior to the SIAM: Quality check process:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were
8.	Programme? Review Process Prior to the SIAM: Quality check process:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health
8.	Programme? Review Process Prior to the SIAM: Quality check process:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment
8.	Review Process Prior to the SIAM: Quality check process:	last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment
8.	Review Process Prior to the SIAM: Quality check process:	last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA).
7. 8. 9.	Review Process Prior to the SIAM: Quality check process: Date of Submission:	last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA). Deadline for circulation: 21 January 2005
 7. 8. 9. 10. 	Review Process Prior to the SIAM: Quality check process: Date of Submission: Date of last Update:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA). Deadline for circulation: 21 January 2005 Last literature search (update) of sponsor company: CAS-No. and
 9. 10. 	Programme? Review Process Prior to the SIAM: Quality check process: Date of Submission: Date of last Update:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA). Deadline for circulation: 21 January 2005 Last literature search (update) of sponsor company: CAS-No. and special search terms
 7. 8. 9. 10. 	Programme? Review Process Prior to the SIAM: Quality check process: Date of Submission: Date of last Update:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA). Deadline for circulation: 21 January 2005 Last literature search (update) of sponsor company: CAS-No. and special search terms DMM: August 17, 2004: CIS, DIMDI, STN, Dialog
9. 10.	Programme? Review Process Prior to the SIAM: Quality check process: Date of Submission: Date of last Update:	 last literature search (update): 18 November 2004 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 12 November 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA IUCLID was used as a basis for the SIDS dossier. All data were checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA). Deadline for circulation: 21 January 2005 Last literature search (update) of sponsor company: CAS-No. and special search terms DMM: August 17, 2004: CIS, DIMDI, STN, Dialog DEM: April 24 and May 14, 2003, DIMDI, CIS, Datastar, Dialog, CTDL Pailetin.

1*1. Comments:

OECD/ICCA - The BUA* Peer Review Process

Qualified BUA personnel (toxicologists, ecotoxicologists) perform a quality control on the full SIDS dossier submitted by industry. This quality control process follows internal BUA guidelines/instructions for the OECD/ICCA peer review process and includes:

- a full (or update) literature search to verify completeness of data provided by industry in the IUCLID/HEDSET

- Review of data and assessment of the quality of data

- Review of data evaluation

- Check of adequacy of selection process for key studies for OECD endpoints, and, where relevant, for non-OECD endpoints by checking original reports/publications

 Review of key study description according to robust summary requirements; completeness and correctness is checked against original reports/publications (if original reports are missing: reliability 4, i.e. reliability not assignable)

- Review of validity of structure-activity relationships

- Review of full SIDS dossier (including SIAR, SIAP and proposal for conclusion and recommendation for further work)

- In case of data gaps, review of testing plan or rationale for not testing.

^{*} BUA (GDCh-Beratergremium für Altstoffe): Advisory Committee on Existing Chemicals of the Association of German Chemists (GDCh)

SIDS INITIAL ASSESSMENT PROFILE

CAS Nos.	108-59-8, 105-53-3		
Chemical Names	Category of malonic acid diesters: Dimethylmalonate (DMM) and Diethylmalonate (DEM)		
Structural Formulas			

SUMMARY CONCLUSIONS OF THE SIAR

Category Justification

The production and use pattern of Diethylmalonate (DEM) and Dimethylmalonate (DMM) are comparable. The two chemicals have very similar physico-chemical properties and both esters are hydrolyzed via a two step reaction to malonic acid and the corresponding alcohol, methanol or ethanol. It is likely that unspecific esterases in the body catalyze the hydrolysis. The alcohols and malonic acid are physiological substances that are metabolized via physiological pathways. Ethanol (CAS No. 64-17-5) and methanol (CAS No. 67-56-1) were assessed at SIAM 19. For ethanol it was concluded that the chemical is currently of low priority for further work, because the hazardous properties of ethanol are manifest only at doses associated with consumption of alcoholic beverages. As it is impossible to reach these exposure levels as a consequence of the manufacture and use of malonates, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. For methanol, SIAM 19 decided that this chemical is a candidate for further work. Methanol exhibits potential hazardous properties for human health (neurological effects, CNS depression, ocular effects, reproductive and developmental effects, and other organ toxicity). The effects of methanol on the CNS and retina in humans only occur at doses at which formate accumulates due to a rate-limiting conversion to carbon dioxide. In primates, formate accumulation was observed at methanol doses greater than 500 mg/kg bw (which would require a DMM dose of more than 1000 mg/kg bw). As there were no indications of a methanol associated toxicity from a well performed repeated dose toxicity study with DMM in rodents (which are, however, known to be less sensitive to methanol toxicity than humans), and because methanol toxicity would not be expected up to doses as high as 1000 mg DMM/kg bw/day, it was concluded that methanol does not make a relevant contribution to the toxicity profile of DMM. A possible mode of action for systemic toxicity of DMM and DEM can only be deduced from the repeated dose study with DMM, indicating a reversible liver hypertrophy at the cellular level at high doses of 1000 mg/kg bw/day. This effect can be an indication of an induction of metabolism in the liver rather than a clear systemic toxicity.

Human Health

From the physical chemical properties of both substances it can be assumed that they are readily absorbed through mucous membranes and distributed into the water compartments. Absorption through skin in *in vitro* experiments in different species varied widely depending on the experimental conditions. *In vivo* skin absorption of undiluted [2-¹⁴C]-DEM was highest in nude mice with 15 % absorption and lowest in pigs (2.5 %). In human skin grafted on nude mice and in hairless dogs absorption was 4 %. These experiments indicate relatively low skin absorption under non-occluded conditions. Both DMM and DEM are likely to be metabolized by esterases under cleavage of one or two ester bonds yielding the corresponding alcohols and malonic acid monoesters or malonic acid.

No acute inhalation study is available for DMM. In the dermal toxicity study in rats following OECD guideline TG 402 and GLP (limit test) the LD50 was > 2000 mg/kg bw. An acute oral toxicity study in rats revealed an $LD_{50} > 2000 \text{ mg/kg}$ bw. In both studies no test substance related effects were observed.

For DEM only limited literature data are available. No toxicity was observed after 8 h inhalation of concentrated vapors in rats. The dermal LD_{50} in rabbits was reported to be > 16 960 mg/kg bw, the oral LD_{50} in rats 15 794 mg/kg bw. Taken together the studies for both substances suggest that they are of low acute toxicity via the oral and dermal route and likely to be also of low toxicity after inhalation exposure.

DMM was not irritating to rabbit skin in a guideline study according to OECD TG 404 and GLP. For DEM no guideline study is available on skin irritation, but a slightly irritating effect was reported in the literature after 24 hours of occlusive exposure. Both substances showed slight to moderate eye irritating effects in rabbits that were completely reversible within the observation period. The studies were conducted according or similar to OECD TG 405 and under GLP.

DMM did not reveal any skin sensitizing effect in a Bühler test according to OECD TG 406 and GLP. Reports of maximization tests in human volunteers with both, DMM and DEM did not indicate any skin sensitizing properties.

One repeated dose study in rats by the oral route (gavage) according to OECD TG 422 and GLP is available for DMM. The only effect observed was a reversible hepatocellular hypertrophy in animals of the high dose group (1000 mg/kg bw/day). The NOAEL was 300 mg/kg bw per day. Only a limited dietary 90 day study in rats is available with DEM, which indicated no treatment related effect at dose levels of 36 and 41 mg/kg bw per day for male and female animals, respectively (only one dose level was tested). Although the information available for DEM is limited, it is considered sufficient because DEM is not likely to be more toxic than DMM. Overall, the toxicity of DMM and DEM after repeated dosing is considered to be low.

Both DMM and DEM were not mutagenic in the standard Ames assay in bacteria with and without metabolic activation. DMM did not show any clastogenic activity in the *in vitro* cytogenetic assay with peripheral human lymphocytes in the presence and absence of a metabolic activation system. All tests were conducted according to OECD or EC guidelines and GLP. For both substances, there is no structural alert for genotoxicity. In conclusion, from the available information there is no indication of a mutagenic potential of the substances, both for gene mutations and chromosomal aberrations.

Based on the findings in a combined oral (gavage) repeated dose reproduction/developmental toxicity study in rats according to OECD TG 422 and GLP with DMM a NOAEL for parental toxicity of 300 mg/kg bw/day for males and females and a NOAEL for reproductive and developmental toxicity of 1000 mg/kg bw/day, the highest dose tested, can be derived. No reproductive/developmental toxicity study was available for DEM. Because it is impossible to reach blood levels of ethanol which are associated with reproductive/developmental toxicity as a consequence of the manufacture and normal use of DEM, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. Taking also into account that DEM is not likely to be more toxic than DMM, which has shown no potential for reproductive and/or developmental toxicity, it is overall concluded that there is no indication for a relevant reproductive and/or developmental toxicity of DMM and DEM.

Environment

Both, dimethyl- and diethylmalonate are colorless organic liquids with an ester like odor. DMM has a melting point of -62 °C, a boiling point of 181.4 °C, a water solubility of about 142 g/l at 20 °C, a vapor pressure of 0.48 - 0.5 hPa at 20 °C and a measured log Kow of -0.05. DEM has a melting point of -48.7 to -51.1 °C, a boiling point of 199.3 °C, a water solubility of 20 g/l at 20 °C, a vapor pressure of 0.36 hPa at 25 °C and a measured log Kow of 0.96. Both substances are readily biodegradable (100 % (DMM) and 98 % (DEM) in a DOC-die away test) and undergo a two-step hydrolytic degradation in a first step to the monoester and in a second step to malonic acid and the corresponding alcohol, methanol or ethanol respectively. The half lives were shortest at pH 9, < 2.4 h (50 °C) for both substances, and increased to 5.7 h (50 °C) and 15.9 h (50 °C) for DMM and DEM respectively at pH 7 and 859 h (50 °C) for DMM at pH 4. At pH 4 and 50 °C DEM showed less than 10 % degradation within 5 days. For photodegradation via oxidation by OH-radicals half lives of about 31 days for DMM and 4.7 days for DEM in air were estimated. For DEM a 100% photolytic ozonisation after 40 min under UV-irradiation in water was reported. The generic fugacity model I indicates that both substances are preferably distributed in the water phase (98 % for DMM and 90 % for DEM) with a low amount distributing potentially into air (1.5 and 9.9 % respectively). The fugacity model III however, indicates that a considerable amount may be distributed to the soil if the substances are primarily released into air (36 % for DMM and DEM) or soil (38 % for DMM and 44.5 % for DEM). The measured octanol-water partition coefficients (log Kow -0.05 for DMM and 0.96 for DEM) indicate a low potential for bio- or geoaccumulation.

Acute toxicity data for 3 trophic levels of the aquatic environment are available for both substances.

Acute toxicity in mg/l:				
	DMM	DEM		
LC ₅₀ fish: 96 h, <i>Danio rerio</i>	21	-		
LC ₅₀ fish: 96 h, <i>Pimephales promelas</i>	-	12 - 17		
EC ₅₀ Daphnia: 48 h, <i>Daphnia magna</i>	> 728	179		
Algae EC ₅₀ : 72h, <i>Desmodesmus subspicatus</i> ; growth rate (biomass)	240(92)	> 667(424)		

Based on the lowest LC₅₀-value for fish of 21 mg/l for DMM and 12 mg/l for DEM and an assessment factor of 1000 PNEC-values of 21 and 12 μ g/l can be derived for DMM and DEM, respectively.

No growth inhibition of DEM to terrestrial plants in soil was observed up to concentrations of > 100 mg/kg soil and no toxicity to *Eisenia fetida* was observed at concentrations of DEM of 1000 mg/kg bw after 14 days of exposure.

Exposure

The worldwide production capacity of malonates with DMM and DEM as the most important products was estimated to be more than 20 000 t/a. The breakdown by country in 2000 was estimated as follows: Europe: 8000 t/a (Sponsor country: 8000 t/a by 1 Producer), Japan 4000 t/a, China 12 000 t/a, Korea 2000 t/a, and India 600 t/a. DMM and DEM are widely used in the chemical industry as intermediates for the synthesis of a variety of organic chemicals, for example to introduce an acetic moiety or a hydroxyester group into molecules. The end products of the different processes in which malonates are used as intermediates include pharmaceuticals, agrochemicals, vitamins, fragrances and dyes. It was estimated that about one third each of the volume of DMM is used in the production of agrochemicals, pharmaceuticals and industrial chemicals. For DEM the estimated breakdown is 30 % as an intermediate for the production of agrochemicals, 50 % pharma-intermediate, 20 % as intermediate for industrial chemicals. Because of the predominant production and use in chemical industry under controlled conditions, environmental exposure from production and use is considered low. DMM is a naturally occurring substance and has been detected in a number of fruits as a volatile aroma compound for example in pineapples, bananas and blackberries.

In production from the process description very low occupational exposure is anticipated. No data are available for the uses. As the majority of the products are used as intermediates in the chemical industry a controlled exposure situation is anticipated.

With regard to consumer exposure WHO (2000) evaluated the combined daily intake of 47 flavoring substances including DEM in Europe and the US. The annual production volume of these 47 substances was 200 metric tons in Europe and 1700 metric tons in the US. From this an estimate per capita daily intake of 28 mg in Europe and 300 mg in the US was derived. This intake was considered of no concern.

DMM is contained in the Swedish and Swiss Product Registers, but not in the SPIN Database. DEM is contained in the Swedish and Swiss Product Registers and in the SPIN Database.

RECOMMENDATION AND RATIONALE FOR THE RECOMMENDATION AND NATURE OF FURTHER WORK RECOMMENDED

Human Health: The chemicals of this category are currently of low priority for further work due to their low hazard profile.

Environment: The chemicals of this category possess properties indicating a hazard for the environment. Although these hazards do not warrant further work (as they are related to acute toxicity which may become evident only at high exposure levels) they should nevertheless be noted by chemical safety professionals and users. The chemicals are currently of low priority for further work.

SIDS Initial Assessment Report

1 IDENTITY

Substance	Dimethylmalonate	Diethylmalonate
CAS Number: 108-59-8		105-53-3
IUPAC Name:	Dimethyl malonate	Diethyl malonate
Molecular Formula:	C ₅ H ₈ O ₄	C ₇ H ₁₂ O ₄
Structural Formula:	соосн	,cooc₂H₅
	Соосн	Cooc₂H₅
Molecular Weight:	соосн ₃ 132.12 Dalton	COOC ₂ H ₅ 160.2 Dalton

1.1 Identification of the Substances

1.2 Purity/Impurities/Additives

Both dimethyl- and diethylmalonate are colorless organic liquids with an ester like odor. The purity is typically > 99 %. Impurities from the production process include methanol (ca. 0.3 % w/w) and dimethyl methylmalonate (ca. 0.2 % w/w) for DMM and ethanol (ca. 0.1 % w/w), ethyl acetate (ca. 0.05 % w/w), and ethyl methyl malonate (ca. 0.05 % w/w) for DEM. (Degussa, 2005).

1.3 Physico-Chemical properties

Table 1 Summary of physico-chemical properties

Substance	Dimethylmalonate	Diethylmalonate	Reference	
Property	Value	Value	(DMM / DEM)	
Physical state/color/odor	liquid/colorless/ester-like	Liquid/colorless/ esterlike	Degussa, 2004a / Degussa, 2004b	
Melting point	-62 to -61.9 °C	-51.5 to -48.7 °C	Kendall and Booge, 1916; Palomaa and Mikkilä, 1942 / Jäger, 1917; Timmermans and Delcourt, 1934	
Boiling point (1013 hPa)	181.4 °C	199.3 °C	Lecat, 1928 / Timmermans and Delcourt, 1934	
Relative density (20 °C)	1.153 g/cm ³	1.055 g/cm ³	Vogel, 1934; Palomaa and Mikkilä, 1942 / Mumford and Phillips, 1950	
Vapor pressure	0.48 - 0.5 hPa (20 °C)	0.36 hPa (25 °C)	Derived from D'Ans- Lax, 1967; Degussa, 2004a / Daubert and Danner, 1989	
Water solubility (20 °C)	99 g/l	20 g/l	Meylan et al., 1996 / O'Neil et al., 2001	
Partition coefficient n- octanol/water (log value) (measured)	-0.05	0.96	Hansch et al., 1995	
Henry's law constant (25 °C)	0.0422 Pa m ³ mol ⁻¹ (calculated)	0.0746 Pa m ³ mol ⁻¹ (calculated)	Degussa, 2003a / Degussa, 2003b	
Flash point (closed cup)	90 °C	93 °C	BIA, 2001; Hawley, 1981 / Lide, 2004	
Autoflammability, self ignition temperature	440 °C	435 °C	Degussa, 2004a / Degussa, 2004b	

1.4 Category Justification

The production and use pattern of Diethylmalonate (DEM) and Dimethylmalonate (DMM) are comparable. The two chemicals have very similar physico-chemical properties and both esters are hydrolyzed via a two step reaction to malonic acid and the corresponding alcohol, methanol or ethanol. It is likely that unspecific esterases in the body catalyze the hydrolysis. The alcohols and malonic acid are physiological substances that are metabolized via physiological pathways. Ethanol and methanol were assessed at SIAM 19 (OECD, 2004a,b). For ethanol it was concluded that the chemical is currently of low priority for further work, because the hazardous properties of ethanol are manifest only at doses associated with consumption of alcoholic beverages. As it is impossible to reach these exposure levels as a consequence of the manufacture and use of malonates, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. For methanol, SIAM 19 decided that this chemical is a candidate for further work. Methanol exhibits potential hazardous properties for human health (neurological effects, CNS depression, ocular effects, reproductive and developmental effects, and other organ toxicity). The

effects of methanol on the CNS and retina in humans only occur at doses at which formate accumulates due to a rate-limiting conversion to carbon dioxide. In primates, formate accumulation was observed at methanol doses greater than 500 mg/kg bw (which would require a DMM dose of more than 1,000 mg/kg bw). As there were no indications of a methanol associated toxicity from a well performed repeated dose toxicity study with DMM in rodents (which are, however, known to be less sensitive to methanol toxicity than humans), and because methanol toxicity would not be expected up to doses as high as 1,000 mg DMM/kg bw/day, it was concluded that methanol does not make a relevant contribution to the toxicity profile of DMM. A possible mode of action for systemic toxicity of DMM and DEM can only be deduced from the repeated dose study with DMM, indicating a reversible liver hypertrophy at the cellular level at high doses of 1000 mg/kg bw/day. This effect can be an indication of an induction of metabolism in the liver rather than a clear systemic toxicity.

Data Availability for Dimethyl and diethylmalonate

Acute toxicity and ecotoxicity data are available for both substances. In order to gain information on repeated dose toxicity, reproductive toxicity endpoints and chromosomal aberration studies for the methyl ester have been performed according to current guidelines that are used as surrogate data for the ethyl ester as well.

The available data for both members of the category are summarized in the following table.

OECD SIDS Endpoint	Dimethylmalonate 108-59-8	Diethylmalonate 105-53-3
Physicochemical Properties		
Melting point	\checkmark	✓
Boiling point	✓	\checkmark
Density	✓	\checkmark
Vapor pressure	✓	\checkmark
Partition Coefficient	✓	\checkmark
Water solubility	✓	\checkmark
Fate		
Biodegradation	✓	\checkmark
Photodegradation	✓ calculated	✓ calculated
Hydrolysis	✓	✓
Fugacity	✓ calculated	✓ calculated
Ecotoxicological data		
Acute Fish Toxicity	✓	\checkmark
Acute Daphnia Toxicity	✓	\checkmark
Algae Toxicity	✓	\checkmark
Terrestrial plants	-	\checkmark
Toxicological data		
Acute Toxicity	Oral: 🗸	Oral: ✓
	Dermal: 🗸	Dermal: ✓
	Inhalation: -	Inhalation 🗸
Repeated Dose Toxicity	✓ OECD 422	✓ (limited validity)
Genotoxicity, in vitro Ames	\checkmark	\checkmark
Genotoxicity, in vitro	-	-
Cytogenetic test	\checkmark	
Reproductive Toxicity	✓ OECD 422	-
Developmental Toxicity	✓ OECD 422	-
Additional data		
Toxicity to soil organisms		✓
Skin irritation	✓	\checkmark
Eye irritation	✓	✓
Skin sensitization	✓	-

Table 2Data availability

2 GENERAL INFORMATION ON EXPOSURE

2.1 **Production Volumes and Use Pattern**

2.1.1 Production

Malonates are produced either by cobalt-catalyzed alkoxycarbonylation of chloroacetates with carbon monoxide in the presence of alcohol (Carbon monoxide process) or by hydrolysis of cyanoacetic acid followed by esterification with the respective alcohol (hydrogen cyanide process). (Hildbrand and Pollak, 2002).

In the carbon monoxide process DMM and DEM are produced by a di-cobalt octacarbonyl catalyzed reaction of methyl- or ethyl chloroacetate with carbon monoxide in the presence of the respective alcohol. For DEM the reaction takes place at 100 °C and 18 bar at pH 5.7. Ethylacetate is formed as a major by product. After completion of the reaction sodium chloride and the catalyst are separated, and the ester is susequently purified by several distillation steps. (Hildbrand and Pollak, 2002).

The German producer uses the carbon monoxide process for the production of DMM. In the German producer company the reaction takes place in a closed, discontinuous process. Loading and de-loading operations are performed in a closed system using a vapor recovery device. Sampling is performed in a closed system through a sampling valve with a special syringe. From production there are no emissions into water or air. Exhausts are incinerated and waste water is treated in a biological sewage treatment plant. Product containing waste waters (e.g. from maintenance operations) are incinerated. No waste containing DMM is produced. The substance is transported in road tankers, tank containers and drums (Degussa, 2004c).

The hydrogen cyanide process normally takes place in a closed plant. In the first step sodium cyanide is reacted with sodium chloroacetate in an aqueous solution at elevated temperatures (90 °C) yielding sodium cyanoacetate. Sodium cyanoacetate is concentrated by evaporation under vacuum and then reacted with an alcohol/mineral acid mixture at temperatures between 60 and 80 °C via the non-isolated intermediate malonic acid monamide to the dialkylmalonate. Purification steps include solvent extraction and distillation under vacuum. (Hildbrand and Pollak, 2002).

DEM can also be produced by transesterification of DMM with ethanol. This process is used by the German producer company in a closed continuous process. Loading and de-loading operations are performed in a closed system using a vapor recovery device. Sampling is performed in a closed system through a sampling valve with a special syringe. From production there are no emissions into water or air. Exhausts are incinerated and waste water is treated in a biological sewage treatment plant. Product containing waste waters (e.g. from maintenance operations) are incinerated. No waste containing DMM is produced. The substance is transported in road tankers, tank containers, drums and IBC's (Degussa, 2004d).

The worldwide production capacity of malonates with DMM and DEM as the most important products was estimated to be more than 20,000 metric t per year. The breakdown by country was estimated as follows: Europe: 8000 t/year (Sponsor country: 8000 t/year by one producer), Japan 4000 t/year, China 12,000 t/year, Korea 2000 t/yr, and India 600 t/yr. (Hildbrand and Pollak, 2002).

2.1.2 **Processing and Use**

DMM and DEM are widely used in the chemical industry as intermediates for the synthesis of a variety of organic chemicals, for example to introduce an acetic moiety or a hydroxyester group into molecules. Reaction of malonates with hydrazines can be used for the synthesis of nitrogen heterocycles. The end products of the different processes in which malonates are used as intermediates include pharmaceuticals, agrochemicals, vitamins, fragrances and dyes (Hildbrand and Pollak, 2002). It was estimated that about one third each of the volume of DMM is used in the production of agrochemicals, pharmaceuticals and industrial chemicals. For DEM the estimated breakdown is 30 % as an intermediate for the production of agrochemicals, 50 % as a pharma-intermediate, 20 % as intermediate for industrial chemicals (Degussa, 2004c, d). An additional use of DEM in low amounts is as fragrance and artificial flavoring substance in foods (WHO, 2000).

The Swedish Product Register (2004) contains confidential data on DMM on the whole and the note that there are no consumer products containing DMM. One entry on DMM is contained in the Swiss Product Register (2004): 1 commercial product with a DMM-content of 100 %, i.e. the pure chemical. The SPIN database (2004) does not contain any entries on DMM.

The Swedish product Register (2005) contains data on DEM: 13 products containing 0-2% DEM, 2 of which are consumer products, with a tonnage of 0.0 t/a, and 4 products containing 2-20% DEM, 2 of which are consumer products, with a tonnage of 2.0 t/a. Information on uses of consumer products is confidential. Most frequent industrial uses are adhesives, hardeners for adhesive and industrial use, the most common industry category is sales and repair establishments for motor vehicles and motorcycles. DEM is contained in the SPIN database (2004): For 2002, 79 preparations with an overall amount of 0.3 tonnes are noted for Denmark, 7 preparations with an overall amount of 0.1 tonnes are noted for Norway, and data on 12 preparations including consumer products are listed as confidential for Sweden.

2.2 Environmental Exposure and Fate

2.2.1 Sources of Environmental Exposure

Exposure

From production in the sponsor country there are no emissions into water or air. Exhausts are incinerated and waste water is treated in a biological sewage treatment plant. Product containing waste waters (e.g. from maintenance operations) are incinerated. No waste containing DMM or DEM is produced (Degussa, 2004 c, d)

From use as flavoring agent no emission data are known.

Natural occurrence

Dimethylmalonate has been detected in a number of fruits as a volatile aroma compound, e.g. in pineapple by gas chromatography (GLC) and infrared spectroscopy (IR) (Creveling et al., 1968), by capillary GC and mass spectrometry (MS) of vacuum stream distillates and head space analysis of the blended pulp at concentrations of 19 ppb (Takeoka et al., 1989). Umano et al. (1992) found a higher content in green pineapples (18 μ g/kg) than in ripe fruits (17 μ g/kg) by GC-MS analysis and comparison of peak areas. DMM was also identified in liquid-liquid extracts of fresh blackberries by GC-MS (Georgilopoulos and Gallois, 1987), or in banana (< 5 μ g/100 g extract) (Berger et al., 1986). Miyazawa and Kameoka (1987) identified DMM as a volatile flavor component of astragali roots (*Astragalus membranaceus* Bunge) by GC/MS and IR analysis.

2.2.2 Photodegradation

In air for DMM a photochemical reaction rate constant of $5.25 \cdot 10^{-13}$ cm³/(molecule \cdot s) and a half-life of 30.6 days (Degussa, 2003c; Meylan and Howard, 1993a), and for DEM a photochemical reaction rate constant of $3.41 \cdot 10^{-12}$ cm³/(molecule \cdot s) and a half-life of 4.7 days (Degussa, 2003d; Meylan and Howard, 1993b) were calculated using the APOWIN program version 1.90. For DEM a 100 % photochemical degradation in water within 35 to 40 minutes by photolytic ozonation (ozone dose rate 0.000013 mmol/l x min) at a concentration of 5 mg/l and 23 °C under UV light of ca. 254 nm was reported by Peyton et al. (1989).

2.2.3 Stability in Water

Standard studies on hydrolysis as function of pH performed according to OECD TG 111 and under GLP are available for both esters. The results are summarized in table 3.

	Half-life at				
Ester	рН 4	pH 7	рН 9	Test Type	Reference
DMM	859 h (50 °C) 351 d (25 °C)	5.7 h (50 °C) 52.5 h (25 °C)	< 2.4 h (50 °C)	OECD 111 (92/69/EEC, C.7)	Degussa, 2004e
DEM	- (hydrolysis < 10 % after 5 d, 50 °C)	15.9 h (50 °C) 137.5 h (25 °C)	< 2.4 h (50 °C)	OECD 111 (92/69/EEC, C.7)	Degussa, 2004f

Table 3:Summary of Hydrolysis data

As the substances have two hydrolysable groups, the hydrolysis reaction can be summarized as follows:

ROOC-CH₂-COOR - \rightarrow HOOC-CH₂-COOR + ROH - \rightarrow HOOC-CH₂-COOH + ROH (R = CH₃ or C₂H₅ respectively)

In the study the intermediate monoester could not be determined due to analytical reasons (decarboxylation in the GC-injector block) but by following the formation of the alcohols it was possible to estimate the formation of reaction products, monoester and malonic acid by performing a mass balance analysis.

At pH 9 hydrolysis is fast for both esters with half lives of < 2.4 h at 50 °C. For DMM hydrolysis was 95.9 %, for DEM 81.1 % after 2.4 h. The hydrolysis of one ester group occurs first, but the subsequent hydrolysis of the second ester bond also takes place within about 2 half-lives (Degussa, 2004g).

At pH 7 the hydrolysis was slower with half-lives of 5.7 h at 50°C and 52.5 h at 25 °C for DMM and 15.9 h at 50 °C and 137.5 h at 25 °C for DEM. The reaction is mainly due to the formation of monoester. However after longer reaction periods a cleavage of the monoester was also observed (Degussa, 2004g).

At pH 4 the esters are more stable and the half life at 50 °C was 859 h for DMM and DEM was stable (less than 10 % degradation) after 5 days at 50 °C. For DMM a half-life of 351 d at 25 °C was calculated from the data. Hydrolysis of the monoester was relatively quickly followed by further hydrolysis to malonic acid under acidic conditions (Degussa, 2004e, f, g).

It can be concluded that both esters hydrolyze rapidly under alkaline conditions, first under formation of the monoesters followed by formation of malonic acid. Under neutral conditions the reaction is still relatively rapid in particular the first step, formation of the monoester, while in acid conditions the half-lives are considerably longer and hydrolysis of both ester groups occurs almost simultaneously. The velocity of the hydrolysis is higher for DMM compared to DEM, and the difference increases with decreasing pH. Under alkaline conditions however, the half-lives are comparable.

2.2.4 Transport between Environmental Compartments

DMM and DEM have water solubilities of 142 and 20 g/l respectively at 20 °C. The vapor pressure is 0.48-0.5 hPa (20 °C) for DMM and 0.36 hPa (25 °C) for DEM indicating that volatilization from water is expected to be relatively low. This is corroborated by the relatively low calculates Henry's law constants of 0.0422 Pa m³ mol⁻¹ and 0.0746 Pa m³ mol⁻¹ respectively (Degussa, 2003a, b). The equilibrium partition characteristics in the environment were estimated using the Mackay level I model calculation (Degussa, 2004h, i).

Compartment	DMM	DEM
	Theoretical Distribution [%]	Theoretical Distribution [%]
Air	1.55	9.86
Water	98.44	90.01
Soil	0.01	0.06
Sediment	< 0.01	0.07
Biota (as fish)	< 0.01	< 0.01

Table 4Mackay level I model calculation

Based on this calculation the most likely target compartment for both compounds for theoretical environmental emissions is the hydrosphere with a small amount also distributing to the atmosphere, to a slightly higher extent for DEM.

The generic Mackay Level III calculation (estimated entry 3000 kg/h to air, water or soil) yielded the following distribution pattern (Degussa, 2004 j, k).

	Substance	Air	Water	Soil	Sediment
Release 100 % into air	DMM	2.58	61.3	36.0	0.02
Distribution [%]	DEM	15.2	48.8	36.0	0.02
Release 100 % into water	DMM	0	99.9	0.01	0.04
Distribution [%]					
	DEM	0.01	99.9	0.01	0.04
Release 100 % into soil	DMM	0.02	61.7	38.3	0.02
Distribution [%]					
	DEM	0.03	55.4	44.5	0.02

Table 5Mackay level III model calculation

When released into air or soil the majority of the esters will distribute almost equally to water and soil, while when the substance is released into water it will stay in the water compartment. Distribution to sediment is negligible.

2.2.5 Biodegradation

Both DMM and DEM were readily biodegradable in a DOC-die away test conducted according to current OECD and EU guidelines and GLP. Degradation rates after 28 days were 100 % for DMM and 98 % for DEM and 86 - 87 % or 90 - 94 % respectively after 7 days. (Hüls, 1992a; Hüls, 1993a).

2.2.6 Bioaccumulation

The low octanol-water partition coefficients (DMM: log $K_{OW} = -0.05$ (measured) (Hansch et al., 1995); DEM: log $K_{OW} = 0.96$ (measured) (Hansch et al., 1995) indicate a low potential for bioaccumulation.

2.2.7 Geoaccumulation

Soil sorption coefficients (K_{OC}) of 1.74 for DMM and 10 for DEM were calculated by PCKOCWIN (v. 1.66, SRC, 2000) (Degussa, 2003g, h) and indicate a low potential for geoaccumulation.

2.2.8 Other Information on Environmental Fate

No information available.

2.3 Human Exposure

2.3.1 Occupational Exposure

The German producer uses closed systems including gas tight flunshes for loading and de-loading operations and closed valve-syringe systems for sampling (Degussa, 2004c, d). From the process description very low occupational exposure is anticipated. No data are available for the uses. As the majority of the products are used as intermediates in the chemical industry a controlled exposure situation is anticipated.

2.3.2 Consumer Exposure

WHO (2000) evaluated the combined daily intake of 47 flavoring substances including DEM in Europe and the US. The annual production volume of these 47 substances was 200 metric tons in Europe and 1700 metric tons in the US. From this an estimated per capita daily intake of 28 mg in Europe and 300 mg in the US was derived (based on a body weight of 60 kg these intakes would correspond to 0.47 and 5 mg/kg bw/day in Europe and the US, respectively). This intake was considered of no concern.

3 HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

Diethylmalonate (DEM) and Dimethylmalonate (DMM) have very similar physico-chemical properties and both esters are hydrolyzed via a two step reaction to malonic acid and the corresponding alcohols, methanol or ethanol.

Ethanol and methanol were assessed at SIAM 19 (OECD, 2004a, b). For ethanol it was concluded that the chemical is currently of low priority for further work, because the hazardous properties of ethanol are manifest only at doses associated with consumption of alcoholic beverages. As it is impossible to reach these exposure levels as a consequence of the manufacture and use of DEM, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM.

For methanol, SIAM 19 decided that this chemical is a candidate for further work. Methanol exhibits potential hazardous properties for human health (neurological effects, CNS depression, ocular effects, reproductive and developmental effects, and other organ toxicity). The effects of methanol on the CNS and retina in humans only occur at doses at which formate accumulates due to a rate-limiting conversion to carbon dioxide. In primates, formate accumulation was observed at methanol doses greater than 500 mg/kg bw. (Such high methanol exposures could only be produced from DMM doses of more than 1000 mg/kg bw). As there were no indications of a methanol associated toxicity from a well performed repeated dose toxicity study with DMM in rodents (which are, however, known to be less sensitive to methanol toxicity than humans), and because methanol toxicity would not be expected up to doses as high as 1000 mg DMM/kg bw/day, it was concluded that methanol does not make a relevant contribution to the toxicity profile of DMM.

A possible mode of action for systemic toxicity of DMM and DEM can only be deduced from the repeated dose study with DMM indicating a reversible liver hypertrophy at the cellular level at high doses of 1000 mg/kg bw/day. This effect can be an indication of an induction of metabolism in the liver rather than a clear systemic toxicity.

3.1.1 Toxicokinetics, Metabolism and Distribution

From the physico-chemical properties of both substances it can be assumed that they are readily absorbed via mucous membranes. Distribution is likely to occur in the water compartments and accumulation in fat is unlikely due to the physical chemical properties. Both substances are likely to be metabolized by unspecific (serine-) esterases of different tissues, in particular in the liver to the mono esters and finally to malonic acid and the corresponding alcohols, methanol and ethanol, respectively. This is corroborated by the findings of the abiotic hydrolysis, in particular at alkaline pH that can be regarded as qualitatively similar to the hydrolysis catalyzed by unspecific esterases (Jacobi and Hoffmann, 1989). The hydrolysis products are likely to be metabolized via physiological pathways as the tricarboxylic acid cycle because they are part of the normal intermediate metabolism (WHO, 2000). Some data on *in vivo* and *in vitro* skin absorption and enzymatic cleavage of the ester bond are available for DEM.

Studies in Animals

In vitro Studies

Dermal absorption studies

The percutaneous absorption of radiolabeled diethylmalonate was studied in a flow through perfusion cell with freshly prepared skin of weanling Yorkshire pigs (1.8 cm diameter, 1.9 mm

thickness) and Tyrode's solution as receptor fluid. $[2-{}^{14}C]$ -DEM was applied either undiluted (100 µg/cm²) or diluted in ethanol (12.5 mg/ml) 100 µg/cm² or (0.5 mg/ml) 4 µg/cm². The donor cell had a temperature of 24 °C, the receptor cell temperature was 37 °C; the receptor cell flow rate was 5 ml/h, and the incubation period amounted to 50 h. The results are summarized in table 6 (Hawkins and Reifenrath, 1984).

Applied dose/cm ²	Percent radioactivity in receptor fluid	Percent radioactivity in skin	Percent radioactivity evaporated
Undiluted, 100 µg	3 (± 1) %	8.8 (± 0.5) %	
100 µg in ethanol	6 (± 3) %	13 (± 2) %	25-50 %
4 μg in ethanol	10 (± 3) %	30 (± 10) %	

Table 6Percent of the skin penetration of [2-14C]-DEM in Yorkshire pig skin *in vitro* (50 h)

In a worst case assumption the amount penetrating and adsorbed to the skin can be regarded as potentially absorbed. This would amount to an absorption of 11.8 % for the undiluted substance, 19 % for an equal amount when dissolved in ethanol, and 40 % for a diluted solution in ethanol. However as parts of the stratum corneum will be sloughed off, it is likely that skin adsorption *in vivo* would be lower. In this experiment ethanol seemed to enhance absorption of the test substance.

In another experiment with freshly prepared skin of weanling Yorkshire pigs (1 mm thick, split thickness skin containing epidermis and a portion of the dermis, area: 0.8 cm^2) the 24 h penetration rates of 1 mg/cm² of [2-14C]-DEM in 10µ1 of acetone were determined. The experiment was performed under flow through conditions with a flow of the receptor fluid of 5 ml/h (temperature 37 °C). The receptor fluid was collected every hour in the first 12 hours and every 2 hours thereafter. At the same time hydrolysis of DEM in the living skin was studied by analyzing the receptor fluid for monoethyl malonate and malonic acid. After 24 h 0.2 to 1.6 % of DEM was found in the receptor fluid. 0.2 to 0.9 % were found in the skin and 0.6 to 0.7 % on the skin surface. The skin mediated hydrolysis of DEM amounted to 15 to 35 % of the applied dose. In the receptor fluid 20 to 21 % of the applied dose was present as hydrolysis products, in the skin hydrolysis products amounted to 3 to 5 %, and on the skin surface to 2 - 4 % of the applied dose. However, hydrolysis (1.2 to 16%) also occurred when the receptor fluid was incubated with the test substance. The maximum penetration rate of the hydrolysis products was reached after 5 h and amounted to approximately 2 % of the applied dose/hour. Preincubation of the skin at 80 °C for 5 min to inactivate esterases considerably decreased the amount of hydrolysis products and increased the penetration of DEM. (Chellquist and Reifenrath, 1988).

Metabolism

Two limited studies are available that studied enzyme catalyzed ester hydrolysis of DEM. Incubation of 10 μ moles DEM with 2 μ g of purified lipase of pork adipose tissue for 20 min at 37 °C and pH 7 yielded 1.9 μ moles of malonic acid. (Lynn and Perryman, 1960). When 29.5 mg of DEM/ml were incubated with 0.5 mg alpha-Chymotrypsin for 20 h at 25 °C and pH 7.2, 73 % of DEM was converted to monoethyl malonate. (Cohen and Crossley, 1964).

Malonic acid can be activated to malonyl-CoA and undergoes decarboxylation to acetyl-CoA by various mammalian tissues (Koeppen et al., 1978).

In vivo Studies

The percutaneous penetration of radiolabeled diethyl malonate was studied in different animal models, athymic nude mouse, human and pig skin grafted to athymic nude mice, weanling pigs, hairless dogs. [$^{2-14}$ C] radiolabeled DEM was applied at a dose of 0.1 mg/cm² for 24 h to mice skin

(area: 1.27 cm^2) or for 48 h to pigs and hairless dogs (area 25 cm²) under a non-occlusive protective patch. After the application time the skin was washed with ethanol. The percutaneous penetration was estimated from the recovery of radioactivity in urine and faeces and corrected for the recovery observed after parenteral (s. c.) administration. Absorption was 15 % in nude mice, 4 % in human skin grafted to nude mice, 6 % in pig skin grafted to nude mice, 2.5 % in pigs and 4 % in dogs (Reifenrath et al., 1984). Overall, the *in vivo* data from pigs correspond well to the percentages detected in the receptor fluid in the *in vitro* studies. The apparent difference between *in vitro* and *in vivo* data is most probably only related to the very conservative approach of the *in vitro* studies to also consider the amount on the skin as "absorbed".

Studies in Humans

In vitro Studies

An *in vitro* skin absorption study was performed with DEM. Human cadaver split thickness skin of male Chinese, 60 to 80 years old with a thickness of 600 μ m comprising the epidermis and the uppermost layer of the dermis was used. The experiment was performed in flow through cells with a total diffusion volume of 0.32 cm³. The exposed surface area was 0.8 cm², the chamber temperature 32 °C. Perfusion was continuous with a steady flow of 8 ml/h of the receptor fluid, 0.9 % saline. A small constant air flow was maintained above the surface to mimic unoccluded conditions. 4 μ l of DEM was applied to the skin samples and the outer chamber was sealed and covered with a tenax tube to collect evaporating test substance. The experiment was performed for 24 h. Every 2 h samples of the receptor fluid were taken. Amounts adsorbed to the skin surface were extracted from the skin samples with 10 ml of ethanol for 2 h. Analyses of the receptor fluid, skin and tenax tube extracts was performed by GC/FID. After 24 h 16 % of the applied dose had penetrated through the skin. The maximum flux rate was reached after 5 h and amounted to 280 µg/h (350 µg cm⁻²h⁻¹); the mean penetration rate was 99 µg/h (120 µg cm⁻²h⁻¹). The majority of the test substance, 45 to 50 % evaporated from the skin, and 34 to 39 % remained on the skin. (Loke et al., 1999).

The mammalian metabolism of methanol, a metabolite of DMM, occurs mainly in the liver, where methanol is converted to formaldehyde, which is in turn converted to formate. Formate is then finally converted to carbon dioxide and water. In humans, the conversion to formaldehyde is mediated by alcohol dehydrogenase. In rodents, the reaction occurs mainly via a catalase-peroxide pathway. In rodents, the first step is rate limiting and methanol in turn accumulates in the blood. In primates, the conversion of formate to carbon dioxide is rate-limiting, leading to a disproportionate increase of formate in the blood and sensitive target tissues (such as CNS and the retina) (OECD, 2004a).

The DEM metabolite ethanol is readily absorbed by the oral and inhalation routes and subsequently, metabolized and excreted in humans. At exposures relevant to occupational and consumer exposure during manufacture and use of ethanol containing products, the alcohol dehydrogenase metabolic route in the liver dominates and does not become saturated. This mechanism follows first order kinetics. The first step of the metabolic path is the rate-determining step; concentrations of the intermediate metabolite acetaldehyde are very low. Ethanol is not accumulated in the body. Dermal uptake of ethanol is very low (OECD, 2004b).

Conclusion

From the physical chemical properties of both substances it can be assumed that they are readily absorbed through mucous membranes and distributed into the water compartments. Absorption through skin in *in vitro* experiments in different species varied widely depending on the experimental conditions. *In vivo* skin absorption of undiluted $[2^{-14}C]$ -DEM was highest in nude

mice with 15 % absorption and lowest in pigs (2.5 %). In human skin grafted on nude mice and in hairless dogs absorption was 4 %. These experiments indicate relatively low skin absorption under non-occluded conditions *in vivo*. Both DMM and DEM are likely to be metabolized by esterases under cleavage of one or two ester bonds yielding the corresponding alcohols and malonic acid monoesters or malonic acid.

3.1.2 Acute Toxicity

Studies in Animals

Acute toxicity studies in rats or rabbits are available for both substances and indicate a low acute toxicity via the oral, dermal and inhalation route. The information on DEM is however limited.

Methanol and ethanol, the metabolites of DMM and DEM, were assessed at SIAM 19 (OECD 2004a, b). Typical symptoms of methanol intoxication in humans (i.e. acidosis and ophthalmologic changes) do not occur in rodents or rabbits, which are able to remove formate (i.e. the ultimate methanol toxicant in humans) more efficiently. In these animals, CNS depression is usually the cause of defects and finally death. Ethanol, as used in industrial processes (i.e. not considering its use as alcoholic beverage) has a low order of acute toxicity by all routes of exposure.

Inhalation

A limited inhalation study reported no deaths in rats that were exposed to concentrated vapors of DEM for 8 h. No details were reported. (Smyth et al., 1969).

No data on the acute inhalation toxicity of DMM are available.

With regard to the acute inhalation toxicity of methanol, SIAM 19 (OECD, 2004a) concluded that "...In rats, LC_{50} values have been calculated to be 83.2 and 128.8 mg/l after 4 hours. In cats, the LC_{50} was 85.4 mg/l after 4 hours. In monkeys, air concentrations of 52 mg/l after 1 - 4 hours and 13 mg/l after 18 hours led to an unspecified level of mortality."

The lowest robustly reported value for ethanol (OECD, 2004b) is an inhalation LC_{50} of > 60 000 ppm (114 000 mg/m³; 1 hour, mouse).

Dermal

A limit study according to OECD TG 402 and GLP with DMM revealed no mortality, no clinical signs, no local irritation at the site of contact, no effects on body weight and no macroscopic organ changes attributable to the test substance at the limit dose of 2000 mg/kg bw. (Hüls, 1992b).

For DEM an acute dermal toxicity in rabbits of > 16960 mg/kg bw with 24 h of exposure was reported. (Smyth et al., 1969). This study was not conducted according to modern guidelines, but corroborates the study with DMM.

With regard to acute dermal toxicity of methanol, SIAM 19 (OECD, 2004a) concluded that "Dermal LD_{50} s in rabbits range from 15 800 to 20 000 mg/kg bw. In rats, the dermal LD_{50} is greater than 45 000 mg/kg. In monkeys, four daily dermal doses of 400 mg/kg bw eventually resulted in death." No robust LD_{50} values were reported for ethanol (OECD, 2004b).

Oral

For DMM a GLP- limit study was conducted in rats and revealed no substance related mortality, clinical symptoms, body weight changes or macroscopic findings at the limit dose of 2000 mg/kg bw (Hüls, 1992c).

Smyth et al. (1969) report an acute oral toxicity in rats of DEM of 15 794 mg/kg bw. This study was not conducted according to modern guidelines, but corroborates the study with DMM.

With regard to the acute oral methanol toxicity, SIAM 19 (OECD, 2004a) concluded, that "Oral $LD_{50}s$ in rats range from < 790 to 13 000 mg/kg bw, in mice, the values range from 7300 to 10 000 mg/kg bw; in rabbits, the LD_{50} was approximately 14 200 to 14,400 mg/kg bw; and in monkeys, the values range from 7000 to 9000 mg/kg bw. Although most of the references for these values provided only limited details, the values are consistent within species and route of exposure." The lowest robustly reported value for ethanol (OECD, 2004b) is an oral LD_{50} of 8300 mg/kg bw (mouse).

Human Exposure Experience

The acute toxicity of methanol, a metabolite of DMM, was assessed at SIAM 19, and the following conclusions were reached (OECD, 2004a):

"...Formate is considered to be the ultimate toxicant in acute intoxication in humans. Acidosis and ophthalmologic changes are typical primary effects. A blood level of 500 mg methanol/l in acutely poisoned patients generally is regarded as requiring hemodialysis. This blood concentration can transiently be achieved in an adult person (70 kg) by ingestion of 0.4 ml methanol/kg bw. Generally, in humans, transient central nervous system (CNS) effects appear above blood methanol levels of 200 mg/l and serious ocular symptoms appear above 500 mg/l. The minimal acute methanol dose to humans that can result in death is considered to be 300 to 1000 mg/kg bw by ingestion, and fatalities have occurred in untreated patients with initial methanol blood levels in the range of 1500 - 2000 mg/l. However, such high blood methanol levels able to cause death are hardly achievable through inhalation exposure. For example, 2.6 or 6.5 mg/l resulted in methanol blood levels that barely exceed 100 and 200 mg/l, respectively, after an 8-hour working shift. Exposure to 0.26 mg methanol/l for 4 hours was without significant physiologic effects in human volunteers."

For ethanol, the metabolite of DEM the following conclusions were reached at SIAM 19 (OECD, 2004b): "Oral consumption of ethanol containing beverages is known to produce symptoms of intoxication (e.g. drowsiness, loss of concentration). However, there is no evidence that such effects can be produced by inhalation or dermal routes of exposure."

Conclusion

DMM

No acute inhalation study is available for DMM. In the dermal toxicity study in rats following OECD guideline TG 402 and GLP (limit test) the LD_{50} was > 2000 mg/kg bw. An acute oral toxicity study in rats revealed an LD_{50} > 2000 mg/kg bw. In both studies no test substance related effects were observed.

DEM

Only limited literature data are available. No toxicity was observed after 8 h inhalation of concentrated vapors in rats. The dermal LD_{50} in rabbits was reported to be > 16 960 mg/kg bw, the oral LD_{50} in rats 15 794 mg/kg bw.

Taken together the studies for both substances suggest that they are of low acute toxicity via the oral and dermal route and likely to be also of low toxicity after inhalation exposure.

3.1.3 Irritation

Skin Irritation

Studies in Animals

DMM was not irritating to rabbit skin in a study according to OECD TG 404 and GLP with 4 hours exposure under semi occlusive conditions. Slight erythema was only observed 30 to 60 minutes after the removal of the patch (Hüls, 1992d).

No guideline study is available for DEM, but it was reported to be slightly irritating to rabbit skin after 24 h occlusive exposure (Moreno, 1975).

As the studies for both substances give comparable results it can be concluded that DMM and DEM should not be regarded as skin irritants. Methanol and ethanol were not irritating to the skin (OECD 2004a, b).

Eye Irritation

Studies in Animals

When undiluted DMM was administered to rabbit eyes (0.1 ml) without rinsing, slight to moderate eye irritation was observed including conjunctival redness, chemosis, iriditis and slight corneal opacity. All effects were reversible within 8 days. The study was performed according to OECD TG 405 and GLP (Hüls, 1992e). For DEM a comparable study according to FIFRA, F 81-4 and GLP showed comparable slight to moderate irritating effects after administration of 0.1 ml of the undiluted test substance to rabbit eyes (Hüls, 1989). Similar effects were reported for methanol and ethanol (OECD 2004a, b).

Conclusion

DMM was not irritating to rabbit skin in a guideline study according to OECD TG 404 and GLP. For DEM no guideline study is available on skin irritation, but a slightly irritating effect was reported in the literature after 24 hours of occlusive exposure. Both substances showed slight to moderate eye irritating effects in rabbits that were completely reversible within the observation period. The studies were conducted according or similar to OECD TG 405 and under GLP.

3.1.4 Sensitization

Studies in Animals

Skin

DMM was not sensitizing in a Bühler Test in guinea pigs according to OECD TG 406 and GLP (Hüls, 1992f). Animal studies with DEM are not available.

Studies in Humans

Skin

In a maximization test with 25 volunteers DMM was not sensitizing when applied at a concentration of 8 % in petrolatum (Kligman, 1966; Kligman, 1976; Kligman and Epstein, 1975). DEM was reported not to have sensitizing properties in a maximization test in 23 human volunteers when applied at a concentration of 4 % in petrolatum (Epstein, 1975).

Conclusion

DMM did not reveal any skin sensitizing effect in a Bühler test according to OECD TG 406 and GLP. Reports of maximization tests in human volunteers with both DMM and DEM did not indicate any skin sensitizing properties.

3.1.5 Repeated Dose Toxicity

Only studies by the oral route are available.

Studies in Animals

Oral

In a subacute combined repeated dose reproduction/developmental screening test with DMM according to OECD TG 422 and GLP, groups of 10 male and female Wistar rats received doses of 100, 300 and 1000 mg/kg bw per day by gavage once daily, 7 d per week. A high dose recovery and recovery control group of 5 animals of each sex per group was also included in the study. Males received the test item 2 weeks prior to mating, during the mating period and approximately 2 weeks post mating, with a total of 39 treatment days. Females were treated 2 weeks prior to mating, during the mating period, throughout pregnancy and up to lactation day 4. Recovery animals were treated for 39 days followed by a post exposure observation period of 14 days. The animals were examined daily for clinical signs and a FOB was performed in randomly selected 5 males and females of each group at the end of the dosing period for males and during the lactation period for females. Body weights were recorded at the beginning of the study, at last weekly thereafter and at termination. All dams were weighed on gestation days 0, 7, 14, and 20 and lactation days 1 and 4. Food consumption was recorded weekly. Standard hematology and clinical chemistry parameters were determined in 5 randomly selected males and females of each group at the end of the premating period and the recovery period respectively. Organ weights of liver, adrenals, kidneys, thymus, spleen, brain, and heart were determined of 5 males and females of each group. Testes and epididymis weights were determined of all adult males of each group. All adult animals and pups were examined for any structural abnormalities and pathological changes. Standard histopathology was performed on all major tissues of 5 males and 5 females of the control and high dose groups as well as all animals of the recovery and recovery control groups. Livers and testes of 5 males and females in the low and mid dose groups were also examined histopathologically. Stages of spermatogenesis and interstitial testicular structure were determined additionally.

No treatment related effects were observed on clinical symptoms, performance in the FOB, body weight and body weight gain, food consumption, clinical chemistry, hematology, organ weights or gross pathology. In the histopathological examination livers of animals of both sexes in the high dose group showed a significantly increased incidence of hepatocellular hypertrophy. Similar changes were not observed in the high dose recovery group indicating reversibility of the effect. At dose levels of 300 and 100 mg/kg bw per day no treatment related histopathological changes were observed. The NOAEL for repeated dose toxicity is therefore 300 mg/kg bw. There was no indication of a hazardous property associated with methanol toxicity. The observations concerning reproduction and development are reported in chapter 3.1.8. (Degussa, 2003e).

Methanol, a metabolite of DMM, was assessed at SIAM 19 (OECD, 2004a). Methanol exhibits potential hazardous properties for human health (neurological effects, CNS depression, ocular effects, reproductive and developmental effects, and other organ toxicity). The effects of methanol on the CNS and retina in humans only occur at doses at which formate accumulates due to a rate-limiting conversion to carbon dioxide. In primates, formate accumulation was observed at methanol doses greater than 500 mg/kg bw (which would require a DMM dose of more than 1,000 mg/kg

bw). As there were no indications of a methanol associated toxicity from the available repeated dose toxicity study with DMM in rodents (which are, however, known to be less sensitive to methanol toxicity than humans), and because methanol toxicity would also not be expected in humans up to doses as high as 1000 mg DMM/kg bw/day, it is concluded that methanol does not make a relevant contribution to the toxicity profile of DMM.

For DEM a limited subchronic toxicity study was reported in the literature. Ten to 16 male and female CD-rats received DEM in their diet for 90 days at dose levels of 36 mg/kg bw per day for males and 41 mg/kg bw per day for females. A comparable untreated group of rats served as control. Details of the study were not reported. The authors report that no treatment related differences were found between the two groups with regard to growth, food intake, hematological and clinical chemistry parameters, blood-urea levels, organ weights and organ pathology (Posternak, Lindner, and Vodoz, 1969). Although limited, the available repeated dose study for DEM did not show any effect associated with ethanol toxicity after 90 days at about 40 mg/kg bw/day (only tested dose). This would, however, also not be expected, because the lowest reported NOAEL for ethanol in repeated dose studies on rats was approximately 2400 mg/kg bw. At still higher ethanol doses. male rats showed minor changes to organ weights and hematology/biochemistry; female rats showed minor biochemistry changes and increased length of estrus cycle along with liver nodules; adverse liver effects were observed at concentrations of 3600mg ethanol/kg.bw/day and above (OECD, 2004b). As DEM would therefore not be expected to be more toxic than DMM (because ethanol is less toxic than methanol), the DMM study could be regarded as a "worst-case". The available data are therefore considered to be consistent, with no indication for a relevant toxicity of DEM and DMM after repeated administration.

Conclusion

One repeated dose study in rats by the oral route (gavage) according to OECD TG 422 and GLP is available for DMM. The only effect observed was a reversible hepatocellular hypertrophy in animals of the high dose group (1000 mg/kg bw/day). The NOAEL was 300 mg/kg bw per day. Only a limited dietary 90 day study in rats is available with DEM, which indicated no treatment related effect at dose levels of 36 and 41 mg/kg bw per day for male and female animals, respectively (only one dose level was tested). Although the information available for DEM is limited, it is considered sufficient because DEM is not likely to be more toxic than DMM (as ethanol is less toxic than methanol). Overall, the toxicity of DMM and DEM after repeated dosing is considered to be low.

3.1.6 Mutagenicity

In vitro Studies

Both materials, DMM and DEM were not mutagenic in standard Ames assays with and without metabolic activation according to Dir. 84/449/ECC B 14 and GLP in S. *typhimurium* strains TA 1535, TA 1537, TA 1538, TA 98 and TA 100 up to concentrations of 5000 μ g/plate. Cytotoxicity was observed for DMM at concentrations at and above 1000 μ g/plate while for DEM no cytotoxicity was observed at the highest concentration of 5000 μ g/plate (Hüls, 1992g; Hüls, 1993b).

DMM was not mutagenic in an in *vitro* cytogenetic assay in human peripheral lymphocytes with and without metabolic activation according to OECD TG 473 and GLP at concentrations of up to 5000 μ g/ml. A reduction in mitotic index indicating cytotoxicity was observed at a concentration of 5000 μ g/ml with and without metabolic activation (Degussa, 2003f). No cytogenetic assay was available for DEM. Based on the overall balance of evidence that ethanol is not genotoxic (see below), the data for chromosomal aberrations for DEM has been read-across from DMM.

With methanol. (including numerous in vitro assavs seven Ames assavs. four micronucleus/cytogenetic assays, a mammalian gene mutation assay, a yeast gene mutation assay, a mouse lymphoma test, three cell transformation assays, and a DNA damage and repair assay) were conducted. The majority of these assays are negative, with the exception of a positive result in the mouse lymphoma test, an ambiguous result in an Ames assay for strain TA102, and an ambiguous result in the DNA damage and repair assay. Only limited details were available for the mouse lymphoma test and for the DNA damage assay (OECD, 2004a). The balance of evidence is that ethanol is not genotoxic. Negative results from a number of bacterial mutation assays appear to be reliable. Of the mammalian cell mutation assays a weak mutagenic effect in mouse lymphoma cells occurred only at very high ethanol concentrations (OECD, 2004b).

In vivo Studies

No in *vivo* studies are available for DMM and DEM. Of the eleven *in vivo* assays performed with methanol (all micronucleus and cytogenicity assays plus a *Drosophila* SLRL assay), all are negative except one cytogenetic assay, which was positive for aneuploidy, sister chromatid exchange, and micronuclei. Limited information was available regarding this positive result (OECD 2004a).

In vivo tests with ethanol for chromosome aberrations in both rats and Chinese hamsters have given negative results. There is very little evidence to suggest that ethanol is genotoxic in somatic cells and it may have a very limited capacity to induce genetic changes *in vivo* but under very specific circumstances and at very high doses achievable in humans only by deliberate oral ingestion (OECD, 2004b).

Conclusion

Both DMM and DEM were not mutagenic in the standard Ames assay in bacteria with and without metabolic activation. DMM did not show any clastogenic activity in the *in vitro* cytogenetic assay with peripheral human lymphocytes in the presence and absence of a metabolic activation system. All tests were conducted according to OECD or EC guidelines and GLP. For both substances, there is no structural alert for genotoxicity. In conclusion, from the available information, there is no indication of a mutagenic potential of the substances, both for gene mutations and chromosomal aberrations.

3.1.7 Carcinogenicity

No data are available.

3.1.8 Toxicity for Reproduction

One study according to OECD TG 422 and GLP is available for DMM.

Studies in Animals

Effects on Fertility

In the combined repeated dose reproduction/developmental screening test with DMM in Wistar rats no treatment related changes in fertility index for males and females, gestation index, testes and epididymis weights were observed compared to the control. No treatment related histopathological changes of the sex organs or stages of spermatogenesis were reported (Degussa, 2003e). Details of the study methodology are described in chapter 3.1.5. The NOAEL for fertility corresponds therefore to the highest dose tested: 1000 mg/kg bw per day.

No reproductive toxicity study was available for DEM. For ethanol, the lowest reported NOAEL for fertility by the oral route was 2000 mg/kg bw in rats, equivalent to a blood alcohol concentration of 1320 mg/l, although this was based on a significant increase in the number of small pups rather than a direct effect on fertility; such direct effects are not seen until much higher doses (OECD, 2004b). Because it is impossible to reach blood levels of ethanol which are associated with reproductive toxicity as a consequence of the manufacture and normal use of DEM, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. Taking also into account that DEM is not likely to be more toxic than DMM, which has shown no potential for reproductive toxicity, it is overall concluded that there is no indication for a relevant reproductive toxicity of DMM and DEM.

Developmental Toxicity

The combined repeated dose reproduction/developmental screening test with DMM in Wistar rats revealed no treatment related changes in the duration of gestation, the gestation index, parturition and pre-implantation loss compared to controls. (For details of the study design see chapter 3.1.3). In the low dose group post-implantation loss was increased and consequently the percentage of live pups born was statistically significantly reduced compared to controls. These changes were considered incidental and not treatment related as the effects were not observed in the mid and high dose groups. No statistically significant differences between treated and control groups were observed for the number of pregnancies, number of dams that littered, number of live litters, mean litter size, mean viable litter size, sex ratio at birth, number of pups dead at first observation or day 2 to 4 post partum, number of live pups at day 0, 3, and 4 post partum and the associated survival indices. A significantly higher percentage of male pups and lower number of females on day 4 post partum in the low dose group was considered incidental as no comparable change was observed in the mid and high dose group or at other time intervals. The mean number and mean weights of male and female pups as well as both sexes combined were otherwise not statistically significantly different from controls. No statistically significant difference in the external abnormalities of life and dead pups compared to controls was observed at all dose levels. Maternal toxicity was restricted to a reversible hepatocellular hypertrophy (see chapter 3.1.5) at 1000 mg/kg bw, with a maternal NOAEL of 300 mg/kg bw. The NOAEL for developmental toxicity was 1000 mg/kg bw per day (Degussa, 2003e).

It is noted, that despite the known differences in methanol metabolism between rodents and humans, rodents are adequate models for human exposure to methanol at levels where formate does not accumulate, i.e. at methanol levels below 500 mg/kg bw (i.e. levels which would require DMM doses of more than 1000 mg/kg bw). Blood methanol concentrations associated with serious teratogenic effects and reproductive toxicity observed in rodent studies are in the range associated with formate accumulation, which is likely to result in metabolic acidosis and visual and clinical effects in humans. (OECD, 2004a)

No developmental toxicity study was available for DEM. Many studies exist examining the developmental end point for ethanol. However, most use very high doses and few are individually robust enough to allow a NOAEL to be established. The collective weight of evidence is that the NOAEL for developmental effects in animals is high, typically \geq 6400 mg/kg bw, compared to maternally toxic effects at 3600 mg/kg bw (OECD, 2004b). The potential for reproductive and developmental toxicity exists in humans only from deliberate over-consumption of ethanol. Blood ethanol concentrations resulting from ethanol exposure by any other route are unlikely to produce reproductive or developmental toxicity as a consequence of the manufacture and normal use of DEM (cf. OECD, 2004b), it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. Taking also into account that DEM is not likely to be more toxic

than DMM, which has shown no potential for developmental toxicity, it is overall concluded that there is no indication for a relevant developmental toxicity of DMM and DEM.

Conclusion

Based on the findings in a combined oral (gavage) repeated dose reproduction/developmental toxicity study in rats according to OECD TG 422 and GLP with DMM a NOAEL for parental toxicity of 300 mg/kg bw/day for males and females and a NOAEL for reproductive and developmental toxicity of 1000 mg/kg bw/day, the highest dose tested, can be derived. No reproductive/ developmental toxicity study was available for DEM. Because it is impossible to reach blood levels of ethanol which are associated with reproductive/developmental toxicity as a consequence of the manufacture and normal use of DEM, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. Taking also into account that DEM is not likely to be more toxic than DMM, which has shown no potential for reproductive and developmental toxicity, it is overall concluded that there is no indication for a relevant reproductive and/or developmental toxicity of DMM and DEM.

3.2 Initial Assessment for Human Health

From the physical chemical properties of both substances it can be assumed that they are readily absorbed through mucous membranes and distributed into the water compartments. Absorption through skin in *in vitro* experiments in different species varied widely depending on the experimental conditions. *In vivo* skin absorption of undiluted [2-¹⁴C]-DEM was highest in nude mice with 15 % absorption and lowest in pigs (2.5 %). In human skin grafted on nude mice and in hairless dogs absorption was 4 %. These experiments indicate relatively low skin absorption under non-occluded conditions. Both DMM and DEM are likely to be metabolized by esterases under cleavage of one or two ester bonds yielding the corresponding alcohols and malonic acid monoesters or malonic acid.

No acute inhalation study is available for DMM. In the dermal toxicity study in rats following OECD guideline TG 402 and GLP (limit test) the LD_{50} was > 2000 mg/kg bw. An acute oral toxicity study in rats revealed an LD_{50} > 2000 mg/kg bw. In both studies no test substance related effects were observed.

For DEM only limited literature data are available. No toxicity was observed after 8 h inhalation of concentrated vapors in rats. The dermal LD_{50} in rabbits was reported to be > 16 960 mg/kg bw, the oral LD_{50} in rats 15 794 mg/kg bw.

Taken together the studies for both substances suggest that they are of low acute toxicity via the oral and dermal route and likely to be also of low toxicity after inhalation exposure.

DMM was not irritating to rabbit skin in a guideline study according to OECD TG 404 and GLP. For DEM no guideline study is available on skin irritation, but a slightly irritating effect was reported in the literature after 24 hours of occlusive exposure. Both substances showed slight to moderate eye irritating effects in rabbits that were completely reversible within the observation period. The studies were conducted according or similar to OECD TG 405 and under GLP.

DMM did not reveal any skin sensitizing effect in a Bühler test according to OECD TG 406 and GLP. Reports of maximization tests in human volunteers with both, DMM and DEM did not indicate any skin sensitizing properties.

One repeated dose study in rats by the oral route (gavage) according to OECD TG 422 and GLP is available for DMM. The only effect observed was a reversible hepatocellular hypertrophy in animals of the high dose group (1000 mg/kg). The NOAEL was 300 mg/kg bw per day. Only a

limited dietary 90 day study in rats is available with DEM, which indicated no treatment related effect at dose levels of 36 and 41 mg/kg bw per day for male and female animals respectively (only one dose level was tested). Although the information available for DEM is limited, it is considered sufficient because DEM is not likely to be more toxic than DMM. Overall, the toxicity of DMM and DEM after repeated dosing is considered to be low.

Both DMM and DEM were not mutagenic in the Standard Ames assay in bacteria with and without metabolic activation. DMM did not show any clastogenic activity in the *in vitro* cytogenetic assay with peripheral human lymphocytes in the presence and absence of a metabolic activation system. All tests were conducted according to OECD or EC guidelines and GLP. For both substances, there is no structural alert for genotoxicity. In conclusion, from the available information, there is no indication of a mutagenic potential of the substances, both for gene mutations and chromosomal aberrations.

Based on the findings in a combined oral (gavage) repeated dose reproduction/developmental toxicity study in rats according to OECD TG 422 and GLP with DMM a NOAEL for parental toxicity of 300 mg/kg bw/day for males and females and a NOAEL for reproductive and developmental toxicity of 1000 mg/kg bw/day, the highest dose tested, can be derived. No reproductive/ developmental toxicity study was available for DEM. Because it is impossible to reach blood levels of ethanol which are associated with reproductive/developmental toxicity as a consequence of the manufacture and normal use of DEM, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. Taking also into account that DEM is not likely to be more toxic than DMM, which has shown no potential for reproductive and developmental toxicity, it is overall concluded that there is no indication for a relevant reproductive and/or developmental toxicity of DMM and DEM.

4 HAZARDS TO THE ENVIRONMENT

4.1 Aquatic Effects

Acute Toxicity Test Results

The acute toxicity test results are summarized in tables 7 to 9.

Effects on fish

Studies according to standard EC or OECD TG or comparable to those are available for both substances. Most studies were performed under flow through conditions and analytical monitoring revealed the stability of the test substance concentration for the study duration. The 96 h LC_{50} was 21 mg/l (0.16 mmol/l) for DMM and 12 to 17 mg/l (0.07 to 0.1 mmol/l) for DEM. Both substances have thus comparable LC_{50} values.

Substance	Study Type	Exposure time	Species	Endpoint	Value [mg/l]	Reference
DMM	84/449/EC C.1; GLP, flow through, analytical monitoring	96 h	Danio rerio	Mortality LC ₅₀	21	Hüls, 1993c
DEM	Comparable to OECD 203, flow through, no data on GLP, analytical monitoring	96 h	Pimephales promelas	Mortality LC ₅₀	12	Geiger et al., 1984a
DEM	Comparable to OECD 203, flow through, no data on GLP, analytical monitoring	96 h	Pimephales promelas	Mortality LC ₅₀	15	Brooke et al., 1984; Call et al., 1981
DEM	Comparable to OECD 203, flow through, no data on GLP, analytical monitoring	96 h	Pimephales promelas	Mortality LC ₅₀	17	Geiger et al., 1984b
DEM	DIN 38412 part 15, no GLP, no analytical monitoring, static	48 h	Leuciscus idus	Mortality LC ₅₀	73	Hüls, 1988

Table 7Toxicity to fish

Effects on invertebrates

For both substances, DMM and DEM, studies according to EU guidelines and GLP without analytical monitoring are available. From the physical chemical data and the fish toxicity data it can be assumed that the test substances did not volatilize during the test period of 48 h. However it seems possible that hydrolysis may have occurred.

The 48 h EC₅₀ value for *Daphnia magna* was > 1000 mg/l for DMM and 200 mg/l for DEM based on nominal concentrations. When a correction for hydrolysis at pH 7 is introduced the EC₅₀ values would be 179 mg/l for DEM and > 728 mg/l for DMM. From these data it can be concluded that both substances are of relatively low toxicity to *Daphnia magna*, but DEM seems to be slightly more toxic.

Table 8Acute toxicity to inver	tebrates
--------------------------------	----------

Substance	Study Type	Exposure time	Species	Endpoint	Value [mg/l]	Reference
DMM	84/499/EEC C.2, GLP, static, no analytical monitoring	48 h	Daphnia magna	Immobilization EC ₅₀	> 1000 ^a (> 728) ^b	Hüls, 1992h
DEM	84/499/EEC C.2, GLP, static, no analytical monitoring	48 h	Daphnia magna	Immobilization EC ₅₀	200 (179) ^b	Hüls, 1993d

^a highest concentration tested, ^bcorrected for hydrolysis at pH 7.

Effects on aquatic plants / algae

For both substances, DMM and DEM, studies according to EU guidelines and GLP without analytical monitoring are available. From the physical chemical data and the fish toxicity data it can be assumed that the test substances did not volatilize during the test period of 96 h. However, regarding the test substance vials in the DMM study the pH was lowered during the study and compared to controls at concentrations between 40 and 320 mg/l which could be indicative of hydrolysis of the test substance. An additional effect of the lowered pH on algae cannot be excluded. This could also explain the lower EC₅₀ values of DMM (for growth rate: 386 mg/l) compared to DEM (> 800 mg/l). If the values are corrected for hydrolysis at pH 7 the EC₅₀ values for growth rate would correspond to 240 mg/l for DMM and > 667 mg/l for DEM. An increase in pH in the control and lowest test concentration (10 mg/l) during the duration of the test is a common phenomenon that can be explained by the CO₂ depletion caused by the algae.

	Table 9	Toxicity to	algae
--	---------	-------------	-------

Substance	Study Type	Exposure time	Species	Endpoint	Value [mg/l]	Reference
DMM	OECD 201, GLP, no analytical monitoring	72 h	Desmodesmus subspicatus	Cell growth (biomass) EC ₅₀	148 (92) ^b	Hüls, 1993e
				Growth rate EC ₅₀	386 (240) ^b	
DEM	88/302/EEC, GLP, no analytical monitoring	72 h	Desmodesmus subspicatus	Cell growth (biomass) EC ₅₀	508 (424) ^b	Hüls, 1993f
				Growth rate EC_{50}	> 800 ^a (> 667) ^b	

^a highest concentration tested, ^bcorrected for hydrolysis at pH 7.

Toxicity to Microorganisms

For DMM toxicity towards *Pseudomonas putida* was determined in an assay according to DIN 38412 part 8. The 18 hour EC_{50} was not reached at the maximum tested concentration of 12,500 mg/l, the EC_{10} was 6154 mg/l (Hüls, 1993g)

For DEM a 16 hour EC_{50} of 3097 mg/l and an EC_{10} of 1092 mg/l in a similar study with *Pseudo-monas putida* according to DIN 38412 part 8 was reported (Hüls, 1993h).

For the aquatic protozoa *Tetrahymena pyriformis* IC_{50} -values for growth inhibition of 20 mmol/l for DMM (2640 mg/l) and 10 mmol/l (1600 mg/l) for DEM were reported in a 2-dimensional static assay (Jaworska et al., 1997).

PNEC derivation

Based on the lowest LC₅₀ for fish of 21 mg/l for DMM and 12 mg/l for DEM a PNEC of 21 μ g/l for DMM and 12 μ g/l for DEM can be derived using an assessment factor of 1000 according to the EU technical guidance document.

4.2 Terrestrial Effects

Acute Toxicity Test Results

Terrestrial Plants

For DEM a study on growth inhibition for terrestrial plants according to OECD TG 208 and GLP is available. No effect was observed on seed development and growth of *Triticum aestivum*, *Lepidum sativum* and *Brassica alba* up to a concentration of 100 mg DEM/kg soil (Hüls, 1995). In an aerosol exposure study *Pinus echinata*, *Artemisia tridentata* or *Festuca arundinacea* plants were exposed to aerosols containing 1.14 or 0.32 mg DEM/l air for 60 minutes in a sealed air exposure chamber. Visual toxicity symptoms were assessed 0, 2, and 21 days post exposure. At a concentration of 1.14 mg/l chlorosis and burns on the tips of the leaves were observed in *Pinus echinata*, leaf curl and wilting followed by chlorosis in *Artemisia tridentata* and wilting and burn of the leaf tips followed by chlorosis and leaf curl in *Festuca arundinacea* were observed. The effects increased in severity and incidence with time. The NOEC was 0.32 mg/l in all plants (Cataldo et al., 1990).

Soil dwelling organisms

A toxicity test with DEM in artificial soil containing 1000 mg DEM/kg soil according to Dir. 88/302/EEC and GLP using *Eisenia fetida* revealed no mortality after 14 days of exposure (Hüls, 1994).

4.3 Other Environmental Effects

No other relevant data are available.

4.4 Initial Assessment for the Environment

Both, dimethyl- and diethylmalonate are colorless organic liquids with an ester like odor. DMM has a water solubility of about 142 g/l at 20 °C, a vapor pressure of 0.48 - 0.5 hPa at 20 °C and a measured log Kow of -0.05. DEM has a water solubility of 20 g/l at 20 °C, a vapor pressure of 0.36 hPa at 25 °C and a measured log K_{OW} of 0.96. Both substances are readily biodegradable (100 % (DMM) and 98 % (DEM) in a DOC-die away test) and undergo a two-step hydrolytic degradation in a first step to the monoester and in a second step to malonic acid and the corresponding alcohol, methanol or ethanol respectively. The half lives were shortest at pH 9, < 2.4 h (50 °C) for both substances, and increased to 5.7 h (50 °C) and 15.9 h (50 °C) for DMM and DEM respectively at pH 7 and 859 h (50 °C) for DMM at pH 4. At pH 4 and 50 °C DEM showed less than 10 % degradation within 5 days. For photodegradation via oxidation by OH-radicals half-lives of about 31 days for DMM and 4.7 days for DEM in air were estimated. For DEM a 100 % photolytic ozonisation after 40 min under UV-irradiation in water was reported. The generic fugacity model I indicates that both substances are preferably distributed in the water phase (98 % for DMM and 90 % for DEM) with a low amount distributing potentially into air (1.5 and 9.9 % respectively). The fugacity model III however, indicates that a considerable amount may be distributed to the soil if the substances are primarily released into air (36 % for DMM and DEM) or soil (38 % for DMM and 44.5 % for DEM). The measured octanol-water partition coefficients (log K_{OW} -0.05 for DMM and 0.96 for DEM) and soil sorption coefficients (K_{OC} 1,74 for DMM and 10 for DEM) indicate a low potential for bio- or geo-accumulation.

Acute toxicity data for 3 trophic levels of the aquatic environment are available for both substances. The most sensitive species was fish. The 96 h LC_{50} for fish (*Danio rerio*) was 21 mg/l for DMM and 12 - 17 mg/l for DEM (*Pimephales promelas*). The 48 h EC_{50} for *Daphnia magna* was

> 728 mg/l for DMM and 179 mg/l for DEM and the 72 h ErC₅₀ for algae (*Desmodesmus subspicatus*) was 240 mg/l for DMM and > 667 mg/l for DEM with nominal NOEC-values of 20 mg/l and 25 mg/l, respectively. Based on the lowest LC₅₀-value for fish of 21 mg/l for DMM and 12 mg/l for DEM, PNEC-values of 21 and 12 µg/l can be derived for DMM and DEM, respectively.

No growth inhibition of DEM to terrestrial plants in soil was observed up to concentrations of > 100 mg/kg soil and no toxicity to *Eisenia fetida* was observed at concentrations of DEM of 1000 mg/kg bw after 14 days of exposure.

5 **RECOMMENDATIONS**

Human Health:

The chemicals of this category are currently of low priority for further work due to their low hazard profile.

Environment

The chemicals of this category possess properties indicating a hazard for the environment. Although these hazards do not warrant further work (as they are related to acute toxicity which may become evident only at high exposure levels) they should nevertheless be noted by chemical safety professionals and users. The chemicals are currently of low priority for further work. Countries may desire to investigate any exposure scenarios that were not presented by the sponsor country.

6 REFERENCES

Berger RG, Drawert F, Kollmannsberger H (1986). Geruchsaktive Spurenkomponenten des Bananenaromas. Chem. Mikrobiol. Technol. Lebensm. **10**, 120-124.

BIA (2001). GESTIS Stoffdatenbank Diethylmalonat. Hauptverband der gewerblichen Berufsgenossenschaften (ed.) HVBG, St. Augustin.

Brooke LT, Call DJ, Geiger DL, Northcott CE (1984). Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales Promelas). Eds LT Brooke, DJ Call, DL Geiger, and CE Northcott. [1], 19, 20, 41, 42, 57, 58, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 101, 102, 103, 104, 107, 108, 175, 176, 179, 180, 217, 218, 219, 220, 225, 226, 241, 242. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior.

Call DJ, Brooke LT, Ahmad N, Vaishnav DD (1981). Aquatic Pollutant Hazard Assessments and Development of a Hazard Prediction Technology by Quantitative Structure-Activity Relationships. (Center for Lake Superior Environmental Studies, University of Wisconsin.

Cataldo DA, Ligotke MW, Harvey SD, Follows RJ, Li SW, van Voris P, Wentsel RS (1990). Acute Environmental Toxicity and Persistence of DEM, A Chemical Agent Simulant: Diethyl Malonate, NTIS/DE 91009248, 61 pp.; from: Energy Res. Abstr. No. 13484.

Chellquist EM, Reifenrath WG (1988). Distribution and fate of diethyl malonate and diisopropyl fluorophosphate on pig skin in vitro. J. Pharmaceutical Sci. 77, 10, 850-854.

Cohen SG and Crossley J (1964). Kinetics of hydrolysis of dicarboxylic esters and their alphaacetamido derivatives by alpha-chymotrypsin. J. Am. Chem. Soc. **86**, 4999-5003. Creveling RK, Silverstein RM, Jennings WG (1968). Volatile Components of Pineapple. Journal of Food Science **33**, 284-287.

D'Ans-Lax (1967). Taschenbuch für Chemiker und Physiker, Band I, Makroskopische physikalisch-chemische Eigenschaften 3. Auflage, Springer Verlag, Berlin, 1-922.

Daubert TE, Danner RP (1989). Diethyl malonate, as quoted in SRC PhysProp Database (2003).

Degussa (2003a). Unpublished report. Estimation of the Henry's Law Constant of Dimethyl malonate CAS-No.: 108-59-8 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0414-DKB.

Degussa (2003b). Unpublished report. Estimation of the Henry's Law Constant of Diethyl malonate CAS-No.: 105-53-3 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0412-DKB.

Degussa (2003c). Unpublished report. Estimation of the Photodegradation of Dimethyl malonate CAS-No.: 108-59-8 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0446-DKB.

Degussa (2003d). Unpublished report. Estimation of the Photodegradation of Diethyl malonate CAS-No.: 105-53-3 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0444-DKB.

Degussa (2003e). Unpublished Report. Combined Repeated Dose Toxicity study with Reproduction/Developmental Screening Test by Gavage with Dimethyl malonate in Wistar Rats. Degussa AG REG. No. 2003-0146-DGT.

Degussa (2003f). Unpublished Report. In vitro assessment of the clastogenic activity of Dimethyl malonate in cultured human peripheral lymphocytes. Degussa AG REG. No. 2003-0150-DGM.

Degussa (2003g). Unpublished report. Estimation of the Soil or Sediment Adsorption Coefficient (Koc) of Dimethyl malonate CAS-No.: 108-59-8 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0428-DKB.

Degussa (2003h). Unpublished report. Estimation of the Soil or Sediment Adsorption Coefficient (K_{OC}) of Diethyl malonate CAS-No.: 105-53-3 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0430-DKB.

Degussa (2004a). Safety Data Sheet Dimethyl malonate (DMM), Version 4.6, revision date 08.07.2004.

Degussa (2004b). Safety Data Sheet Diethyl malonate (DEM), Version 4.4, revision date 08.07.2004.

Degussa (2004c). Degussa AG personal communication, 4.10.2004 production process and use of dimethyl malonate.

Degussa (2004d). Degussa AG personal communication, 4.10.2004 production process and use of diethylmalonat.

Degussa (2004e). Unpublished Report. Determination of the abiotic degradation (hydrolysis as function of pH) of Dimethyl malonate (DMM) in accordance with EEC guideline C.7. Degussa AG-Reg.-No. 2003-0346-DGO

Degussa (2004f). Unpublished Report. Determination of the abiotic degradation (hydrolysis as function of pH) of Diethyl malonate (DEM) in accordance with EEC guideline C.7. Degussa AG-Reg.-No. 2003-0348-DGO.

Degussa (2004g). Degussa AG, Dr. H. Brachhold personal communication on the evaluation of the hydrolysis studies with DMM and DEM of 15.10.2004.

Degussa (2004h). Unpublished report. Estimation of the Equilibrium Partitioning Characteristics in the Environment of Dimethyl malonate CAS-No.: 108-59-8 by Mackay Calculation (Level I) (V2.11 Model) Degussa AG-Reg-No. 2004-0174-DKB.

Degussa (2004i). Unpublished report. Estimation of the Equilibrium Partitioning Characteristics in the Environment of Diethyl malonate CAS-No.: 105-53-3 by Mackay Calculation (Level I) (V2.11 Model). Degussa AG-Reg-Nr.: 2004-0182-DKB.

Degussa (2004j). Unpublished report. Estimation of the Equilibrium Partitioning Characteristics in the Environment of Dimethyl malonate, CAS: 108-59-8 by Mackay Calculation (Level III) Degussa AG-Reg-No. 2004-0176-DKB.

Degussa (2004k). Unpublished report. Estimation of the Equilibrium Partitioning Characteristics in the Environment of Diethyl malonate, CAS: 105-53-3 by Mackay Calculation (Level III). Degussa AG-Reg-Nr.: 2004-0178-DKB.

Degussa AG (2005). Personal communication of July 27, 2005.

Epstein WL (1975). Unpublished results, as quoted in: Opdyke DLJ (1976). Fd. cosmet. Toxicol., 14, 745-746.

Geiger DL, Northcott CE, Call DJ, Brooke LT (1984a). Acute Toxicities of Organic Chemicals to Fathead Minnows (*Pimephales Promelas*). Eds DL Geiger, CE Northcott, DJ Call, and LT Brooke. [2], 41, 42, 49, 50, 113, 114, 115, 116, 117, 118, 139, 140, 155, 156, 169, 170, 227, 228, 229, 230. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior.

Geiger DL, Poirier SH, Brooke LT, Call DJ (1984b). Acute Toxicities of Organic Chemicals to Fathead Minnows (*Pimephales Promelas*). Eds DL Geiger, SH Poirier, LT Brooke, and DJ Call. [3], 27, 28, 57, 58, 59, 60, 79, 80, 81, 82, 163, 164, 177, 178, 191, 192. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior.

Georgilopoulos DN, Gallois AN (1987). Aroma compounds of fresh blackberries (*Rubus laciniata* L.). Z Lebensm Unters Forsch **184**, 374-380.

Hansch C, Leo A, Hoekman D (1995). Exploring QSAR. Hydrophobic Electronic and Steric Constants. ACS (American Chemical Society) Professional Reference Book. Washington D.C, 14, 35, 201.

Hawkins GS, Reifenrath WG (1984). Development of an *in vitro* model for determining the fate of chemicals applied to skin. Fund. Appl. Toxicol **4**, 133-144.

Hawley, GG (1981). The Condensed Chemical Dictionary. 10th ed. Van Nostrand Reinhold Company, New York, 370.

Hildbrand S, Pollak P (2002). Malonic acid and Derivatives. In: Ullmann's Enzyklopedia of Industrial Chemistry, Wiley-VCH, Weinheim, New York.

Hüls (1988). Unpublished report F956. Goldorfentest nach DIN 38412 Teil 15. Degussa AG-Reg-Nr.: 88-0650-DKO.

Hüls (1989). Unpublished report No. 11/221. Acute Eye Irritation Test in the Rabbit. Degussa AG-Reg-Nr.: 89-0276-DGT.

Hüls (1992a). Unpublished report No. DDA-11. Bestimmung der biologischen Abbaubarkeit von Dimethylmalonat im DOC-Die Away Test. Degussa AG-Reg-Nr.: 92-0414-DGO.

Hüls (1992b). Unpublished report No. AD-92/0070. Prüfung der akuten dermalen Toxizität von Dimethylmalonat an der Ratte. Degussa AG-Reg-Nr.: 92-0340-DGT.

Hüls (1992c). Unpublished report No. AO-92/0070. Prüfung der akuten oralen Toxizität von Dimethylmalonat an der Ratte Degussa AG-Reg-Nr.: 92-0342-DGT.

Hüls (1992d). Unpublished report No. AH-92/0070. Prüfung auf akute Hautreizwirkung von Dimethylmalonat am Kaninchen. Degussa AG-Reg-Nr.: 92-0344-DGT.

Hüls (1992e). Unpublished report No. AA-92/0070. Prüfung auf akute Augen- und Schleimhautreizung von Dimethylmalonat am Kaninchen, Degussa AG-Reg-Nr.: 92-0348-DGT.

Hüls (1992f). Unpublished report No. HS-92/0070. Prüfung auf akute Sensibilisierung der Haut von Dimethylmalonat am Meerschweinchen (Methode nach Bühler). Degussa AG-Reg-Nr.: 92-0346-DGT.

Hüls (1992g). Unpublished report No. AM-92/26. Bestimmung der Mutagenität von Dimethylmalonat im Salmonella / Säuger-Mikrosomen-Mutagenitätstest nach Ames Mutagenitätstest nach der Richtlinie 84/449/EWG B. 14. Degussa AG-Reg-Nr.: 92-0410-DGM.

Hüls (1992h). Unpublished report No. DK-528. Bestimmung der Auswirkungen von Dimethylmalonat auf das Schwimmverhalten von *Daphnia magna* (nach EG 84/449, Nov. 1989). Degussa AG-Reg-Nr.: 92-0412-DGO.

Hüls (1993a). Unpublished report DDA-26. Bestimmung der biologischen Abbaubarkeit von Malonsäurediethylester im DOC-DIE AWAY Test. Degussa AG-Reg-Nr.: 93-0240-DGO.

Hüls (1993b). Unpublished report No. AM-93/19. Bestimmung der Mutagenität von Malonsäurediethylester im Salmonella/Säuger- Mikrosomen-Mutagenitätstest nach Ames Mutagenitätstest nach der Richtlinie 84/449/EWG B.14. Degussa AG-Reg-Nr.: 93-0238-DGM.

Hüls (1993c). Unpublished report No. FK 1235. Bestimmung der akuten Wirkungen von Dimethylmalonat gegenüber Fischen (Nach EG 84/449 C 1). Degussa AG-Reg-Nr.: 93-0328-DGO.

Hüls (1993d). Unpublished report DK-546. Bestimmung der Auswirkungen von Malonsäurediethylester auf das Schwimmverhalten von *Daphnia magna* (nach EG 84/449, Nov.1989) Degussa AG-Reg-Nr.: 93-0234-DGO.

Hüls (1993e). Unpublished report No. AW-276. Bestimmung der Auswirkungen von Dimethylmalonat auf das Wachstum von *Scenedesmus subspicatus* 86.81. SAG (Algenwachstumshemmtest nach Richtlinie 88/302/EWG), Degussa AG-Reg-Nr.: 93-0330-DGO.

Hüls (1993f). Unpublished report. AW-297. Bestimmung der Auswirkungen von Malonsäurediethylester auf das Wachstum von *Scenedesmus subspicatus* 86.81.SAG (Algenwachstumshemmtest nach Richtlinie 88/302/EWG). Degussa AG-Reg-Nr.: 93-0236-DGO.

Hüls (1993g). Unpublished report PZ 93/02. Bestimmung der Bakterientoxizität von Dimethylmalonat im Pseudomonas-Zellvermehrungs-Hemmtest (DIN 38412 Teil 8). Degussa AG-Reg-Nr.: 93-0326-DGO. Hüls (1993h). Unpublished report PZ-93/09. Bestimmung der Bakterientoxizität von Malonsäurediethylester im Pseudomonas-Zellvermehrungs-Hemmtest (DIN 38412 Teil 8) Degussa AG-Reg-Nr.: 93-0232-DGO.

Hüls (1994). Unpublished report RW 038. Bestimmung der Auswirkungen von Malonsäurediethylester auf Regenwürmer (*Eisenia foetida foetida*) (Toxizitätstest für Regenwürmer nach 88/302 EWG) Degussa AG-Reg-Nr.: 94-0234-DGO.

Hüls (1995). Unpublished report PF-043. Bestimmung der Auswirkungen von Malonsäurediethylester auf das Wachstum terrestrischer Pflanzen (Pflanzenwachstumshemmtest nach OECD-Testguideline 208). Degussa AG-Reg-Nr.: 95-0322-DGO.

Jacobi S, Hoffmann H (1989). Hydrolytic stability of Alkyl 1*H*-Benzotriazolcarboxylates. Arch. Pharm. (Weinheim) **322**, 89-93.

Jäger FM (1917). Über die Temperaturabhängigkeit der molekularen freien Oberflächenenergie von Flüssigkeiten im Temperaturbereich von -80 bis +1650 °C. Zeitschrift fuer Anorganische und Allgemeine Chemie **101**, 1-214.

Jaworska JS, Hunter RS, Gobble JR, Schultz TW (1997). Structure-activity relationships for diesters: aquatic toxicity to *Tetrahymena*, in Environmental Sciences-VII, Proceedings of QSAR.96, Elsinore, Den. 277-283.

Kendall J, Booge JE (1916). Studies on Catalysis. I. The Addition Compounds of Esters with Organic Acids. J Amer Chem Soc **38**, 1712-1736.

Kligman AM (1966). The Identification of Contact Allergens by Human Assay. J. Invest. Derm. **47**, 393 - 409 (Method).

Kligman AM (1976). Report to RIFM, 11th May, In: Opdyke DLJ (1979): Food Cosmet. Toxicol. 17, 363.

Kligman AM and Epstein W (1975). Updating the maximization test for identifying contact allergens. Contact Dermatitis 1, 231 - 239 (Method).

Koeppen AH, Mitzen EJ, Papandrea JD (1978). Metabolism of malonic acid in the rat brain after intracerebral injection. J. Neurochem. **31**, 739-745.

Lecat MM (1928). Nouveaux Azeotropes Binaires. Annales de la Societe Scientifique de Bruxelles **48** (I), 113-126.

Lide DR (2004). Handbook of Chemistry and Physics, 84. CRC Press. Boca Raton, London, New York, Washington D.C.

Loke WK, U SH, Lau SK, Lim JS, Tay GS, Koh CH (1999). Wet Decontamination-induced Stratum Corneum Hydration-Effects on the Skin Barrier Function to Diethylmalonate. Journal of Applied Toxicology **19**, 285-290.

Lynn WS and Perryman NC (1960). Properties and Purification of Adipose Tissue Lipase. J. Biol. Chem. **235**, 1912-1916.

Meylan and Howard (1993a). Dimethylmalonate as quoted in SRC Phys Prop Database (2003).

Meylan and Howard (1993b). Diethylmalonate as quoted in SRC Phys Prop Database (2003).

Meylan WM et al. (1996) as quoted in: SRC PhysProp Database (2003).

Miyazawa M, Kameoka H (1987). Volatile Flavor Components of Astragali Radix (Astragalus membranaceus Bunge). Agric. Biol. Chem. **51** (11), 3153-3154

Moreno (1975). Unpublished report to RIFM, as quoted in Opdyke DLJ (1976). Fd. cosmet. Toxicol. 14, 745-746.

Mumford SA, Phillips JWC (1950). The Physical Properties of Some Aliphatic Compounds. J. Chem. Soc. 1950, 75-84.

OECD (2004a). ICCA HPV dossier on methanol (CAS No. 67-56-1). OECD Agreed Conclusions and Recommendations. Available from http://cs3-hq.oecd.org/scripts/hpv.

OECD (2004b). ICCA HPV dossier on ethanol (CAS No. 64-17-5). Final Draft. Available from http://cs3-hq.oecd.org/scripts/hpv .

O'Neil MJ, Smith A, Heckelman PE, Budavari S (Editors) (2001). The Merck Index (13th Edition), Merck & Co., Inc. Whitehouse Station, NJ.

Palomaa MH, Mikkilä I (1942). Studien über ätherartige Verbindungen, XXVII. Mitteil.: Trübe Phase bei Verbindungen mit Reaktionsminimum. Chemische Berichte **75**, 1659-1667.

Peyton GR, Chai SG, Bandy J, Maloney SW (1989). Catalytic-competition effects of humic substances on photolytic ozonation of organic compounds. Adv. Chem. Ser. **219**, 639-661.

Posternak JM, Linder A and Vodoz CA (1969). Summaries of Toxicological Data. Food Cosmet. Toxicol. 7, 405-407.

Reifenrath WG, Chellquist EM, Shipwash EA and Jederberg WW (1984). Evaluation of Animal Models for Predicting Skin Penetration in Man, Fundam. Appl. Toxicol. **4**, 224-230.

Smyth HFJr, Nycum JS, Pozzani UC, Striegel JA, Carpenter CP, Weil CS (1969). Range-Finding Toxicity Data, List VII. American Industrial Hygiene Association Journal **30**, 470-476.

SPIN database (2004). Online search in the SPIN database on 23.11.2004.

Swedish Product Register (2004). Personal communication to the BUA of November 22, 2004

Swedish Product Register (2005). Personal communication to the BUA of February 25, 2005.

Swiss Product Register (2004). Personal communication to the BUA-office Munich of August 20, 2004.

Takeoka G, Buttery RG, Flath RA, Teranishi R, Wheeler EL, Wieczorek RL, Guentert M (1989). Voaltile constituents of Pineapple (*Ananas Comosus* [L.] Merr.). In: Flavor Chemistry: Trends and Developments, ACS Symposium Series 388, Amer. Chem. Society, Washington D.C., 223-237.

Timmermans MJ, Delcourt Y (1934). Travaux du Bureau International D'Etalons Physico-Chimiques VI Etude des Constantes Physiques de Vingt Composes Organiques. Journal de Chimie Physique et de Physico-Chimie Biologique **31**, 85-124.

Umano K, Hagi Y, Nakahara K, Shoji A, Shibamoto T (1992). Volatile Constituents of Green and Ripened Pineapple (*Ananas comosus* [L.] Merr.). J. Agric. Food. Chem. **40**, 599-603.

Vogel AI (1934). Physical Properties and Chemical Constitution. Part I. Esters of Normal Dibasic Acids and of Substituted Malonic Acids. J. Chem. Soc. 1934, 333-341.

WHO (2000). Safety evaluation of certain food additives and contaminants, WHO Food Additive Series 44.
SIDS

Dossier

ID: 105-53-3 105-53-3 diethyl malonate 203-305-9 Propanedioic acid, diethyl ester C7H12O4
Degussa AG 04-JUN-2000
Degussa AG 04-JUN-2000
Überarbeitungsversion
26-AUG-2005 19-NOV-2003 26-AUG-2005
98
Chapter: 1.0.1, 1.0.2, 1.0.4, 1.1.0, 1.1.1, 1.2, 1.3, 1.4, 1.5, 1.6.1, 1.6.2, 1.7, 1.7.1, 1.7.2, 1.8, 1.8.1, 1.8.2, 1.8.3, 1.8.4, 1.8.5, 1.8.6, 1.9.1, 1.9.2, 1.10,
Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, non confidential, SIDS

1. GENERAL INFORMATION

1.0.1 Applicant and Company Information

Type: Name:	lead organisation Degussa AG - ZN Wolfgang
Contact Person:	Dr. W. Mayr, Dr. S. Jacobi Date:
Street:	Rodenbacher Chaussee 4
Town:	63457 Hanau
Country:	Germany
Phone:	+49 6181 59 4139
Telefax:	+49 6181 59 2083
Email:	wilfried.mayr@degussa.com

29-MAR-2004

Type: Name:	other: contact point Degussa AG, ZN Wolfgang	
Contact Person:	Dr. Wilfried Mayr Dat	:e:
Street:	Rodenbacher Chaussee 4	
Town:	63457 Hanau-Wolfgang	
Country:	Germany	
Phone:	+49 6181 59 4139	
Telefax:	+49 6181 59 2083	
Email:	wilfried.mayr@degussa.com	

1.0.2 Location of Production Site, Importer or Formulator

1.0.4 Details on Category/Template

Comment: Dimethylmalonate, CAS No.: 108-59-8, Diethylmalonate, CAS No: 105-53-3

Remark: The category of simple diesters of malonic acid, dimethylmalonate and diethylmalonate has been defined because of the similar properties of the simple esters and their likelihood to be cleved under physiological conditions yielding malonic acid and the corresponding alcohols. Where data are lacking for one of the members of the category they can reasonably be substituted by data of the other member of the category due to the structural similarity. The production and use pattern of Diethylmalonate (DEM) and Dimethylmalonate (DMM) are comparable. The two chemicals Diethylmalonate and Dimethylmalonate have very similar physico-chemical properties and both esters are hydrolyzed via a two step reaction to malonic acid and the corresponding alcohol, methanol or ethanol. It is likely that unspecific esterases in the body catalyze the hydrolysis. The alcohols and malonic acid are physiological substances that are metabolized via physiological pathways. Ethanol and Methanol were assessed evaluated in SIAM 19 (OECD, 2004a,b). For ethanol it was concluded that the chemical is currently of low priority for further work, because the hazardous properties of ethanol are manifest only at doses associated with consumption of alcoholic beverages. As it is impossible to reach these exposure levels as a consequence of the manufacture and use of malonates, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. For methanol, SIAM 19 decided that this chemical is a candidate for further

OECD SIDS	MALONIC ACID DIESTERS
1. GENERAL INFORMATION	ID: 105-53-3
	DATE: 21.01.2005

work. Methanol exhibits potential hazardous properties for human health (neurological effects, CNS depression, ocular effects, reproductive and developmental effects, and other organ toxicity). The effects of methanol on the CNS and retina in humans only occur at doses at which formate accumulates due to a rate-limiting conversion to carbon dioxide. In primates, formate accumulation was observed at methanol doses greater than 500 mg/kg bw (which would require a DMM dose of more than 1,000 mg/kg bw). As there were no indications of a methanol associated toxicity from a well performed repeated dose toxicity study with DMM in rodents (which are, however, known to be less sensitive to methanol toxicity than humans), and because methanol toxicity would not be expected up to doses as high as 1,000 mg DMM/kg bw/day, it was concluded that methanol does not make a relevant contribution to the toxicity profile of DMM. A possible mode of action for systemic toxicity of DMM and DEM can only be deduced from the repeated dose study with DMM, indicating a reversible liver hypertrophy at the cellular level at high doses of 1000 mg/kg bw/day. This effect can be an indication of an induction of metabolism in the liver rather than a clear systemic toxicity.

18-AUG-2005

(73) (74)

1.1.0 Substance Identification

IUPAC Name:	diethyl malonate
Smiles Code:	O=C (OCC) CC (=O) OCC
Mol. Formula:	C7H12O4
Mol. Weight:	160.17

21-OCT-2004

1.1.1 General Substance Information

Purity type:typical for marketed substanceSubstance type:organicPhysical status:liquidPurity:ca. 99.8 - % w/wColour:ester-like

28-JUL-2005

(29)

1.2 Synonyms and Tradenames

DEM

20-JUL-2005

Dicarbethoxymethane

Diethyl malonate

Diethyl propanedioate

1. GENERAL INFORMATION

Diethylmalonate

30-NOV-2004

Ethyl malonate

Malonic acid, diethyl ester

Malonsaeurediethylester

Propanedioic acid, diethyl ester

1.3 Impurities

Purity type: CAS-No:	typical for marketed substance 64-17-5	
EC-No:	200-578-6	
EINECS-Name:	ethanol	
Contents:	ca1 - % w/w	
28-JUL-2005		(29)

Purity type:	typical for marketed substance
CAS-No:	141-78-6
EC-No:	205-500-4
EINECS-Name:	ethyl acetate
Contents:	ca05 - % w/w

28-JUL-2005

28-JUL-2005

(29)

(29)

1.4 Additives

1.5 Total Quantity

1.6.1 Labelling

Labelling:	no labelling required (no dangerous properties)			
Remark:	Last update MSDS Chapter 15 "Labelling and Classification" on 2003-07-23			
30-NOV-2004	(5) (28)			

1.6.2 Classification

no classification required (no dangerous properties) Classified:

1. GENERAL INFORMATION

30-NOV-2004

(28)

1.7 Use Pattern

Туре:	type		
Category:	Non	dispersive	use

20-JUL-2005

Type:	type		
Category:	Wide	dispersive	use

30-NOV-2004

Type:	industrial				
Category:	Chemical	industry:	used	in	synthesis

30-NOV-2004

Type:	use
Category:	Intermediates

30-NOV-2004

Type:	use	
Category:	Odour	agents

30-NOV-2004

1.7.1 Detailed Use Pattern

1.7.2 Methods of Manufacture

1.8 Regulatory Measures

1.8.1 Occupational Exposure Limit Values

1.8.2 Acceptable Residues Levels

1.8.3 Water Pollution

Classified by:	otl	her:	Huel	.s AG	
Labelled by:	otl	her:	Huel	s AG	
Class of danger:	1	(wea	akly	water	polluting)

Country: Germany 30-NOV-2004

(28)

1.8.4 Major Accident Hazards

Legislation: Stoerfallverordnung (DE) Substance listed: no 1. GENERAL INFORMATION

 Country:
 Germany

 Remark:
 Stoerfallverordnung 2000, 12. BimSchV, BGBl. I 2000, 603

 30-NOV-2004
 (28)

1.8.5 Air Pollution

1.8.6 Listings e.g. Chemical Inventories

1.9.1 Degradation/Transformation Products

1.9.2 Components

1.10 Source of Exposure

Source of exposure: Exposure to the:	Environment: exposure from production Substance
Result: Flag: 20-JUL-2005	Exposure From production there are no emissions into water or air. Exhausts are incinerated and waste water is treated in a biological sewage treatment plant. Product containing waste waters (e.g. from maintenance operations) are incinerated. No waste containing DEM is produced. From use as flavoring agent no emission data are known. Critical study for SIDS endpoint (17)
Source of exposure:	other: human exposure, product register information
Result:	DEM is contained in the SPIN database (2004): For 2002, 79 preparations with an overall amount of 0.3 tonnes are noted for Denmark, 7 preparations with an overall amount of 0.1 tonnes are noted for Norway, and 12 preparations including consumer products with an overall amount of 0.0 tonnes are noted for Sweden. For Finland, confidential data are contained for 2001.
	The Swedish product Register (2005) contains data on DEM: 13 products containing 0-2% DEM, 2 of which are consumer products, with a tonnage of 0.0 t/a, and 4 products containing 2-20% DEM, 2 of which are consumer products, with a tonnage of 2.0 t/a. Information on uses of consumer
products	is confidential. Most frequent industrial uses are adhesives, hardeners for adhesive and industrial use, the most common industry category is sales and repair establishments for motor vehicles and motorcycles. Critical study for SLDS endpoint
24-AUG-2005	(88) (91)
Source of exposure: Exposure to the:	other: human occupational exposure Substance
Result:	The German producer uses closed systems including gas tight

OECD SIDS	MALONIC ACID) DIESTERS
1. GENERAL INFORM	IATION	ID: 105-53-3
	DATE	: 21.01.2005
Flag: 20-1111-2005	flunshes for loading and de-loading operations and valve-syringe systems for sampling. From the proce- description very low occupational exposure is anti- No data are available for the uses. As the majority products are used as intermediates in the chemical a controlled exposure situation is anticipated. Critical study for SIDS endpoint	closed ss cipated. y of the industry (17)
20 001 2000		(1)
Source of exposure: Exposure to the:	Human: exposure of the consumer/bystander Substance	
Result:	WHO (2000) evaluated the combined daily intake of flavoring substances including DEM in Europe and the annual production volume of these 47 substances was metric tons in Europe and 1700 metric tons in the this an estimated per capita daily intake of 28 mg and 300 mg in the US was derived (based on a body 60 kg these intakes would correspond to 0.47 and 5 bw/day in Europe and the US, respectively). This is considered of no concern.	47 he US. The s 200 US. From in Europe weight of mg/kg ntake was
Flag: 20-JUL-2005	Critical study for SIDS endpoint	(97)

1.11 Additional Remarks

1.12 Last Literature Search

Type of Search:	Internal and External
Chapters covered:	3, 4, 5
Date of Search:	01-MAY-2000
Remark: 16-AUG-2004	DIMDI, CIS
Type of Search:	Internal and External
Chapters covered:	3, 4, 5
Date of Search:	24-APR-2003
Pomark	DIMDI CIS Datastar Dialog STN Beil

Remark: DIMDI, CIS, Datastar, Dialog, STN, Beilstein, Update 16-AUG-2004

Type of Search:Internal and ExternalChapters covered:3, 4, 5Date of Search:14-MAY-2003

Remark: CIS, STN, DIMDI, Beilstein

1.13 Reviews

2. PHYSICO-CHEMICAL DATA

2.1 Melting Point

Value:	-51.5 degree C	
Year: GLP: Test substance:	1934 no other TS: purified by fractioned distillation until density was constant in two successive fractions	
Reliability: Flag: 16-AUG-2004	<pre>(2) valid with restrictions well documented scientific literature Critical study for SIDS endpoint (94)</pre>	
Value:	= -50 degree C	
GLP: Test substance:	no data no data	
Reliability:	(2) valid with restrictions Database and handbook data (5) (30) (56) (62) (75) (81) (89)	
Value:	= -49.2 degree C	
Method: GLP:	other: no data no data	
Reliability:	(2) valid with restrictions	
30-NOV-2004	(54)	
Value:	-48.749.1 degree C	
Year: GLP: Test substance:	1942 no other TS: purified by fractioned distillation	
Reliability: Flag: 16-AUG-2004	<pre>(2) valid with restrictions well documented scientific literature Critical study for SIDS endpoint (76)</pre>	
2.2 Boiling Point		
Value:	190 degree C	
GLP: Test substance:	no data no data	
Reliability:	(4) not assignable Database data	
20-JUL-2005	(5) (67)	
Value:	197 degree C at 1008 hPa	
Year: GLP: Test substance:	1894 no other TS: purified by fractioned distillation	

OECD SIDS		MALONIC ACID DIESTERS
2. PHYSICO-CHEN	MICAL DATA	ID: 105-53-3
		DATE: 21.01.2005
Result:	Pressure reported as 756.6 mmHg. Bo 13 mm Hg (17 hPa).	oilingn point 97-97.5 °C at
Reliability:	(2) valid with restrictions Reer reviewed data source.	
16-AUG-2004		(9)
Value:	197 degree C at 1012 hPa	
Year: GLP:	1934 no	anatary freebly distilled
Test substance:	other TS:Synthesized in testing lar	boratory freshly distilled
Result: Reliability:	Pressure reported as 759 mmHg (2) valid with restrictions Peer reviewed data source.	
16-AUG-2004		(95)
Value:	197.8 degree C	
Year:	1917	
GLP: Test substance:	no no data	
lest substance.	no data	
Reliability:	(2) valid with restrictions Peer reviewed data source.	(56)
Value:	198 - 199 degree C	
GLP: Test substance:	no data no data	
Reliability:	(2) valid with restrictions Handbook data	(75)
		(75)
Value:	198.5 degree C	
Year:	1966	
GLP: Test substance:	no no data	
Reliability:	(2) valid with restrictions Scientific literature, no details a	available (35)
Value:	= 198.6 degree C at 1013 hPa	
Method: Year: GLP:	other: no data 1928 no	
Reliability:	(2) valid with restrictions	
30-NOV-2004	Scienciilo illerature, no detalls a	(60)
Value:	= 198.9 degree C	
Method:	other: no data	

OECD SIDS	MA	LONIC ACID DIESTERS
2. PHYSICO-CHEN	MICAL DATA	ID: 105-53-3 DATE: 21.01.2005
GLP:	no data	
Reliability:	(2) valid with restrictions	
30-NOV-2004	handbook data	(54)
Value:	= 199 degree C at 1013 hPa	
Method: GLP:	other: DIN 51751 no data	
Reliability:	(2) valid with restrictions	(28)
Value:	199 degree C	
GLP: Test substance:	no data no data	
Reliability:	(2) valid with restrictions Scientific literature, no details availab	ble
Value:	199.3 degree C at 1013 hPa	
Year: GLP: Test substance:	1934 no other TS: purified by fractioned distilla was constant in two successive fractions	ation until density
Reliability:	(2) valid with restrictions	
Flag: 16-AUG-2004	Well documented scientific literature Critical study for SIDS endpoint	(72) (94)
Value:	= 199.3 degree C at 1013 hPa	
GLP: Test substance:	no other TS: purified, no further data	
Reliability:	(2) valid with restrictions	
30-NOV-2004	well documented scientific literature	(72)
Value:	200 degree C at 1013 hPa	
GLP: Test substance:	no data no data	
Reliability:	(2) valid with restrictions Database and handbook data	(62) (89)

2.3 Density

Type: Value:	density 1.05 g/cm³ at 20 degree C
GLP:	no data

OECD SIDS		MALONIC ACID DIESTERS
2. PHYSICO-CHEN	AICAL DATA	ID: 105-53-3 DATE: 21.01.2005
Test substance:	no data	
Reliability:	(2) valid with restrictions	(67)
Type: Value:	relative density 1.0547 at 20 degree C	
Year: GLP: Test substance:	1950 no other TS: purified, no further data	
Result: Reliability: Flag: 16-AUG-2004	relative density (25 °C) = 1.0494 (2) valid with restrictions well documented scientific literature Critical study for SIDS endpoint	(72)
Type: Value:	density 1.055 g/cm³ at 20 degree C	
GLP: Test substance:	no data no data	
Reliability:	(2) valid with restrictions Database data	(5)
Type: Value:	relative density 1.055 at 20 degree C	
Method: Year: GLP: Test substance:	other: pyrex pycnometer 1934 no no data	
Result: Reliability:	Densities determined at other tempera 0.9878 at 85.3 °C. (2) valid with restrictions	atures: 1.0104 at 62.2 °C,
	well documented scientific literature	(95)
Type: Value:	relative density 1.0551 at 20 degree C	
Year: GLP: Test substance:	1942 no other TS: purified by fractioned dist	cillation
Reliability:	(2) valid with restrictions well documented scientific literature Critical study for SIDS endpoint	2
16-AUG-2004	errerear seady for sins enapoint	(76)
Type: Value:	density 1.0551 g/cm³ at 20 degree C	

GLP: no data Test substance: no data

OECD SIDS		MALONIC ACID DIESTERS
2. PHYSICO-CHEM	AICAL DATA	ID: 105-53-3 DATE: 21.01.2005
Reliability:	(2) valid with restrictions Handbook data	
16-AUG-2004		(62) (81)
Type: Value:	relative density 1.0553 at 20 degree C	
Year: GLP:	1894 no	
Test substance:	no data	
Reliability:	(2) valid with restrictions well documented scientific literature	(9)
Type: Value:	density ca. 1.06 g/cm³ at 20 degree C	
Method: GLP:	other: DIN 51757 no data	
Reliability:	(2) valid with restrictions	(28)
Type: Value:	relative density 1.0518 at 25 degree C	
Year: GLP: Test substance:	1917 no no data	
Result: Reliability: 16-AUG-2004	Relative density at 50°C: 1.0254. (2) valid with restrictions Well documented scientific literature,	but details lacking. (56)
Type: Value:	relative density 1.0441 at 30 degree C	
Year: GLP: Test substance:	1913 no no data	
Result:	Relative densities reported at other t 1.0655 at 10 $^\circ$ C, 1.0228 at 50 $^\circ$ C.	cemperatures:
Reliability:	(2) valid with restrictions Well documented scientific literature,	but details lacking.
Type: Value:	relative density 1.0445 at 30 degree C	
Method: Year: GLP:	other: pycnometer method 1932 no	
Test substance:	no data	
Reliability:	(2) valid with restrictions	

2. PHYSICO-CHEMICAL DATA

DATE: 21.01.2005

Type: Value:	relative density 1.0446 at 30 degree C	
Year: GLP: Test substance:	1934 no other TS: purified by fractioned distillation until densit was constant in two successive fractions	У
Result:	At 0 °C: 1.07623 15 °C: 1.06040 variation per °C: 0.00105 dilatation coefficient: 0.00101	
Reliability: 16-AUG-2004	(2) valid with restrictions well documented scientific literature	(94)
Type: Value:	relative density 1.055	
GLP: Test substance:	no data no data	
Reliability:	<pre>(2) valid with restrictions Handbook data (30) (54)</pre>	(75)

2.3.1 Granulometry

2.4 Vapour Pressu	re		
Value:	= .35 hPa at 20 degree C		
GLP: Test substance:	no data no data		
Reliability: 20-JUL-2005	(4) not assignable Database data	(5)	(28)
Value:	.36 hPa at 25 degree C		
Method: Year: GLP: Test substance:	other (measured) 1989 no data no data		
Result: Reliability: Flag: 21-OCT-2004	<pre>quoted as 0.269 mmHg (2) valid with restrictions Peer reviewed data source. Critical study for SIDS endpoint</pre>		(16)
Value:	1 hPa at 36 degree C		
GLP: Test substance:	no data no data		
Result:	Vapour pressure = 10 hPa [76 °C], 100 hPa [128.5 °C],		

OECD SIDS	MALONIC ACID DIESTERS
2. PHYSICO-CHEM	ICAL DATA ID: 105-53-3
	DATE: 21.01.2005
	extrapolated vapour pressures: 0.01 hPa [-23 °C], 0.1 hPa [4 °C].
Reliability:	(2) valid with restrictions Peer reviewed data source.
16-AUG-2004	(62)
Value:	1.3 hPa at 40 degree C
GLP: Test substance:	no data no data
Reliability:	(4) not assignable Database data
20-JUL-2005	(14) (67)
2.5 Partition Coe	fficient
Partition Coeff.: log Pow:	octanol-water = .703
Method: Year:	other (calculated) 2004
Method:	Calculated using Advanced Chemistry Development (ACD/Labs) Software
Result: 30-NOV-2004	0.703 +/- 0.250 (90)
Partition Coeff.: log Pow:	octanol-water .9
GLP: Test substance:	no data no data
Reliability:	(4) not assignable Database data
	(14)
Partition Coeff.: log Pow:	octanol-water .9
Method:	other (calculated): KOWWIN (LOGKOW (c)) Program, Version 1.67, Syracuse Research Corporation, Merrill Lane, Syracuse, New York, 13210, U.S.A.
Year: GLP:	2004 no
Reliability:	(2) valid with restrictions
17-AUG-2004	Calculated data, internationally accepted method. (27)
Partition Coeff.: log Pow:	octanol-water = .96
Method:	other (measured)
Year: Test substance:	1995 other TS: Diethylmalonate, no data
Reliability:	(2) valid with restrictions

OECD SIDS		MALO	NIC ACID	DIES	TERS
2. PHYSICO-CHEM	ICAL DATA		I date	D: 105	5-53-3
Flag: 21-OCT-2004	Measured, no details, but standard as calculations. Critical study for SIDS endpoint	basis	for QSAR	. 21.01	(41)
Partition Coeff.: log Pow:	octanol-water = .96				
Method: Year: GLP: Test substance:	other (measured) 1995 no data other TS: Diethylmalonate, no data				
Reliability:	(2) valid with restrictions Measured, no details		(20)	(96)	(9 0)
Partition Coeff.: log Pow:	octanol-water 1.43		(28)	(00)	(89)
Method: GLP: Test substance:	other (measured) no data no data				
Reliability:	(4) not assignable Database data				(61)
2.6.1 Solubility	in different media				
Solubility in: Value:	Water 33.1 g/l at 20 degree C				
Reliability:	(2) valid with restrictions				(28)
Solubility in: Value:	Water 23.2 g/l at 37 degree C				
Method: Year: GLP: Test substance:	other: measurement 1992 no data no data				
Reliability: Flag: 20-JUL-2005	(2) valid with restrictions Peer reviewed data source. Critical study for SIDS endpoint				(98)
Solubility in: Value:	Water 20 g/l at 20 degree C				
GLP: Test substance:	no data no data				
Reliability:	(2) valid with restrictions Database and handbook data				

Critical study for SIDS endpoint

Flag:

2. PHYSICO-CHEMICAL DATA

(14) (75)

16-AUG-2004

Solubility in: Value:	Water 20.8 g/l at 20 degree C	
Reliability:	(2) valid with restrictions	
16-AUG-2004	Dalabase dala	(5)
Solubility in: Value:	Water ca. 28 g/l at 20 degree C	
Remark: Result: Reliability:	Very soluble in organic solvents. 2.8 g/100 g water. (4) not assignable Handbook data	
20-JUL-2005		(54)

2.6.2 Surface Tension

Value:	30.56 mN/m at 30 degree C	
Method: Year: GLP: Test substance:	other: maximal bubble-pressure method of Sugden 1932 no no data	
Reliability:	(2) valid with restrictions (4	1)
Value:	33.03 at 10 degree C	
Year: GLP: Test substance:	1913 no no data	
Method: Reliability:	Weight of falling drop (2) valid with restrictions Well documented scientific literature, but details lacking. (72	1)
Value:	31.9 mN/m at 20 degree C	
Year: GLP: Test substance:	1950 no other TS: purified TS	
Result: Reliability: 16-AUG-2004	<pre>Surface tension (25 °C) = 31.3 mN/m (2) valid with restrictions well documented scientific literature (72)</pre>	2)
Value:	31.71 mN/m at 20 degree C	
Year: GLP: Test substance:	1934 no other TS: purified by fractioned distillation until density	

OECD SIDS	MALONIC ACID DIESTERS
2. PHYSICO-CHEM	IICAL DATA ID: 105-53-3 DATE: 21.01.2005
	was constant in two successive fractions
Reliability:	(2) valid with restrictions well documented scientific literature
16-AUG-2004	(94)
Value:	31.84 mN/m at 20 degree C
Method: Year: GLP: Test substance:	other: method of Richards, Speyers and Carver 1934 no other TS: Synthesized in testing laboratory freshly distilled
Reliability: 16-AUG-2004	<pre>(2) valid with restrictions well documented scientific literature (95)</pre>
Value:	31 mN/m at 25.2 degree C
Year: GLP: Test substance:	1917 no no data

Reliability:	(2)	valid with restrictions	

2.7 Flash Point

Value: Type:	75 degree C other: no data		
Year: GLP:	1981 no data		
Reliability: 30-NOV-2004	(2) valid with restrictions		(54)
Value: Type:	80 degree C closed cup		
GLP: Test substance:	no data no data		
Reliability:	(4) not assignable Database data		(14)
Value: Type:	= 90 degree C closed cup		
Method: GLP:	other: DIN 51758 no data		
Reliability:	(2) valid with restrictions	(28)	(81)
Value:	93 degree C		

2. PHYSICO-CHEMICAL DATA

DATE: 21.01.2005

		DITL: 21.01.2003
GLP: Test substance:	no data no data	
Reliability:	(2) valid with restrictions Database data	(5) (67)
Value:	93 degree C	
GLP: Test substance:	no data other TS: no data	
Reliability: Flag: 30-NOV-2004	(2) valid with restrictions Handbook data Critical study for SIDS endpoint	(62)

2.8 Auto Flammability

Value:	424 degree C	
GLP: Test substance:	no data no data	
Reliability:	(4) not assignable Database data	(14)
Value:	= 435 degree C	
Method: Test substance:	other: DIN 51794 as prescribed by 1.1 - 1.4	
Reliability: Flag: 20-JUL-2005	(2) valid with restrictions Critical study for SIDS endpoint	(28)
Value:	= 435 degree C	
Method:	other: no data	
Reliability:	(2) valid with restrictions	
30-NOV-2004	Database uata	(5)

2.9 Flammability

2.10 Explosive Properties

Result: other: lower explosion limit = 0.8; upper explosion limit =
12.8%
Reliability: (2) valid with restrictions
(5) (28)

2. PHYSICO-CHEMICAL DATA

2.11 Oxidizing Properties

2.12 Dissociation Constant

Acid-base Const.: pKa = 16.37 +/- 0.06

Test condition:	Temperature: 25 °C in dimethylsulfoxide	
	Spectrophotometric method in dimethylsulfoxid + indicators	
30-NOV-2004		(3)

2.13 Viscosity

Value:	at 20 degree C	
Year: GLP: Test substance:	1950 no no data	
Result: Reliability:	<pre>Viscosity (25 °C) = 1.94 mPas (2) valid with restrictions well documented scientific literature</pre>	(72)
Value:	at 25 degree C	
Year: GLP: Test substance:	1934 no no data	
Result:	given as 1875 E-05 Poise at 15 °C: 2.377 mPas (2377E-05 Poise) at 30 °C: 1 753 mPas (1753E-05 Poise)	
Reliability:	(2) valid with restrictionswell documented scientific literature	

(94)

2.14 Additional Remarks

Memo:	Dimyristoyl phosphatidylcholine/water partition co	oeffic	ient
Result: 09-AUG-2004	log KDMPC = 0.50		(86)
Memo:	Refractive index: 1.4134 (20 °C)		
30-NOV-2004			(81)
Memo:	Refractive index: 1.4139 (20 °C)		
30-NOV-2004	(1	62) (6	4) (95)
Memo:	Refractive index: 1.4143 (20 °C)		
30-NOV-2004			(75)

OECD SIDS		MALONIC ACID DIESTERS
2. PHYSICO-CHEMICAL DATA		ID: 105-53-3
		DATE: 21.01.2005
Memo:	Refractive index: 1.4150 (20 °C)	
30-NOV-2004		(35)
Memo:	Refractive index: 1.4165 (20 °C)	
30-NOV-2004		(94)

3. ENVIRONMENTAL FATE AND PATHWAYS

3.1.1 Photodegradation

Type: Light source: INDIRECT PHOTOLYSI Sensitizer: Conc. of sens.: Rate constant: Degradation:	air Sun light IS OH 500000 molecule/cm ³ .0000000000341 cm ³ /(molecule * sec) 50 % after 4.7 day(s)	
Method: Year: GLP: Test substance:	other (calculated): AOPWIN (AOP(c)) Program, Version 1.90, Syracuse Research Corporation, Merrill Lane, Syracuse, New York, 13210, U.S.A., 2000 2003 no no data	
Remark: Reliability: Flag:	Assumption for the calculation: 24 hours sunlight. (2) valid with restrictions Calculated data, internationally accepted method. Critical study for SIDS endpoint (21) (68)
Type: Light source: Light spect.: Conc. of subst.: INDIRECT PHOTOLYSI Sensitizer: Degradation:	water other: UV-lamp ca. 254 nm 5 mg/l at 23 degree C IS O3 ca. 100 % after 35 minute(s)	
Method: Year: GLP: Test substance: Test condition: Flag: 01-DEC-2004	other (measured): Photolytic Ozonation 1989 no data other TS: reagent grade no further purification ozone dose rate: 1.3E-05 mmol/l x min Critical study for SIDS endpoint	79)
3.1.2 Stability in Type: t1/2 pH4: t1/2 pH7: t1/2 pH9: t1/2 pH 7 :	abiotic > 120 hour(s) at 50 degree C = 15.9 hour(s) at 50 degree C <= 2.4 hour(s) at 50 degree C = 137.5 hour(s) at 25 degree C	

Method:Directive 92/69/EEC, C.7Year:2004GLP:yesTest substance:as prescribed by 1.1 - 1.4Method:OECD TG 111Result:Results of the main test at pH7:

25 °C: t1/2 = 137.5 h 50 °C: t1/2 = 15.9 h

3. ENVIRONMENTAL FATE AND PATHWAYS

	Pre-test at pH4:
	4.7% Hydrolysis within 5 days at 50 $^\circ$ C.
	Pre-test at pH 9: rapid hydrolysis: 81.1 % hydrolysis after 2.4 hours at 50°C.
	In the study the intermediate monoester could not be determined due to analytical reasons (decarboxylation in the GC injector block), but by following the formation of the alcohols it was possible to estimate the formation of reaction products, monoester and malonic acid, by performing a mass balance analysis.
	At pH 9 the hydrolysis of one ester group occurs first, but the subsequent hydrolysis of the second ester bond also takes place within about 2 half-lives
	At pH 7 the reaction is mainly due to formation of the monoester. However, after longer reaction priods a cleavage of the monoester was also observed.
	At pH4 the hydrolysis reaction was much slower, but the initial monoester formation was relatively quickly followed by further hydrolysis to malonic acid.
Reliability:	(1) valid without restriction Guideline study, GLP
Flag:	Material Safety Dataset, Critical study for SIDS endpoint
20-JUL-2005	(18) (24)

3.1.3 Stability in Soil

Type: Radiolabel: Content of clay: silt: sand:	<pre>laboratory no = 4 % = 51.4 % = 45.1 %</pre>
Organ. carbon: pH: Cation exch. capad	= .5 % = 7.4 c.: = 5.5 meg/100 g soil dry weight
Dissipation time Di Dissipati	250: = 1.2 - 5.4 hour(s) Lon: > 99 % after 96 hour(s)
Method: Year: GLP: Test substance:	other: Persistence Test 1990 no data no data
Remark:	Diethyl malonate depuration from soil samples was biphasic with an initial rapid loss $(t1/2 = 1.2 h)$ likely representing volatilization and a second phase exhibiting a slower loss rate $(t1/2 = 5.4 h)$ due to both volatilization, and abiotic and biotic decomposition. The surface diethyl malonate level was reduced to less than 0.1 % of initial dose within 96 h (0.1 ug/cm ² of 750 ug/cm ²)
Test condition:	Exposure of soil samples in Petri dishes to diethyl malonate aerosol concentrations of 0.32 and 1.14 mg/l air, resp. for 60 min in a sealed exposure chamber: average mass loading on soil surfaces was $45.31 + -3.26$ and $770.45 + -386.28$ ug/cm2, resp. (n = 3); no further information available.
Reliability:	(2) valid with restrictionswell documented scientific literature

OECD SIDS		MALONIC ACID DIESTERS
3. ENVIRONMENT	AL FATE AND PATHWAYS	ID: 105-53-3
		DATE: 21.01.2005
01-DEC-2004		(11)
Туре:	laboratory	
Radiolabel:	no	
Content of clay:	= 21.4 %	
silt:	= 77.5 %	
sand:	= 1.1 %	
Organ. carbon:	= 1.7 %	
pH:	= 5.4	
Cation exch. capa	c.: = 23.8 meq/100 g soil dry weig	nt
Dissipation time		
D	T50: = 2 - 16 hour(s)	
Dissipat	ion: > 99 % after 96 hour(s)	
Method:	other: Persistence Test	
Year:	1990	
GLP:	no data	
Test substance:	no data	
Remark:	Diethyl malonate depuration from s with an initial rapid loss $(t1/2 =$ volatilization and a second phase rate $(t1/2 = 16 h)$ due to both vol and biotic decomposition.	soil samples was biphasic = 2 h) likely representing exhibiting a slower loss atilization, and abiotic
Test condition:	Exposure of soil samples in Petri aerosol concentrations of 0.32 and 60 min in a sealed exposure chambe soil surfaces was $93.40 + 7.68$ a ug/cm2, resp. (n = 3); no further	dishes to diethyl malonate d 1.14 mg/l air, resp. for er: average mass loading on and 722.77 +/- 226.88 information available.
Reliability:	(2) valid with restrictions	
	well documented scientific literat	ure
01-DEC-2004		(11)

3.2.1 Monitoring Data (Environment)

3.2.2 Field Studies

3.3.1 Transport between Environmental Compartments

Type:	adsorption
Media:	water - soil
Method:	other: (calculation) PCKOCWIN (PC-KOC (c)) Program, Version 1.66, Syracuse Research Corporation, Merrill Lane, Syracuse, New York, 13210, U.S.A., 2000
Year:	2003
Remark:	GLP: no
Result:	The soil or sediment adsorption coefficient (Koc) of Diethyl malonate was calculated as Koc = 10.
Reliability:	(2) valid with restrictions Calculated data, internationally accepted method.
Flag:	Critical study for SIDS endpoint
20-JUL-2005	(22)
Туре:	volatility
Media:	water - air
Method:	other: (calculation) Henrywin Program, Version 3.10, Syracuse

59

MALONIC ACID DIESTERS

3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 105-53-3
DATE: 21.01.2005

Year:	Research Corporation, Merrill Lane, Syracuse, New York, 13 U.S.A., 2000 2003	210,
Method:	Bond estimation method	
Remark:	GLP: no	
Result:	Henry's Law Constant [25 °C] = 7.36E-007 atm-m ³ /mole = 0.0746 Pa m3/mol = 3.01E-005 unitless	
Reliability:	(2) valid with restrictions Calculated data, internationally accepted method.	
Flag: 20-JUL-2005	Critical study for SIDS endpoint	(20)
Type: Media: Method:	volatility water - air other: calculation	
Remark: Result:	GLP: no Henry's Law Constant [25 °C] = 2.1E-006 atm-m ³ /mole= 0.12 m3/mole	Pa
Reliability:	(4) not assignable Database data	
20-JUL-2005		(89)

3.3.2 Distribution

Media: Method: Year:	air - biota - sediment(s) - soil - water Calculation according Mackay, Level III 2004			
Method:	Estimation of the Equilibrium Partitioning Characteristics in the Environment. Calculation Mackay Level III, V2.70 Model (2002) Environmental Modelling Centre, Trent University, Peterborough, Ont, Canada,			
Result:	Compartment	Release	Release	Release
		100 % in air	100 % in water	100 % in soil
Test condition:	Air Water Soil Sediment Conclusion: Under equilib distributes t while the maj compartment w Input paramet Molecular mas Temperature: log Kow: Water solubil Vapour pressu Melting point Half-life in	15.2 48.8 36.0 0.02 rium steady st o water and sc ority of the s hen released i ers s: 160.17 g/ 20 °C 0.96 ity: 18 g/l re: 35 Pa : -50 °C air: 113 hours	0.01 99.9 0.01 0.04 cate flow conditional when released substance will stanto the water conditional water conditional stanto the stanto conditional stanto conditiona	0.03 55.4 44.5 0.02 Cons the substance into air and soil, cay in the water ompartment.

MALONIC ACID DIESTERS

3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 105-53-3 DATE: 21.01.2005

Reliability:	Emission rates default 3000 kg/h to either air, water (2) valid with restrictions	or soil.			
Flag: 01-DEC-2004	Calculated data, internationally accepted method. Critical study for SIDS endpoint (26)				
Media: Method: Year:	water - air Calculation according Mackay, Level I 2004				
Result:	Air: 9.86 % Soil: 0.06 % Water: 90.01 % Sediment: 0.07 % Biota: < 0.01 %				
Test condition:	Data used: Molar mass: 160.17 g/mol Data temperature: 20 °C Log Pow: 0.96 Vapor pressure: 35 Pa Water solubility: 18.0 g/l Melting Point: -50 °C				
	Volumes used: Air: 6 000 000 000 Soil: 45 000 Water: 7 000 000 Sediment: 21000 Susp. Sediment: 35 Biota: 7 Aerosol: 0.12				
Reliability:	(2) valid with restrictions Calculated data, internationally accepted method.				
Flag: 01-DEC-2004	Critical study for SIDS endpoint	(25)			

3.4 Mode of Degradation in Actual Use

3.5 Biodegradation

Type:	aerobic	
Inoculum:	activated sludge	
Concentration:	50 µg/l related to Test substance	
Degradation:	= 15.1 % after 5 day(s)	
Method:	other: Biodegradation Test	
Year:	1984	
GLP:	no data	
Test substance:	no data	
Remark:	biodegradation related to CO2 released	
Reliability:	(4) not assignable	
	Data insufficient for assessment	
01-DEC-2004		(37)
Type :	aerobic	
Inoculum:	activated sludge	
Concentration:	10.8 mg/l related to DOC (Dissolved Organic Carbon)	

3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 105-53-3 DATE: 21.01.2005

Degradation:	= 98 % after 28 day(s)						
Result:	readily biodegradable						
Kinetic:	7 day(s) = 92 %						
Method:	other: Directive 79/831/EEC, Appendix V, Part C: DOC-DIE AWAY						
	Test, Method C.4-A						
Year:	1993						
GLP:	yes						
Test substance:	as prescribed by 1.1 - 1.4						
Result:	Kinetics of biodegradation: % decrease of DOC day FE1(%) FE2(%) FC1(%) FC2(%)						
	7 90 94 100 99						
	14 95 98 96 96						
	21 99 100 99 100						
	28 99 98 98 98						
	FEI and FE2: Flasks with test substance and inoculum FC1 and FC2: Falsks control substance and inoculum						
	- Breakdown product: no						
	- Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is						
	less than 20% - More than 70% of biodegradation was reached within 14 days						
	in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient.						
	The test substance was degraded to 90-94% after 7 days and 95 to 100% after 14 to 28 days.						
	Conclusions: The test substance is readily biodegradable under the test conditions.						
Test condition:	- Type of sludge: activated sludge, predominantly domestic -Source: Sewage plant Marl-Ost						
	- Sampling site: activated sludge basin						
	- Preparation of inoculum: Centrifugation 10 min at 1100 x g,						
	the supernatant is discarded and the sludge resuspended with						
	mineral medium, further centrifugation for 10 min at 1100 x g						
	Resuspension of the activated sludge (2.79 g/l dry mass of						
	activated sludge)						
	- Initial cell concentration: 2/.9 mg/l						
	IEST SISTEM						
	aluminium foil closure						
	- Aeration device: shaking machine						
	- Measuring equipment: Carbon analyzer (Schimadzu)						
	flacks 10 64 mg DOC/l in the control flacks						
	METHOD OF PREPARATION OF THE CONCLUST LIASKS						
	ma/l (512 ma DOC/l)						
	DURATION OF THE TEST: 28 days						
	ANALYTICAL PARAMETER: Dissolved organic carbon (DOC)						
	SAMPLING: After 0, 7, 14, 21, 27, 28 days.						

DATE: 21.01.2005

3. ENVIRONMENTAL FATE AND PATHWAYS

	<pre>TEST CONDITIONS - Composition of stock nutrient solutions: a) 8.5 g/l KH2PO4 21.75 g/l K2HPO4 33.3 g/l Na2HPO4 * 2 H20 20.0 g/l (NH4)Cl b) 22.5 g/l MgSO4 * 7 H2O c) 27.5 g/l CaCl2 d) 0.25 g/l FeCl3 * 6 H2O - Additional substrate: No - Test temperature: 21.8 - 22.1 °C - Aeration of dilution water: no - Concentration of suspended solids: 27.9 mg/l - Addition of Stock nutrient solutions: a): 20 ml, b) - d): 2ml each. CONTROLS: 1 Flask without test substance, but with inoculum, REFERENCE SUBSTANCE: 2 Flasks with Benzoic acid, sodium salt, 10.64 mg DOC/l and inoculum.</pre>
Test substance: Reliability: Flag: 20-JUL-2005	No abiotic control (with test substance, without inoculum) and no inhibitory control was included in the test FACTORS AFFECTING TEST: - Stability: see hydrolysis as function of pH, section 3.1.2 stability in water - Vapor pressure: 0.35 hPa (20 °C) - Water solubility: 18 g/l (20 °C) - Adsorption potential (log Pow): 0.96 - Toxicity to microorganisms: EC50 = 3097 mg/l (1) valid without restriction Guideline study, GLP WGK (DE), Material Safety Dataset, Critical study for SIDS endpoint (48)
Type: Inoculum: Concentration: Degradation:	<pre>aerobic other bacteria: Streptomyces nitrificans 770 mg/l related to Test substance = 34 % after 110 minute(s)</pre>
Method: Year: GLP: Test substance:	other: Warburg Respirometric Experiment 1957 no data no data
Remark: Test condition: Reliability:	<pre>inoculum: homogenized mycelium of urethan-grown Streptomyces nitrificans pH 7.0; 30 degree C (2) valid with restrictions No standard test system (85)</pre>

3.6 BOD5, COD or BOD5/COD Ratio

3.7 Bioaccumulation

3.8 Additional Remarks

OECD SIDS		MALONIC ACID DIESTERS
3. ENVIRONMEN	TAL FATE AND PATHWAYS	ID: 105-53-3
		DATE: 21.01.2005
Remark:	Reaction of ozone with diethyl	alonate in water:
	rate constant: U.U6 M-1 X S-1;	8 or 70 mM diethyl malonate.
	diethyl malonate/03 ratio: >=	10 mol/mol; pH 2; 20 degree C
01-DEC-2004		(43)

4. ECOTOXICITY

AQUATIC ORGANISMS

4.1 Acute/Prolonged Toxicity to Fish

Type:	flow through						
Species:	Pimephales pr	omelas	(Fish,	fresh	water)		
Exposure period:	96 hour(s)						
Unit:	ma/l		Anal	vtical	monitor	ing:	Ves
LC50:	= 12			.,			100
LC100 ·	= 25						
LC100.	- 25						
Method:	other: Acute	Toxicit	tv Test				
Year:	1985						
GLP:	no data						
021.	no daca						
Remark:	age of fish:	28 d					
Result:	RESULTS: EXPC	SED					
	- Nominal/mea	sured o	concentr	ations	•		
	Nominal 0	5.58	8.58	13.2	20.3	31.2	
	Dav $0 < 0.22$	5 88	8 59	13 7	19 7	33 4	
	Day 0 < 0.22	6 73	10.9	17 2	26.3	35 1	
	Day 1 <0.22	0.75	10.9	10 /	20.5	3 3. I	
	Day 2 <0.22	4.75	1.29	12.4	22.4	-	
	Day 3 <0.22	1.31	9.61	15.3	23.5	-	
	Day 4 <0.22	10.0	12.6	24.5	34.0	-	
	corr.	6 70	0 5 0	1 6 0	04 6	20 F	
a	verage<0.22	6./8	9.59	16.3	24.6	33.5	
	Percent recov	very: 10	02.2 (+-	-4.38)%			
	96 h LC50 = 1 confidence li 96 h LC100 = - Concentrati (20 fish per Conc. (mg/l) control	1.8 mg/ mit: 10 24.6 mg on / re concent No. sur 20	/1).3-13.4 g/l esponse tration) rviving	ł mg/l curve: No dea 0	ad % mc	ortali	ty
	6.78	18		2	10)	
	9.59	15		5	25	5	
	16.3	3		17	85	5	
	24.6	0		20	100)	
	33.5	0		20	100)	
Test condition:	Other observations: affected fish lost schooling behavior, swam near the surface. They were hyperactive. The fish lost equilibrium prior to death. During the last day dissolved oxygen was below 60% in the low concentration group. TEST ORGANISMS - Strain: Pimephales promelas (fathead minnow) - Age/size/weight/loading: 28 d, mean length: 22.0 (+- 1.432) mm, mean weight: 0.165 (+-0.0338)g, loading: 2.75 g/l (20 fish per chamber) - Chamber volume: 1.2 l STOCK AND TEST SOLUTION AND THEIR PREPARATION - Dispersion: Stock solution: 500 mg/l in water STABILITY OF THE TEST CHEMICAL SOLUTIONS: confirmed by analysis (gas-liquid chromatography) (102.2 % recovery)						
	DILUTION WATE	IR -		-			

OECD SIDS					Ν	MALON	IC ACID DIESTE	RS
4. ECOTOXICITY							ID: 105-5	3-3
							DATE: 21.01.20	005
Test substance: Reliability: Flag: 26-AUG-2005 Type: Species: Exposure period: Unit: LC50: LC100:	<pre>- Alkalinity: 41.1 (+-3.01) mg/l as CaCO3 - Hardness: 53.0 (+- 2.55) mg/l as CaCO3 - Oxygen content: 7.0 (+-0.48) mg/l - pH: 7.27 (+- 0.06) - Temperature: 23.9 (+- 1.13) °C Test Type: flow through, 12 volume additions per day. Diethyl malonate, from Aldrich, 99% purity (2) valid with restrictions Study well documented, meets generally accepted scientific principles, acceptable for assessment. Critical study for SIDS endpoint flow through Pimephales promelas (Fish, fresh water) 96 hour(s) mg/l = 15 = 33</pre>							
Method: Year: GLP:	other: Acu 1984 no data	ite To	xicity '	Test				
Result:	RESULTS: E - Nominal/ Experiment Nominal Day 0 Day 1 Day 2 Day 2 Day 3 Day 4 corr. average (n.d. = not	EXPOSE /measu 1 0 0 0 n.d. n.d. 0 2 dete	D red con 10.6 5.8 6.65 n.d. 4.3 4.4 5.4 rmined	centratio: 17.8 10.3 12.9 n.d. 9.4 8.6 10.4	ns: 29.6 15.8 23.0 n.d. 16.0 14.0 17.4	49.3 35.1 39.0 n.d. n.d. n.d. 37.5	82.2 63.6 69.7 n.d. n.d. n.d. 67.5	
	Experiment Nominal Day 0 Day 1 Day 2 n. Day 3 Day 4 corr. average n.d. = not Recovery: - Effect c 96 h LC50 confidence 96 h LC100 - Concentr Experiment Conc. (mg/ control 5.4 10.4 17.4 37 5	2 2 0 0 0 .d. 0 0 0 0 0 0 2 dete 98.8 data (= 15. e limi) = 33 cation 2 1: (/1) No	10.6 5.5 n.d. 5.0 n.d. 4.5 5.1 rmined (+-3.8) Mortali 4 mg/l t: 14.1 mg/l t: 14.1 mg/l c/ resp 25 fish . survi 25 25 24 6 0	17.8 9.5 n.d. 9.2 n.d. 8.0 9.0 % ty): -16.9 mg/ per conce ving No 0 0 1 1 925	29.6 20.4 n.d. 18.3 n.d. 15.5 18.3 1 e: entrational dead %	49.3 34.2 n.d. 31.5 n.d. n.d. 33.2	82.2 62.8 n.d. n.d. n.d. 63.6	
	5.4 10.4 17.4 37.5 67.5		25 24 6 0 0	0 1 19 25 25		0 4 76 100 100		

MALONIC ACID DIESTERS ID: 105-53-3 DATE: 21.01.2005

	Experiment 2: (25 fish per concentration) Conc. (mg/l) No. surviving No dead % mortality control 25 0 0 5.1 25 0 0 9.0 24 1 4 18.3 8 17 68 33.2 0 25 100 63.6 0 25 100
	- Other effects: Affected fish lost equilibrium prior to
Test condition:	<pre>death. TEST ORGANISMS - Strain: Pimephales promelas (fathead minnow) - Supplier: EPA Duluth or UW-Superior culture units, EPA Duluth brood stock. - Age/size/weight/loading: 33 d, mean length: 22 (+- 2.708) mm, mean weight: 0.152 (+-0.0703)g, loading: 0.603 g/l (25 fish per chamber)</pre>
Test substance: Reliability:	 Chamber Volume: 6.3 1 Feeding: Tetramin commercial fish food and brine shrimp (Artemia salina) Pretreatment: none Feeding during test: no STOCK AND TEST SOLUTION AND THEIR PREPARATION Dispersion: Stock solution: 15.8 g/l in water STABILITY OF THE TEST CHEMICAL SOLUTIONS: confirmed by analysis (gas-liquid chromatography) (98.8 % recovery) DILUTION WATER Source: Lake Superior water Aeration: no Alkalinity: 44 mg/l as CaCO3 Hardness: 45 mg/l as CaCO3 Oxygen content: 7.5 (+-1.08) mg/l pH: 7.42 (+- 0.05) Temperature: 25.4 (+- 1.53) °C Illumination: 16 fluorecent light/ 8 hour dark Test Type: flow through, 5.7 volume additions per day. Diethyl malonate, from Aldrich, 99% purity (2) valid with restrictions Study well documented, meets generally accepted scientific principles, acceptable for assessment.
Flag:	Critical study for SIDS endpoint
24-AUG-2005	(8) (10)
Type: Species: Exposure period: Unit: LC50:	<pre>flow through Pimephales promelas (Fish, fresh water) 96 hour(s) mg/1 = 17 22</pre>
TCION:	= 33
Method: Year: GLP:	other: Acute Toxicity Test 1986 no data
Remark:	For MSDS 11.8 - 17.4 mg/l This value was used by Admans et al., 2001 and Martin and Young, 2001, to develop a QSAR for molecules that had a

OECD SIDS

4. ECOTOXICITY

OECD SIDS					M	ALONIC	ACIE	DIESTERS
4. ECOTOXICITY								ID: 105-53-3
]	DATE	E: 21.01.2005
	toxicity exc	ceeding	baselin	e QSAR p	predict	ions fo	r "po	lar or
	unpolar" nam	cotics	. The au	thors us	sed an	artific	ial n	euronal
	network mode	el and a	a multip	le regre	ession	model.	The f	it of the
	neuronal net	work m	odel was	better	than t	hat of	the m	ultiple
	regression n	nodel.						
Result:	RESULTS: EXH	POSED						
	- Nominal/me	easured	concent	rations	:			
	Nominal 0	9.1	14.0	21.6	33.2	51.0		
	Day 0 <5.0	-	11.0	16.0	25.0	46.0		
	Day 1 <5.0	_ 	12.0	1/.0	28.0	JI.U		
	Day 2 < 1.0	0.5	9.0	22.0	37.0	49.Z		
	Day $3 < 1.0$	11 2	10.2	21.3	32.9	59.4 52 0		
	Day 4 <1.0	11.3	14.0	20.3	54.9	55.0		
	average<2.8	10.4	13.2	20.6	33.3	54.6		
	Percent reco	overy:	94.7 (+-	1.27) %				
	- Effect dat	ta (Mor	tality):					
	96 h LC50 =	17.4 m	g/l					
	confidence]	Limit:	15.4-19.	5 mg/l				
	96 h LC100 =	= 33 mg,	/1					
	- Concentrat	tion / :	response	curve:				
	(20 fish per	c concei	ntration 	.)	1 0			
	Conc. (mg/l)	NO. SI	urviving	NO dea	ad % m	ortalit	У	
	CONTROL	20		0		0		
	13 2	20 15		5		25		
	20 6	10		14		20		
	20.0	0		20		100		
	54.6	0		20		100		
	Other observ	vations	: affect	ed fish	lost s	choolin	g beh	avior,
	swam near th	ne botto	om, were	hypoact	tive an	d unrea	ctive	to
	external sti	Lmuli.	The fish	lost ed	quilibr	ium pri	or to	death.
Test condition:	TEST ORGANIS	SMS						
	- Strain: Pi	imephal	es prome	las (fat	thead m	innow)	~ ~ <i>′</i>	
	- Age/size/v	veight/.	Loading:	28 d, r	nean le	ngth: 1	9.8 (+- 2.149)
non chombon)	mm, mean wei	lgnt: U	.120 (+-	0.0324)0	g, Ioad	ing: I.	2 g/1	(20 IISN
per champer)	- Chamber w	lume •	2 0 1					
	- UNAMBER VOLUME: 2.0 I							
	- Dispersion	n. Stoc	k soluti	$on \cdot 260$	$m\alpha/l$ i	n water		
	STABILITY OF	THE T	EST CHEM	IICAL SOI	LUTIONS	: confi	rmed	bv
	analysis (ga	as-liqu	id chrom	atograph	ny) (94	.7 % re	cover	V)
	DILUTION WAT	rer -		5 1	- · · ·			_ ·
	- Alkalinity	y: 38.6	(+-1.6)	mg/l as	s CaCO3			
	- Hardness:	37.4 (*	+- 0.25)	mg/l as	s CaCO3			
	- Oxygen cor	ntent:	7.1 (+-0	.09) mg/	/1			
	- pH: 7.42	(+- 0.0	5)					
	- Temperatur	re: 25.	1 (+- 0.	13)°C				
	Test Type: f	flow the	rough, 1	8 volume	e addit	ions pe	r day	•
Test substance:	Diethyl malo	onate,	from Ald	rich, 99	9% puri	ty		
Reliability:	(2) valid v	vith rea	strictio	ns				
	Study well o	documen	ted, mee	ts gener	ra⊥ly a	ccepted	scie	ntific
El a gr	principles,	accept	able for	assessi	nent.		d., f	× GIDG
riag:	wGR (DE), Ma	acerial	sarety	Dataset,	, Criti	Cai Stu	uy IO	T SIDS
26-AUG-2005	GIIGPOTIIC						(1)	(38) (66)
							· · /	

OECD SIDS 4. ECOTOXICITY

flow through Type: Species: Pimephales promelas (Fish, fresh water) Exposure period: 96 hour(s) Unit: mg/l Analytical monitoring: yes = 16 calculated LC50: other: acute toxicity test Method: Year: 1995 GLP: no data Test substance: other TS: Diethyl malonate purity >= 95% "Non-polar narcosis" was identified as the primary mechanism Result: of action by the authors. Test condition: TEST ORGANISMS - Strain: Pimephales promelas (fathead minnow) - Age: 26-33 d - Pretreatment: none STOCK AND TEST SOLUTION AND THEIR PREPARATION - no data DILUTION WATER - Source: Lake Superior water - Aeration: no - Alkalinity: 42 mg/l as CaCO3 - Hardness: 45 mg/l as CaCO3 - pH: 7.8 - Temperature: 25 °C Statistical Method: Spearman-Karber (7) 24-AUG-2005 flow through Type: Species: Pimephales promelas (Fish, fresh water) **Exposure period:** 96 hour(s) Unit: mg/l Analytical monitoring: yes LC50: = 15 Limit Test: no other: scientific method Method: Year: 1984 GLP: no data Remark: This reference possibly refers to the same results as Brooke et al. 1984, but the details are not all the same. Result: Measured concentrations: 5.06, 9.51, 17.2, 34.3, 64.1 mg/l. LC50 (96 h): 14.9 mg/l 95% confidence limits: 13.7-16.3 mg/l. Affected fish lost equilibrium. Test condition: TEST ORGANISMS - Strain: Pimephales promelas (fathead minnow) - Supplier: EPA Duluth or UW-Superior culture units, EPA Duluth brood stock. - Age/size/weight/loading: 33 d, mean length: 22 (+- 3) mm, mean weight: 0.152 (+-0.070)g, loading: 25 fish per chamber - Chamber volume: 6.3 1 - Feeding: Tetramin commercial fish food and brine shrimp (Salinus artemia) - Pretreatment: none - Feeding during test: no STOCK AND TEST SOLUTION AND THEIR PREPARATION - no data

OECD SIDS	MALONIC ACID DIESTERS
4. ECOTOXICITY	ID: 105-53-3 DATE: 21.01.2005
Test substance: Reliability: Flag: 24-AUG-2005	<pre>STABILITY OF THE TEST CHEMICAL SOLUTIONS: confirmed by analysis (gas-liquid chromatography) (98.8 % recovery) DILUTION WATER - Source: Lake Superior water - Aeration: no - Alkalinity: 45 mg/l as CaCO3 - Hardness: 44 mg/l as CaCO3 - Oxygen content: 87.6 +- 10.7% - pH: 7.42 (+- 0.04) - Temperature: 25.4 (+- 1.4) °C - Illumination: 16 fluorescent light/ 8 hour dark Test Type: flow through, 1.2 to 5.8 volume additions per day. Diethyl malonate, from Aldrich, 99% purity (2) valid with restrictions Details lacking, but scientifically relevant reference. Critical study for SIDS endpoint (10)</pre>
Туре:	static
Species: Exposure period:	Leuciscus idus (Fish, fresh water) 48 hour(s)
Unit: LC50:	<pre>mg/l Analytical monitoring: no = 73</pre>
Method:	other: Bestimmung der Wirkung von Wasserinhaltsstoffen auf Fische, DIN 38412 Teil 15
Year: GLP:	1988 no
Test substance:	as prescribed by 1.1 - 1.4
Result:	RESULTS: EXPOSED - Nominal/measured concentrations: Nominal only, no details available. - Effect data (Mortality): LC50 = 73 mg/l - Concentration / response curve: no details available.
	 Strain: Leuciscus idus melanotus No further data available, as specified in DIN 38412 part 2 STOCK AND TEST SOLUTION AND THEIR PREPARATION No details available STABILITY OF THE TEST CHEMICAL SOLUTIONS: DILUTION WATER No details available, as specified in DIN 38412 part 2 TEST SYSTEM Test type: static Concentrations: no details available Number of replicates, fish per replicate: No details available as specified in DIN 38412 part 2
	 Test temperature: No details available, as specified in DIN 30412 part 2 Dissolved oxygen: no details available pH: no details available Intensity of irradiation: no details available Photoperiod: no details available DURATION OF THE TEST: 48 hours TEST PARAMETER: mortality MONITORING OF TEST SUBSTANCE CONCENTRATION: no
Reliability:	(2) valid with restrictions Standard national method 48 h exposure only, no details

OECD SIDS 4. ECOTOXICITY

reported. Flag: Material Safety Dataset, Critical study for SIDS endpoint 24-AUG-2005 (45)Type: static Species: other: Oncorhynchus kisutch, Ptychocheilus oregonesis, Oncorhynchus tshawytscha **Exposure period:** 24 hour(s) Unit: mg/l Analytical monitoring: no EC0 : > 10 Method: other: Acute Toxicity Test 1969 Year: GLP: no data Test substance: no data Result: None of the fish of the different species died or lost their equilibrium. Test condition: TEST ORGANISMS - Strain: Oncorhynchus kisutch, Ptychocheilus oregonesis, Oncorhynchus tshawytscha. - Wild caught: For Salmonids: Eagle Creek National Fish Hatchery, Portland Oregon. For Ptychocheilus oregonesis: St. Maries river Sanata Creek. - Size: 5 to 10 cm - loading: 5 g/l, one fish of each species was placed together in one vessel with 4 l of water. - Feeding: non during acclimatization and treatment. STOCK AND TEST SOLUTION AND THEIR PREPARATION - Dispersion: The chemical was dissolved in minimal amounts of water and added directly to the test vessels. - Vehicle, solvent: water STABILITY OF THE TEST CHEMICAL SOLUTIONS: not indicated DILUTION WATER - Source: Water from Rochat Creek - Aeration: yes - Alkalinity: 7 ppm (presumably as CaCO3) - Hardness: 0-17 ppm (presumably as CaCO3) - pH: 7.2 - Oxygen content: - Temperature: 17.8 °C Reliability: (3) invalid Limited number of animals, only one concentration tested. 24-AUG-2005 (65)Pimephales promelas (Fish, fresh water) Species: **Exposure period:** 96 hour(s) Unit: q/1 Analytical monitoring: >= 14 LC50: no data GLP: Test substance: no data Reliability: (4) not assignable Original publication not available 24-AUG-2005 (31)

4.2 Acute Toxicity to Aquatic Invertebrates

Type: Species: Exposure period: Unit: EC0: EC50: EC100:	<pre>static Daphnia magna 48 hour(s) mg/l = 100 = 202 = 400</pre>	(Crustacea Ar	a) malytical mo	onitoring: no	
Method: Year: GLP:	Directive 84/44 1984 yes	9/EEC, C.2	2 "Acute to	oxicity for Dap	bhnia"
Result:	RESULTS: EXPOSE - Nominal conce 100, 140, 200	p ntrations: , 280, 400	;), 560, 800	mg	
	- Effect data (confidence limi - Concentration	immobiliza t (mg/l): / respons	ation)(48 h) 175.2 - 233 se curve: 48): EC50: 202.3 3.6 3 h	% mg/l 95%
	total(mg/l)	NO. NO.	. mobile I	NO. IMMODILE	SIMMODILE
concentra	control 100 140 200 280 400 560 800 - Effect data (confidence limi - Concentration	20 2 20 2 20 1 20 1 20 2 20 2 21 immobilizat t (mg/l): / respons	20 20 .7 .1 3 0 0 0 0 ation) (24 h) 244.6 - 333 se curve: 24 oile No	0 0 3 9 17 20 20 21): EC50 = 285.8 3.9 4 h	0 0 15 45 85 100 100 100 \$ mg/l, 95%
total (r	ng/l)	1.0.			
	control 20 100 20 140 20 200 20 280 20 400 20 560 20 800 21 - Cumulative im concentration w RESULTS CONTROL RESULTS: TEST W - Concentration - Results	20 20 20 15 12 4 0 0 mobilizati ith 100% i : ITH REFERE s: bilization	.on: 400 mg, .mmobilizat: 2NCE SUBSTAN)) 5 3 6) 1 /1 (48 h) (lowe ion) NCE	0 0 25 40 80 100 100
OECD SIDS 4. ECOTOXICITY

	concentration % immobilized daphnids (mg/l)	
	0.9 20	
	1.9 100	
Test condition:	Based on effective concentrations (corrected for hydrolysis) the EC50 48 h is 179 mg/l. TEST ORGANISMS	
	 Strain: Daphnia magna Straus Clone 5 Source/supplier: Hüls AG Breeding method: Breeding method according to Elendt (1990) in M4-medium in 11 beakers, water exchange every 2 to 3 days. Age: < 1 day Feeding: Desmodesmus subspicatus Every 2 during test: page 	
	- Control group: negative control (water only), positive control: potassium dichromate STOCK AND TEST SOLUTION AND THEIR PREPARATION	
	- Vehicle, solvent: water - Concentration of vehicle/ solvent: 1000 mg/l STABILITY OF THE TEST CHEMICAL SOLUTIONS: see stability information (hydrolysis as function of pH).	
	- Source: Synthetic fresh water	
	 Aeration: no Hardness: CaCl2 x 2 H2O: 294 mg/l, MgSO4 x 7 H2O: 123 mg/l Salinity: KCl: 5.5 mg/l Ca/Mg ratio: 4 : 1 	
	- Na/K ratio: 10 : 1 - pH: 7.0 to 7.5	
	- Oxygen content: 6.6 to 7.8 mg/l TEST SYSTEM	
	- Test type: static - Concentrations: (nominal): 100, 140, 200, 280, 400, 560, 80	0
	mg/l - Exposure vessel type: round bottom flasks	
	- Number of replicates, individuals per replicate: 4 replicates, 5 individuals	
	- Test temperature: 20 +- 2°C - Dissolved oxygen: 6.6 - 7.8 mg/l - pH: 7.0 - 7.5	
	- Adjustment of pH: no - Intensity of irradiation: dark	
	DURATION OF THE TEST: 48 hours TEST PARAMETER: Immobilization	
	MONITORING OF TEST SUBSTANCE CONCENTRATION: not performed, nominal concentrations used.	
	Statistical Analyis: Probit analysis according to Cavalli-Sforza (1972)	
Reliability:	(2) valid with restrictions Guideline study, GLP, but no analytical substance	
Flag:	WGK (DE), Material Safety Dataset, Critical study for SIDS	
26-AUG-2005	(49)

(49)

4. ECOTOXICITY

4.3 Toxicity to Aquatic Plants e.g. Algae

Endpoint: Exposure period:	Scened growth 72 hou	esmus su rate r(s)	lbspicati	us (Alc	jae)			
Unit:	mg/l			Analyt	cical mon	nitoring:	no	
NOEC: =	25							
ECIU:	= 115							
EC50:	> 800							
Math ad		0						
Method:	otner:	Guideli	.ne 88/30	JZ/EEC				
iear:	1988							
GLP:	yes	., ,		1 4				
Test substance:	as pre	scribed	- 1.1 Ya	- 1.4				
Remark: Result:	cell g growth concen RESULT	rowth: E rate: E tration S:	CC10 = 3 CC10 = 11 tested)	30.1; EC 15.1; EC	250 = 508 250 > 800	8.2) mg/l (r	nighest	
	Nomina	l concer	trations	s only				
	- Effe	ct data/	Element	values:	:			
	Experi	ment 1						
	- Cell	density	/ data:					
	Cell d	ensity i	n cells	x 10exp	04/ml (st	tandard d	deviation	n)
	(at 24	, 48, ar	nd 72 hr	nean val	ues of 8	8 paralle	el experi	iments for
	contro	ls and 5	experir	ments fo	or test :	substance	e concen [.]	trations)
	0 h:		-					
	Contro	1 36	60 1	100 17	70 300	500		
	0 mg/l mg/l mg/l mg/l mg/l							
				/		y/ ⊥ 		
	2	2	2 nig/1 nig/	2 2	2 2	2		
	2 2	2	2	2 2	2 2	2		500
	2 Time	Control	2 36	2 2 60	2 2 100	2 170	300	500
	2 Time	Control 0 mg/l	2 36 mg/l	60 mg/l	100 mg/l	2 170 mg/l	300 mg/l	500 mg/l
	2	Control 0 mg/l	2 36 mg/l	2 2 60 mg/l	100 mg/l	2 170 mg/l	300 mg/l	500 mg/l
	2 Time	Control 0 mg/1	2 36 mg/l	2 2 60 mg/l	100 mg/l	2 170 mg/1	300 mg/l	500 mg/l
	Time	Control 0 mg/1	2 36 mg/l	2 2 60 mg/1	100 mg/l	2 170 mg/l 6 (0 7)	300 mg/l 6 (0 4)	500 mg/l
	Time 24 h (s.d.)	Control 0 mg/1 7 (0.5)	2 36 mg/l 6 (0.4)	2 2 60 mg/l 7 (0.5)	100 mg/l 6 (0.6)	2 170 mg/l 6 (0.7)	300 mg/l 6 (0.4)	500 mg/l 5 (0.5)
	Time 24 h (s.d.) 48 h	Control 0 mg/1 7 (0.5) 24	2 36 mg/1 (0.4) 23	2 2 60 mg/l 7 (0.5) 21	100 mg/l 6 (0.6)	2 170 mg/l 6 (0.7) 21	300 mg/l 6 (0.4) 20	500 mg/l 5 (0.5) 16
	Time 24 h (s.d.) 48 h (s.d.)	Control 0 mg/1 7 (0.5) 24 (2 1)	2 36 mg/1 (0.4) 23 (1.9)	2 2 60 mg/l 7 (0.5) 21 (1.6)	100 mg/l 6 (0.6) 20 (2.1)	2 170 mg/l 6 (0.7) 21 (1.9)	300 mg/l 6 (0.4) 20 (1)	500 mg/l 5 (0.5) 16 (1.9)
	Time 24 h (s.d.) 48 h (s.d.)	Control 0 mg/1 7 (0.5) 24 (2.1)	2 36 mg/l (0.4) 23 (1.9)	2 2 60 mg/l 7 (0.5) 21 (1.6)	100 mg/l 6 (0.6) 20 (2.1)	2 170 mg/l 6 (0.7) 21 (1.9)	300 mg/l 6 (0.4) 20 (1)	500 mg/l 5 (0.5) 16 (1.9)
	Time 24 h (s.d.) 48 h (s.d.) 72 h	Control 0 mg/1 7 (0.5) 24 (2.1) 82	2 36 mg/l (0.4) 23 (1.9) 70	2 2 60 mg/l 7 (0.5) 21 (1.6) 67	100 mg/l 6 (0.6) 20 (2.1) 57	2 170 mg/l 6 (0.7) 21 (1.9) 51	300 mg/l 6 (0.4) 20 (1) 43	500 mg/l 5 (0.5) 16 (1.9) 31
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.)	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3)	2 36 mg/l (0.4) 23 (1.9) 70 (6.3)	2 2 60 mg/l 7 (0.5) 21 (1.6) 67 (2.7)	100 mg/l 6 (0.6) 20 (2.1) 57 (0.7)	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8)	300 mg/l 6 (0.4) 20 (1) 43 (2.4)	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4)
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.)	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3)	2 36 mg/l (0.4) 23 (1.9) 70 (6.3)	7 (0.5) 21 (1.6) 67 (2.7)	100 mg/l 6 (0.6) 20 (2.1) 57 (0.7)	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8)	300 mg/l 6 (0.4) 20 (1) 43 (2.4)	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4)
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.) - Grow	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3)	2 36 mg/l 6 (0.4) 23 (1.9) 70 (6.3)	2 2 60 mg/l 7 (0.5) 21 (1.6) 67 (2.7)	100 mg/l 6 (0.6) 20 (2.1) 57 (0.7)	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8)	300 mg/l 6 (0.4) 20 (1) 43 (2.4)	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4)
	2 Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.) - Grow	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3) th curve	2 36 mg/l 6 (0.4) 23 (1.9) 70 (6.3) es:	2 2 60 mg/l 7 (0.5) 21 (1.6) 67 (2.7)	100 mg/l 6 (0.6) 20 (2.1) 57 (0.7)	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) 21	300 mg/l 6 (0.4) 20 (1) 43 (2.4)	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4)
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.) - Grow Area u	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control	2 36 mg/l 6 (0.4) 23 (1.9) 70 (6.3) es: growth 36	2 2 60 mg/l 7 (0.5) 21 (1.6) 67 (2.7) curve a 60	100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170	300 mg/l 6 (0.4) 20 (1) 43 (2.4)	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4)
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.) 72 h (s.d.) - Grow Area u	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control 0 mg/1	2 36 mg/l 6 (0.4) 23 (1.9) 70 (6.3) es: growth 36 mg/l	2 2 60 mg/1 7 (0.5) 21 (1.6) 67 (2.7) curve a 60 mg/1	100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100 mg/l	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170 mg/l	300 mg/l 6 (0.4) 20 (1) 43 (2.4) 30(500 mg/l 5 (0.5) 16 (1.9) 31 (2.4) 0 500
	24 h (s.d.) 48 h (s.d.) 72 h (s.d.) - Grow Area u	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control 0 mg/1	2 36 mg/l 6 (0.4) 23 (1.9) 70 (6.3) 23 (1.9) 70 (6.3) 23 (1.9) 70 (6.3) 23 (1.9)	<pre>/1 mg/1 2 2 60 mg/1 7 (0.5) 21 (1.6) 67 (2.7) curve a 60 mg/1</pre>	100 mg/l 2 2 100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100 mg/l	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170 mg/l	300 mg/l 6 (0.4) 20 (1) 43 (2.4) 30 mg/l	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4) 0 500 mg/l
	24 h (s.d.) 48 h (s.d.) 72 h (s.d.) 72 h (s.d.) - Grow Area u	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control 0 mg/1 67	<pre>1 mg/1 mg, 2 36 mg/1 6 (0.4) 23 (1.9) 70 (6.3) es: e growth 36 mg/1 59</pre>	<pre>/1 mg/1 2 2 60 mg/1 7 (0.5) 21 (1.6) 67 (2.7) curve a 60 mg/1 56 5</pre>	100 mg/l 2 2 100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100 mg/l	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170 mg/l 47.5	300 mg/l 6 (0.4) 20 (1) 43 (2.4) 30 mg/l 42.5	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4) 0 500 mg/l 31 5
	24 h (s.d.) 48 h (s.d.) 72 h (s.d.) - Grow Area u Area	Control 0 mg/l 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control 0 mg/l 67	11071 https://www.internationalized for the internationalized for the	2 2 60 mg/l 7 (0.5) 21 (1.6) 67 (2.7) curve a 60 mg/l 56.5 15 7	100 mg/l 2 2 100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100 mg/l 5 49.5 7 26 1	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170 mg/l 47.5 29 1	300 mg/l 6 (0.4) 20 (1) 43 (2.4) 30 mg/l 42.5 36 6	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4) 0 500 mg/l 31.5 53
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.) 72 h (s.d.) - Grow Area u Area % inhi	Control 0 mg/l 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control 0 mg/l 67 b.	<pre>1 mg/1 mg, 2 36 mg/1 6 (0.4) 23 (1.9) 70 (6.3) es: e growth 36 mg/1 59 11.9</pre>	<pre> 2 2 60 mg/l 7 (0.5) 21 (1.6) 67 (2.7) curve a 60 mg/l 56.5 15.7 </pre>	100 mg/l 2 2 100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100 mg/l 5 49.5 2 6.1	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170 mg/l 47.5 29.1	300 mg/l 6 (0.4) 20 (1) 43 (2.4) 30 mg/l 42.5 36.6	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4) 0 500 mg/l 31.5 53
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.) 72 h (s.d.) - Grow Area u Area % inhi Growth 0-72 h	Control 0 mg/l 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control 0 mg/l 67 b. rate (u	<pre>1 mg/1 mg, 2 36 mg/1 6 (0.4) 23 (1.9) 70 (6.3) 25: 2 growth 36 mg/1 59 11.9 1)</pre>	<pre>/1 mg/1 2 2 60 mg/1 7 (0.5) 21 (1.6) 67 (2.7) curve a 60 mg/1 56.5 15.7</pre>	<pre>100 mg/l 2 2 100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100 mg/l 5 49.5 26.1</pre>	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170 mg/l 47.5 29.1	300 mg/l 6 (0.4) 20 (1) 43 (2.4) 30 mg/l 42.5 36.6	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4) 0 500 mg/l 31.5 53
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.) 72 h (s.d.) - Grow Area u Area % inhi Growth 0-72 h	Control 0 mg/l 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control 0 mg/l 67 b. rate (u	<pre>1 mg/1 mg, 2 36 mg/1 6 (0.4) 23 (1.9) 70 (6.3) 25: 2 growth 36 mg/1 59 11.9 1.9 1.9</pre>	<pre></pre>	100 mg/l 2 2 100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100 mg/l 52 49.5 26.1	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170 mg/l 47.5 29.1	300 mg/l 6 (0.4) 20 (1) 43 (2.4) 30 mg/l 42.5 36.6	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4) 0 500 mg/l 31.5 53
	Time 24 h (s.d.) 48 h (s.d.) 72 h (s.d.) 72 h (s.d.) - Grow Area u Area % inhi Growth 0-72 h	Control 0 mg/1 7 (0.5) 24 (2.1) 82 (3) th curve nder the Control 0 mg/1 67 b. rate (u Control	<pre>1 mg/1 mg, 2 36 mg/1 6 (0.4) 23 (1.9) 70 (6.3) 25: 2 growth 36 mg/1 59 11.9 1.9 1.9</pre>	<pre></pre>	<pre>100 mg/l 2 2 100 mg/l 6 (0.6) 20 (2.1) 57 (0.7) and % inl 100 mg/l 5 49.5 26.1 100 100 </pre>	2 170 mg/l 6 (0.7) 21 (1.9) 51 (3.8) hibition 170 mg/l 47.5 29.1	300 mg/l 6 (0.4) 20 (1) 43 (2.4) 300 mg/l 42.5 36.6	500 mg/l 5 (0.5) 16 (1.9) 31 (2.4) 0 500 mg/l 31.5 53

OECD SIDS						MA	LONIC	ACID D	DIESTERS
4. ECOTOXICITY								ID DATE: 2	: 105-53-3
		1 0 4	1 1 () 1 1		10 1	0.0	DATE. 2	01
	u % inhi	1.24 b.	4.3	5.	4 9	.8 12 .8	2.8	1.02 0 17.4 2	.91 6.2
	pH-dev Co 0	elopment ntrol mg/l	during 36 mg/l	g the t 60 mg/l	est: 100 mg/l	170 mg/l	300 mg/	500 1 mg/	1
	0 h 7	.4	7.6	7.4	7.6	7.5	7.5	7.5	
	72 h 9	.2	6.9	7.1	6.8	6.9	7.7	8.5	
	Experi - Cell Cell d (at 24 contro 0 h: Contro 0 mg/l	ment 2: density ensity , 48, ar ls and 9 1 12.5 mg/l	y data: in cells nd 72 h 5 experi 25 mg/l	s x 10e mean v iments 50 mg/l	xp4/ml alues for te 100 mg/l	(standa of 8 par st subst 200 mg/l	ard dev callel cance c 400 mg/l n	iation) experim oncentr 800 mg/l	ents for ations)
	2	2	2	2	2	2			
	Time	Control 0 mg/l	12.5 mg/l	25 mg/l	50 mg/l	100 mg/l	200 mg/l	400 mg/l	800 mg/l
	24 h (s.d.)	5 (0.7)	5 (0)	4(0.4)	5 (0)	5 (0.4)	5 (0.4)	5 (0.4)	4(0.4)
	48 h (s.d.)	17 (1.5)	18 (0.5)	17 (1.4)	16 (1)	17 (0.4)	18 (1.9)	12 (2.3)	8 (1.9)
	72 h (s.d.)	54 (6.6)	59 (2.9)	55 (4)	45 (5.5)	44 (4.5)	47 (5.9)	29 (4.7)	18 (3.4)
	- Grow Area u	th curve nder the	es: e growth	n curve	and %	inhibit	ion		
		Contro 0 mg/l	l 12.5 mg/]	5 L m	25 g/l 1	50 10 mg/l mg)0 20 g/l mg	0 400 /l mg/	800 l mg/l
	Area % inhi	44 b.	47.5 -8	5 4 3 -	4.5 1.1	37.5 3 14.8 11	39 41 4 5	.5 26. .7 0.8	5 16 9 0.73
	Growth 0-72 h	rate (1	(ג						
		Contro 0 mg/l	l 12.5 mg/]	5 25 L mg/l	50 mg/l	100 mg/l	200 mg/l	400 mg/l	800 mg/l
	u % inhi	1.099 b.	1.13 -2.6	3 1.11 5 -0.5	1.10 5.6	1.03 6.3	1.05 4.3	0.89 18.9	0.73 33.4
	pH-dev Co 0	elopment ntrol mg/l	t during 12.5 mg/l	g the t 25 mg/l :	est: 50 mg/l 1	100 20 mg/1 mg)0 40 g/l mg	0 800 /1 mg/	1
	0 h 7 72 h 8	.3	7.5 8.9	7.5 8.7	7.5	7.5 7. 7.6 7.	5 7.	5 7.2 5 7.6	

OECD SIDS	MALONIC ACID DIESTERS
4. ECOTOXICITY	ID: 105-53-3
	DATE: 21.01.2005

	In some of the test vials including controls the pH values were increased during the test. As the growth was not influenced by the increase in pH this does not compromise the quality of the data according to the authors.
	Cell growth (biomass): 72 h Ebc50: 508.2 mg/l 72 h Ebc10: 30.1 mg/l
	/2 h EbC90: > highest tested concentration of 800 mg/l
	Growth rates: 72 h ErC50: > highest tested concentration of 800 mg/l 72 h ErC10: 115.1 mg/l 72 h ErC90: > highest tested concentration of 800 mg/l
.	Based on effective concentrations corrected for hydrolysis the 72 h EC50 would be > 667 mg/l (growth rate) and 424 mg/l (biomass).
Test condition:	TEST ORGANISMS - Strain: Desmodesmus subspicatus (Scenedesmus subspicatus),
	86.81 SAG
	- Source/supplier: Institut fur Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding
	- Laboratory culture: From a stem culture, prepared 3 days
	prior to the start of the experiment.
	- Method of cultivation: Cell density: 20000 cells/ml, culture
	8000 Lux, white, medium according to EC-guideline 88/302/EEC,
	temperature: 24 +- 2 °C
	- Controls: without test substance
	- Initial cell concentration: 2x 10exp4 cells/ml
	- 1 g/l in water
	STABILITY OF THE TEST CHEMICAL SOLUTIONS: see stability
	information (hydrolysis as function of pH).
	DILUTION WATER
	- Source: Deionized water
	- Aeration: no TEST SYSTEM
	- Test type: static
	- Number of replicates: 5 to 8, 2 independent experiments
	- Concentrations:
	Experiment 1: 36, 60, 100, 170, 300, 500 mg/l (nominal) Experiment 2: 12 5 25 50 100 200 400 800 mg/l
(nominal)	Experiment 2. 12.3, 23, 30, 100, 200, 400, 000 mg/1
(,	- Test temperature: 24 +- 2 °C
	- pH: pH at the beginning of the test: 7.4
	to 7.6, at the end of the test: 6.8 to 9.2.
	- Intensity of irradiation: 8000 Lux MONITORING OF TEST SUBSTANCE CONCENTRATION: not performed
	nominal concentrations used.
	Statistical Method:
	Probit analysis according to Cavalli and Sforza, 1972.
Reliability:	(2) valid with restrictions
	determination
Flag:	WGK (DE), Material Safety Dataset, Critical study for SIDS endpoint

4. ECOTOXICITY

26-AUG-2005

(51)

4.4 Toxicity to Microorganisms e.g. Bacteria

Type: Species: Exposure period: Unit: EC10: EC50:	aquatic Pseudomonas putida (Bacteria) 16 hour(s) mg/l Analytical monitoring: no = 1092 = 3097
Method: Year: GLP: Test substance:	other: DIN 38412 Teil 8 (DE) 1993 yes as prescribed by 1.1 - 1.4
Remark: Reliability: Flag: 09-AUG-2004 Type: Species: Unit: EC50:	Temperature: 21 +/- 1 degree C (1) valid without restriction Material Safety Dataset, Critical study for SIDS endpoint (47) aquatic Tetrahymena pyriformis (Protozoa) mmol/1 Analytical monitoring: no data = 10
Method: Year: GLP: Test substance:	other 1997 no data other TS: no data
Method: Remark: Test condition: Flag: 24-AUG-2005	2-dimensional static 50% inhibition growth concentration (IGC50) for axenic cultures of the ciliate Tetrahymena pyriformis according to Schultz, 1996. The data were used to develop a QSAR model. Stock solutions: In DMSO at concentrations of 5 to 50 mg/l. Critical study for SIDS endpoint (57)
Type: Species: Exposure period: Unit: EC50:	aquatic Tetrahymena pyriformis (Protozoa) 40 hour(s) mmol/1 Analytical monitoring: no data = 10.7
Method: Year: GLP: Test substance:	other: Tetratox, 1997 2000 no data other TS: no data
Remark:	The value was used to derive QSAR relationships for aquatic toxicity data that tested the use of dimyristoyl phosphatidylcholine/water partition coefficients in place of octanol/water partition coefficients to get a better fit of the data.
	Organic amended medium.
24-AUG-2005	(86)
Type:	aquatic

OECD SIDS MALONIC ACID DIESTERS 4. ECOTOXICITY ID: 105-53-3 DATE: 21.01.2005 Species: other bacteria: nitrifying bacteria Unit: Analytical monitoring: no data mg/l EC0: <= 50 Method: other: no data 1973 Year: GLP: no data Test substance: no data no further information available Remark: (12)Type: aquatic Species: other protozoa: Infusoria Unit: Analytical monitoring: no data Method: other: no data 1973 Year: GLP: no data Test substance: no data Remark: 1000 mg diethyl malonate/l was lethal to infusoria (no further information available). (12)

4.5 Chronic Toxicity to Aquatic Organisms

4.5.1 Chronic Toxicity to Fish

4.5.2 Chronic Toxicity to Aquatic Invertebrates

4. ECOTOXICITY

TERRESTRIAL ORGANISMS

4.6.1 Toxicity to Sediment Dwelling Organisms

4.6.2 Toxicity to Terrestrial Plants

Species:	other terrestrial plant: Brassica alba, Lepidium sativum, Triticum aestivum other: emergence and growth				
Enapoint:	other: emergence and gr	owtn			
Method: Year: GLP: Test substance:	OECD Guide-line 208 "Terrestrial Plants, Growth Test" 1995 yes as prescribed by 1.1 - 1.4				
Result:	Emergence of seeds:				
plant Triticum aestivum Lepidum sativum Brassica alba	controls, No. planted emerged % 20 19 95 20 19 95 20 19 95 Plant growth: Given as weight of the end of the experiment.	aboveg (17 daj	plan 20 20 20 round pa: ys)	100 mg/ nted em 17 17 18 rts dir	'kg, No. herged % 85 85 90 rectly after the
	plant		con	trols	
100 mg/kg		,	weight(m	a/ka)(s	s.d.)
weight(mg/kg)(s.d.	.) Triticum aestivum Lepidum sativum Brassica alba	343 (1 86 (1 202 (1	109) 20) 36)		352 (138) 99 (18) 216 (64)
Test condition:	No effects were observe 3 plant species up to a Test endpoints: emergen plants.	d on so conce ce and	eed deve ntration growth	lopment of 100 of terr	: and growth of all) mg/kg. cestrial higher
alba.	Test plants: Triticum a	estivu	m, Lepid	ium sat	livum, Brassica
	Test plants: Triticum aestivum, Lepidium sativum, Brassica Test vials: Flowerpots, diameter: bottom: 6 cm, top: 8 cm height: 6 cm. Number of replicates: 4 per species with 5 seeds each. Maximum water capacity: 60 % Watering: Once during the test. Substrate: origin: LUFA Speyer, according to OECD guideline 208: sieved, 0.5 mesh, organic carbon content: < 1.5%, particles < 20 micro-m: 10 to 20% pH: 5 to 7.5 Stock mixture: 0.160 g test substance on 20 g silica sand wer mixed with 1580 g substrate. Growth conditions: in a partly climatized room with an averag humidity of 98%. Light intensity: 16 h: 1300-1800, 8 h 50-100 Temperature: 23-24 °C Statistical methods: Standard t-test.				

OECD SIDS	MALONIC ACID DIESTERS
4. ECOTOXICITY	ID: 105-53-3
	DATE: 21.01.2005
Belishility .	Test type: limit test with 100 mg test substance/kg substrate.
Flag:	Material Safety Dataset, Critical study for SIDS endpoint
24-AUG-2005	(53)
Species:	other terrestrial plant: Spinacea oleracea
Endpoint:	other: photosynthetic electron transport
Unit:	mg/kg soil dw
NOEC:	>= 100
Method:	other: Measurement of photosynthetic electron transport in
	isolated chloroplasts
Year:	1988
GLP:	no data
Test substance:	no data
Result:	Neither the electron transport in the whole photosynthetic
	chain, nor the photosystems I or II were affected by an in
	vitro incubation of isolated spinach chloroplasts with 100
	mg diethyl malonate/l for 5 min compared to control.
Test condition:	Temperature: 23 - 24 °C
	light: day (16 h) 1300 - 1800 Lux
16-AUG-2004	night (8 h) 50 - 100 Lux (34)
10 1100 2001	
Species:	other terrestrial plant: Pinus echinata
Endpoint:	other: visual toxicity symptoms
Unit:	mg/l
NOEC:	.32
Method:	other: Aerosol Exposure Test
Year:	1990
GLP:	no data
Test substance:	no data
Result:	1.14 mg/l aerosol concentration:
	0 d: old and new growth developed healthy
	2 d: chlorosis and tip or leaf edge burn:
	5 - 25 % of foliage affected
	21 d: chlorosis and tip or leaf edge burn:
	25 - 50 % of foliage affected
	0.32 mg/l aerosol concentration:
	old and new growth developed healthy within the
Test condition:	post-exposure period. average foliar mass loading $(n = 3) \cdot 0.20 + (-0.12) ug/cm^2$
Tebe condition.	(diethyl malonate exposure: 0.32 mg/l air) and 17.08 +/-
	2.94 ug/cm2 (diethyl malonate exposure: 1.14 mg/l air);
	relative humidity: 35 %; temperature: 24 degree C (low
	concentration) and 25 degree C (high concentration)
	Short-needle pine plants were aerosol-exposed for 60 min in
	a sealed exposure chamber and visual toxicity symptoms were
D-1:	assessed at 0, 2, and 21 d post-exposure.
Reliability:	(2) Valid With restrictions
	principles acceptable for assessment
Flag:	Critical study for SIDS endpoint
24-AUG-2005	(11)
Species:	otner terrestrial plant: Artemisia tridentata
Enapornt:	other. Visual coxicity symptoms

OECD SIDS MALONIC ACID DIESTERS 4. ECOTOXICITY ID: 105-53-3 DATE: 21.01.2005 Unit: mg/l NOEC: .32 Method: other: Aerosol Exposure Test Year: 1990 no data GT.P · Test substance: no data Result: 1.14 mg/l aerosol concentration: 0 d: old and new growth developed healthy 2 d: leaf curl and wilting: 25 - 50 % of foliage affected 21 d: chlorosis, leaf curl, growing tip dieback: 75 - 95 % of foliage affected 0.32 mg/l aerosol concentration: old and new growth developed healthy within the post-exposure period average foliar mass loading (n = 3): 11.69 +/- 0.54 ug/cm2 Test condition: (diethyl malonate exposure: 0.32 mg/l air) and 114.79 +/-29.44 ug/cm2 (diethyl malonate exposure: 1.14 mg/l air); relative humidity: 35 %; 24 degree C (low concentration) and 25 degree C (high concentration) Sagebrush plants were aerosol-exposed for 60 min in a sealed exposure chamber and visual toxicity symptoms were assessed at 0, 2, and 21 d post-exposure. Reliability: (2) valid with restrictions Study well documented, meets generally accepted scientific principles, acceptable for assessment. Flag: Critical study for SIDS endpoint 24-AUG-2005 (11)Species: other terrestrial plant: Festuca arundinacea Endpoint: other: visual toxicity symptoms and growth Unit: mg/l NOEC: .32 other: Aerosol Exposure Test Method: 1990 Year: GLP: no data Test substance: no data Result: 1.14 mg/l aerosol concentration: 0 d: wilting: 25 - 50 % of foliage affected 2 d: wilting and tip or leaf edge burn: 95 - 100 % of foliage affected 21 d: wilting, chlorosis, leaf curl and tip of leaf edge burn: 95 - 100 % of foliage affected Post exposure: first harvest: 46 % of the control value; second harvest: 62 % of the control value. 0.32 mg/l aerosol concentration: old and new growth developed healthy within the post-exposure period, dry matter production at 30 and 60 days post-exposure was not affected. average foliar mass loading (n = 3): 8.32 +/- 4.45 ug/cm2 Test condition: (diethyl malonate exposure: 0.32 mg/l air) and 193.56 +/-63.41 ug/cm2 (diethyl malonate exposure: 1.14 mg/l air); relative humidity: 35 %; temperature: 24 degree C (low concentration) and 25 degree C (high concentration)

OECD SIDS	MALONIC ACID DIESTERS
4. ECOTOXICITY	ID: 105-53-3 DATE: 21.01.2005
Reliability: Flag: 21-OCT-2004	Tall fescue plants were aerosol-exposed for 60 min in a sealed exposure chamber and visual toxicity symptoms were assessed at 0, 2 and 21 d post-exposure. Residual treatment effects were assessed at 30 and 60 days post-exposure. Plant canopies were harvested and dry matter production was determined at 30 days post exposure; plants were allowed to regrow for a second harvest at 60 days post-exposure. (2) valid with restrictions Study well documented, meets generally accepted scientific principles, acceptable for assessment. Critical study for SIDS endpoint (11)
4.6.3 Toxicity to	Soil Dwelling Organisms
Type: Species: Endpoint: Exposure period: Unit: LC0: LC50:	artificial soil Eisenia fetida (Worm (Annelida), soil dwelling) mortality 14 day(s) mg/kg soil dw > 1000 > 1000
Method: Year: GLP: Test substance:	other: Directive 88/302/EEC, 1988 1994 yes as prescribed by 1.1 - 1.4
Test condition: Reliability: Flag:	<pre>temperature: 20 +- 2 °C pH: 5.9 light: 500 - 700 lux permanent light (1) valid without restriction Critical study for SIDS endpoint</pre>
09-AUG-2004	(52)
Type: Species: Endpoint:	artificial soil Eisenia fetida (Worm (Annelida), soil dwelling) mortality
Method: Year: GLP: Test substance:	other: Earthworm Bioassay 1990 no data no data
Result:	Survival:
Test condition:	<pre>(a) (b) days post-exposure 1: 30/30 30/30 7: 27/30 23/30 12: 26/30 20/30 pH 6.5; 35 % soil moisture (related to dry weight); no further information available Artificial soil containing 6 earthworms/25 cm2 was contaminated with diethyl malonate by aerosol treatment, resulting in soil mass loading of (a) 107.5 +/- 65.0 ug/cm2 and (b) 204.1 +/- 39.6 ug/cm2, resp.; survival of earthworms was recorded over 12 days.</pre>
16-AUG-2004	(11)

4. ECOTOXICITY

4.6.4 Toxicity to other Non-Mamm. Terrestrial Species

4.7 Biological Effects Monitoring

4.8 Biotransformation and Kinetics

4.9 Additional Remarks

Memo: Olfactory function in snails

- Method: Aspects of olfactory sensitivity of the pulmonate Helix pomatia L. were studied by neurophysiological and behavioral methods. Different chemicals (odors) were added to a continuous air stream and single fiber recordings performed in the olfactory nerve of the posterior tentacles. Result: Behavioral test: Diethyl malonate had no negative but a slightly positive effect, according to the authors due to the fruity odor similar to their diet. It did not influence movement in 8 of 20 snails. 7 of 20 moved towards the inlet and 5 of 20 withdrew. Physiological experiment: 84% of the fibres were inresponsive to diethylmalonate. 12% weakly sensitive and 2 % showed medium or high sensitivity. Species: adult Helix pomatia L. collected in the field. Test condition: Acclimatization: 3 weeks, at constant temperature, 12 h light
 - 12 h dark. Feed: ad libitum: lettuce, carrots, cucumber, eggshells.

Neurolophysiological study:

Preparation: The snails were decapitated and the preparation placed in Ringer's solution. CNS and nerves were preparated. All nerves except the 3 pairs of lip nerves and tentacle nerves were sectioned. The preparation was fixed in a 2 chambered plexiglass device and the 2 posterior tentacles were put through holes in the seperating plexiglass wall and fixed without damage of the nerve tissue. One of the tentacle nerves was placed on a microelectrode. The front chamber contained 2 tubes, one control and one for the inlet of the odors. Air could be directed through either of the tubes.

Stimuli: Ethanol, pentanol, hexanol, octanol, ehtylacetate, diethyl malonate (all undiluted) and vanillin (1%aqueous solution).

Stimulation: 1. 30 seconds air without stimulus, 2. 60 s air led through one of the substances, 3 minutes air without stimulus. The order of the stimuli was changed at random. Neuronal responses (impuls frequencies of 3 independent nerve fibres) were recorded.

Behavioral studies: Chamber: plastic, 6.5 cm wide, 4.5 cm high, open on the top, inlets for control air stream and olfactory stimulus, outlet on the opposite side. The air stream was let to the bottom of the chamber. Constant light conditions by artificial illumination.

MALONIC ACID DIESTH	ERS
ID: 105-5 DATE: 21.01.2	53-3 2005
Experiment: individual snails (total number 20) starved for days were placed 24 cm from the inlet. When the tentacles we evaginated the air stream was switched from control to stimulus. The behavior was observed for 10 min. Air stream between stimuli for 3 min. Stimuli were applied at random. If the snail moved at least 5 cm towards the inlet the stimulus was judged positive, movement of at least 5 cm in the oppositive direction or withdrawal into the shell was judged as an avoidance behavior.	5 ere If s ite 96)
A concentration of 2 % diethyl malonate completely inhibited the cellulase activity in gut extracts of the termites Termes obesus and Heterotermes indicola.	d 69)
Growth and proteolytic activity of the fungus Ctenomyces were inhibited by the addition of 1.5 - 2 % diethyl malonate. The proteolytic activity was determined by measuring the degradation of woollen fabric by the loss in weight of the fabric.	(2)
The addition of 13 mmol diethyl malonate/l to a 3 h old culture of Bacillus cereus decreased the sporulation yield to 0.1 % of the control value.	40)
Ecological dose causing 50 % inhibition of soil dehydroge- nase activity in silt loam and sandy loam: EcD50 ca. 2.5 mg/g dry soil after 3 days of incubation and > 2.5 mg/g dry soil after 28 days of incubation of soil samples with diethyl malonate at 22 degree C in the dark.	
99 % purity (11)
Ecological dose causing 50 % inhibition of soil acid phosphatase activity in silt loam and sandy loam: EcD50 > 2.5 mg/g dry soil after 3 days and 28 days of incubation of soil samples with diethyl malonate at 22 degree C in the dark. 99 % purity	
	MALONIC ACID DIESTI ID: 105:5 DATE: 21.01.2 Experiment: individual snails (total number 20) starved for days were placed 24 cm from the inlet. When the tentacles were evaginated the air stream was switched from control to stimulus. The behavior was observed for 10 min. Air stream between stimuli for 3 min. Stimuli were applied at random. the snail moved at least 5 cm towards the inlet the stimulu was judged positive, movement of at least 5 cm in the oppositive direction or withdrawal into the shell was judged as an avoidance behavior. (A concentration of 2 % diethyl malonate completely inhibite the cellulase activity in gut extracts of the termites Termes obesus and Heterotermes indicola. (Growth and proteolytic activity of the fungus Ctenomyces were inhibited by the addition of 1.5 - 2 % diethyl malonate. The proteolytic activity was determined by measuring the degradation of woollen fabric by the loss in weight of the fabric. (Ecological dose causing 50 % inhibition of soil dehydrogenase activity in silt loam and sandy loam: Ecological dose causing 50 % inhibition of soil acid smaples with diethyl malonate at 22 degree C in the dark. 99 % pur

5.0 Toxicokinetics, Metabolism and Distribution

In Vitro/in vivo:		In vivo
Туре:		Metabolism
Species:		rat
Doses, males:		5 µl/0.5 mCi
Doses, females:		5 µ1/0.5 mCi
Route of administ:	ration:	other: intracerebral injection
Deg. product:		yes
Method:	other	
Year:	1978	
GLP:	no data	
Test substance:	other TS: C1 acitivity 12	or C2 14-C-radiolabeled malonic acid, specific mCi and 42 mCi respectively
Result:	The authors w to acetyl-CoP after intrace	verified that the decarboxylation of malonic acid A by various mammalian tissues also occurs in vivo erebral injection.
	A rapid reflu reported. Lak the expired a but not after present in gl degradation of these amino a [2-14C]acetyl activation ar experiments w In vitro the amino acids. radioactivity	ax of unreacted malonic acid in venous blood was beled 14CO2 was recovered from venous blood and air after administration of C-1 labeled product, C-2 labeled product. High radioactivity was sutamate, aspartate and GABA. Sequential of glutamate and aspartate proved that labeling of acids occurred from [1-14C]acetyl-CoA and C-CoA respectively via the Krebs-cycle. Malonate and decarboxylation were similar to in vitro with isolated mitochondria from different tissues. radiolabel was however not incorporated into In the in vivo experiment a minor amount of was also incorporated in brain lipids.
	The authors of following rou	conclude that malonic acid is metabolised via the ate:
	Malonate + Co Malonyl-CoA -	DASH + ATP <> malonyl-CoA + ADP + Pi > Acetyl-CoA + CO2
	In vitro: Acetyl-CoA	> acetate + CoASH
Test condition:	In vivo: Acet formation of also be incro Intracerebral	cyl-CoA enters the Krebs cycle and is used for the aspartate, glutamate and GABA. A minor amount may porated into lipids. injection of either C1- or C2- 14C- radiolabeled
D -14-1414	malonic acid rats were kil removed, weig reaction prod analysed for	to anesthetized adult male and female rats. The led after 2, 5, 10, 15 or 30 min and the brains ghed, homogenized and analysed for radiolabeled ducts. Venous blood and expired air was also radioactivity.
Reiladility:	(2) Valla Wi	un resurrentific reference
Flag:	Critical stuc	lea scientific reference Ny for SIDS endpoint
16-AUG-2005	STICICAL SCUC	(58)
In Vitro/in vivo:		In vitro

5. TOXICITY

Type: Species: Doses, males: Vehicle: Route of administr Exposure time:	Absorption human 4 µl/0.8 cm ² of skin other: undiluted dermal 24 hour(s)
Method: Year: GLP: Test substance:	other: in vitro flow through skin penetration test 1999 no data other TS
Result:	After 24 h 16% of the applied dose (642.06 +-23.43 μ g) had penetrated through the skin. The maximum flux rate was obtained after 5 hr: 280 μ g/h (350 μ g/cm2/h). The majoritiy evaporated from the skin (45-50%), while the residual part (34-39%) rested on the skin. The mean penetration rate was 99.21 +- 16.46 μ g/h (120 μ g/cm2/h).
Tost condition.	When skin was washed longer than 1 h after treatment, remnant diethylmalonat on the skin penetrated at an accelerated rate due to skin hydratisation.
	Human cadaver skin, male Chinese, 60 to 80 years of age. Split thickness skin, 600 µm thickness (epidermis and uppermost layer of dermis). After removal skin samples were transported on ice/salt, circular pieces of 20 mm diameter were prepared and stored at -30 °C for up to 1 month. Before use the samples were thawed rapidly in a 37°C water bath.
	Diffusion experiment: Flow through cell, 10 mm diameter, 4 mm height. Total diffusion volume 0.32 cm3. Surface area of exposed skin: 0.8 cm2. Perfusion: continuously, steady flow of 8 ml/h with 0.9% saline. The small receptacle volume and relatively high perfusion rate created a sink condition beneath the skin layer to avoid a diffusion lag.
	A small constant air flow was maintained above the surface to maintain non-occlusive condition.
	Temperature: 32 °C The outer chamber with the skin surface was sealed and covered with a tenax tube to collect evaporating test substance. Sampling of receptor fluid: every 2 h. Duration: 24 h Volume of application: 4 µl of neet test substance. Extraction of amounts in skin: with 10 ml of ethanol for 2 h. Analysis: GC-FID.
Test substance: Reliability:	Additional experiment: influence of decontamination with different solutions at 0.25, 0.5, 1 h post exposure. Diethylmalonate, 99%, Merck, Singapore (2) valid with restrictions

OECD SIDS	MALONIC ACID DIESTERS
5. TOXICITY	ID: 105-53-3
	DATE: 21.01.2005
Flag: 20-JUL-2005	well documented scientific literature Critical study for SIDS endpoint (63)
In Vitro/in vivo: Type: Species:	In vivo Absorption other: pig, hairless dogs, mice, human and pig skin grafted on mice
Route of administ	ration: dermai
Result: Test condition:	The percutaneous penetration was estimated from the recovery of radioactivity in the urine and feces and corrected for incompleteness of excretion by the recovery of radioactivity in urine and feces recovered from parenteral administration (percentage of topically applied radioactive dose): human skin grafted athymic nude mouse: $4 \ \% \ +-\ 2\%$ pig skin grafted athymic nude mouse: $6 \ \% \ +-\ 1\%$ athymic nude mouse: $15 \ \% \ +-\ 2\%$ weanling pig: $2.5 \ \% \ +-\ 0.2\%$ hairless dog: $4 \ \% \ +-\ 2\%$ The percutaneous penetration of radiolabelled diethyl malonate was assayed in different animal models by nonocclusive dermal application of 0.1 mg diethyl [2-14C]malonate/cm2 for 24 (mouse) or 48 h (dog, pig) with
Test substance: Reliability:	<pre>subsequent decontamination of the skin surface with ethanol. Skin area: mice (clipped), human and pig skin grafted on mice: 1.27 cm2, pigs (clipped) and hairless dogs: 25 cm2. Patch: mice: non occlusive protective patch. Patch pigs, dogs: non-occlusive, replaced after 24 h. Animals were housed individually in metabolic cages. Urine, skin, subcutaneous fat, liver, kidney and spleen were analysed for radioactivity. Diethylmalonate, Sigma chemical Co., St. Louis Mo., no further data. Diethyl [2-14C]malonate (specific acitivity 3 mCi/mmol), Amersham corporation, Arlington Heights, III. (2) valid with restrictions well documented scientific literature</pre>
Flag: 20-JUL-2005	Critical study for SIDS endpoint (83)
In Vitro/in vivo: Type: Species:	In vitro Absorption pig
Result:	<pre>Percentage of applied radioactive dose appearing in the acceptor cell over 50 h: dose A: application of 100 ug diethyl [2-14C]malonate/cm2: 3 % +- 1% dose B: application of 100 ug diethyl [2-14C]malonate diluted in ethanol/cm2 (12.5 mg/ml): 6 % +- 3% dose C: application of 4 ug diethyl [2-14C]malonate diluted in ethanol/cm2 (0.5 mg/ml): 10 % +- 3% Percentage of radioactivity remaining in the skin after 50 h: dose A: 8.8 % +- 0.5% dose B: 13 % +- 2% dose C: 30 % +- 10%</pre>

OECD SIDS	MALONIC ACID DIESTERS
5. TOXICITY	ID: 105-53-3 DATE: 21.01.2005
Test condition:	25 - 50 % of the applied radioactivity was lost due to evaporation. The percutaneous penetration of radiolabelled diethyl malonate was assayed in a diffusion cell with freshly prepared skin of weanling Yorkshire pigs.
	Skin sample: 1.8 cm diameter, thickness: 1.9 mm (full thickness skin, subcutaneous fat removed). Receptor fluid: tyrodes solution.
Test substance:	Temperature acceptor cell: 37 degree C; Acceptor cell fluid flow rate: 5 ml/h; donor cell: 24 degree C Diethylmalonate, Sigma chemical Co., St. Louis Mo.,purity > 97%. Diethyl [2-14C]malonate (specific acitivity 3 mCi/mmol), Amersham corporation, Arlington Heights, III. Radiochemical
Reliability: Flag:	<pre>purity >= 95%. (2) valid with restrictions well documented scientific literature Critical study for SIDS endpoint</pre>
20-JUL-2005	(42)
In Vitro/in vivo: Type: Species: Result:	In vitro Absorption pig Total recovery of radiolabel ranged from 50 to 80%. Some radiolabel was lost due to volatilisation.
	<pre>Percentage of the applied radioactive dose recovered in the acceptor cell, in the skin and on the skin surface over 24 h: diethyl malonate in the acceptor cell: 0.2 - 1.6 %; diethyl malonate in the skin: 0.2 - 0.9 %; diethyl malonate in the skin surface: 0.6 - 0.7 %. The skin mediated hydrolysis of radiolabelled diethyl malonate to monoethyl malonate and malonic acid amounted to 15 - 35 % of the applied radioactivity dose, corrected for hydrolysis products in the starting solution. Percentage of hydrolysis products recovered in the acceptor cell: 20 - 21 % of the applied dose; percentage of hydrolysis products recovered in the skin: 3-5% and on the skin surface: 2 - 4 % of the applied dose. The maximum penetration rate of hydrolysis products was reached after 5 h and amounted to ca. 2 % of the applied dose/h. Heat treated skin: DEM in receptor fluid: 24-42 % of applied dose in skin: 0.1-2.3% on skin surface: 0.2 - 1% Hydrolysis products: In receptor fluid: 2-6% in skin: 2-4%</pre>
	on skin surface: 2-3% No indication of the ratio of the hydrolysis products in the receptor fluid is given. A varying amount of hydrolysisproducts could also be detected in the receptor fluid controls (1.2 to 16%).

OECD SIDS	MALONIC ACID DIESTERS
5. TOXICITY	ID: 105-53-3
	DATE: 21.01.2005
	Preincubation of skin samples for 5 min in an 80 degree C water bath increased the penetration rate of diethyl
	malonate and decreased the amount and penetration rate of hydrolysis products.
Test condition.	the applied dose.
Test condition.	malonate was assayed in a diffusion cell with freshly prepared skin of weanling Yorkshire pigs. Skin samples of 1 mm thickness were incubated with 1 mg diethyl [2-14C]-malonate in acetone.
	Skin: clipped split thickness skin (containing epidermis and part of the dermis). Receptor medium: oxygenated solution of Rose Park Memorial Insitute (RPMI) media 1640 formula 78-5117, Gibco, NY.
	Application: 1 mg/cm2 in 10 micro-1 of acetone. Skin area: 0.8 cm2 Temperature: 37 degree C; acceptor cell fluid flow rate: 5
	<pre>ml/h; acceptor cell fluid collection: hourly between hours</pre>
	1 and 12, 23 and 24, bihourly from hours 12 to 22 Analysis of hydrolysis products: TLC and scintillation counting of the areas with Rf-values corresponding to the respective control substances of the hydrolysis products. To determine possible hydrolysis in the acceptor fluid controls were prepared by adding aliquots of 10 micro-1 of the test compund to the receptor fluid. These solutions were also
Test substance:	Diethylmalonate, Aldrich chemical Co., Milwaukee, Wi., purity > 98%. Diethyl [2-14C]malonate (specific acitivity 14 mCi/mmol), Amersham corporation, Arlington Heights, LI. Radiochemical
Reliability:	(2) valid with restrictionswell documented scientific literature
Flag:	Critical study for SIDS endpoint (12)
20-300-2003	(13)
In Vitro/in vivo: Type:	In vitro Absorption
species:	pig
Result:	Percentage of applied radiactive dose appearing in the acceptor cell over 15 min: 0.09 % +- 0.03%; radioactivity remaining in the skin: 2.4 %+-0.7%;
	radioactivity recovered from the skin surface by scrubbing and rinsing with 1 % aqueous surfactant solution: 13.8 % +- 2.0%.
	evaporation loss accounted for 63.1 $\%$ +- 3.0% of the applied dose.
	Decontamination assay: The skin was rinsed twice for 1 s with water after 15 min of incubation with radiolabelled diethyl malonate. The decontamination water contained 13.6 % +- 3.2%
	of the applied dose and the amount of radioactivity on the skin surface decreased to 2.3 $\%$ +- 0.5 $\%$. Penetration was essentially unaltered (0.1 +- 0.05 $\%$), scrub: 2.1 +- 0.8 $\%$. Application of thickened diethyl [2-14C]malonate (200 centistokes) did not alter the radioactivity distribution.

OECD SIDS	MALONIC ACID DIESTERS
5. TOXICITY	ID: 105-53-3
	DATE: 21.01.2005
	The overall recovery of the radioactive dose in these experiments was ca. 70 %.
Test condition:	The percutaneous penetration of radiolabelled diethyl malonate was assayed in a diffusion cell with skin of weanling Yorkshire pigs. The skin was stored frozen for approximately 1 month and was subsequently incubated with 0.1 mg diethyl [2-14C]malonate/cm2 for 15 min. Temperatures:
Reliability	27 degree C Skin area: 2.85 cm2.
	Study not suitable for evaluation of dermal absorption. Contact time to short. The purpose of the study was to investigate decontamination agents with malonates as non-toxic model substance.
21-OCT-2004	(84)
In Vitro/in vivo: Type:	In vivo Metabolism
Remark:	DEM is likely to be metabolized by unspecific (serine-) esterases of different tissues, in particular in the liver to the mono esters and finally to malonic acid and the corresponding alcohols, methanol and ethanol respectively. This is corroborated by the findings of the abiotic hydrolysis, in particular at alkaline pH that can be regarded as qualitatively similar to the hydrolysis catalyzed by unspecific esterases (Jacobi and Hoffmann, 1989). The hydrolysis products are likely to be metabolized via physiological pathways as the tricarboxylic acid cycle because they are part of the normal intermediate metabolism (WHO, 2000).
20-JUL-2005	(55) (97)
5.1 Acute Toxicit	<u>x</u>
5.1.1 Acute Oral	Toxicity
Type: Species: Value:	LD50 rat = 15794 mg/kg bw
Method:	other: as described by Smyth et al., Amer. Ind. Hyg. Assoc. J. 23, 95-107
Year:	1962

Test substance:	no data	
Reliability:	(4) not assignable Details lacking.	
Flag: 14-JAN-2005	Material Safety Dataset, Critical study for SIDS endpoint	(87)

GLP:

no

Method:

Remark:

Flag:

Year:

GLP:

Reliability:

14-JAN-2005

Test substance:

5.1.2 Acute Inhalation Toxicity

Species:	rat	
Method:	other: as described by Smyth et al., Amer. Ind. Hyg. Assoc 23, 95-107	. J.
Year:	1962	
GLP:	no	
Test substance:	no data	
Remark:	concentrated vapour inhalation; maximal inhalation period for no death: 8 h	
Reliability:	(4) not assignable Details lacking.	
Flag:	Material Safety Dataset, Critical study for SIDS endpoint	
14-JAN-2005		(87)
5.1.3 Acute Derma	l Toxicity	
Туре:	LD50	
Species:	rabbit	
Value:	> 16960 mg/kg bw	

other: According to 24-hour cuff method of Draize et al.

Material Safety Dataset, Critical study for SIDS endpoint

5.1	. 4	Acute	Toxicity,	other	Routes
-----	-----	-------	-----------	-------	--------

1944

contact period: 24 h

(4) not assignable
Details lacking.

no no data

5.2 Corrosiveness and Irritation

5.2.1 Skin Irritation

Species: Result:	rabbit not irritating
Method:	other: as described by Smyth et al., Amer. Ind. Hyg. Assoc. J. 23, 95-107
Year:	1962
GLP:	no
Test substance:	no data
Remark:	uncovered application of 0.01 ml diethyl malonate on the rabbit belly; injury grade 2 of 10 (grade 1 indicates no irritation and grade 2 the least visible capillary injection from the undiluted chemical, grade 6 indicates necrosis when undiluted and grade 10 indicates necrosis from a 0.01% solution); not classifiable according to current EEC directives
Result:	Irritation grade 2 of 10. No further information.
Reliability:	(4) not assignable
-	Details lacking.

(87)

5. TOXICITY	ID: 105-53-3 DATE: 21.01.2005
14-JAN-2005	(87)
Species: Concentration: Exposure: Exposure Time: Result: EC classificat.:	rabbit undiluted Occlusive 24 hour(s) slightly irritating not irritating
Method: Year: GLP: Test substance:	other: no data 1976 no other TS: no data
Reliability: Flag: Species:	(2) valid with restrictions Material Safety Dataset, Critical study for SIDS endpoint guinea pig
Method: Year: GLP: Test substance:	other: no data 1976 no other TS: no data
Result:	At doses of 10 ml/kg no skin irritation. (33)
5.2.2 Eye Irritat	ion
Species: Result:	rabbit highly irritating
Method: Year: GLP: Test substance:	other: as described by Smyth et al., Amer. Ind. Hyg. Assoc. J. 23, 95-107 1962 no no data
Remark:	Scoring system: grade 1 indicates a very small area of necrosis resulting from 0.5 ml of undiluted chemical in the eye, grade 5 indicates a so-called severe burn from 0.005 ml and grade 10 indicates a severe burn from 0.5 ml of a 1% solution in water or propylene glycol (Smyth et al. Range finding toxcity data: List VI, Amer. Ind. Hyg. J. 23: 95 (1962). The scoring system is not comparable to the Draize score.
Result:	The result is in contradiction to other studies. As no details of the test substance and the procedure are available the relevance of the finding is doubtful. application of 0.005 - 0.5 ml diethyl malonate to the centre of the cornea; examination after 18 - 24 h; injury grade 5 of 10.
Reliability:	(2) valid with restrictions Well documented scientific literature, but details lacking.
01-DEC-2004	(87)
Species: Concentration: Dose: Exposure Time:	rabbit undiluted .1 ml 504 hour(s)

MALONIC ACID DIESTERS

OECD SIDS

5. TOXICITY

Comment:	not rinsed
No. of Animals:	6
Result:	slightly irritating
EC classificat.:	not irritating
Method:	other: according to U.S.A. Environmental Protection Agency
Year:	1989
GLP:	yes
Test substance:	as prescribed by 1.1 - 1.4
Result:	AVERAGE SCORE (24, 48, 72 hours) - Cornea: 0.6 - Iris: 0.8 - Conjuntivae (Redness): 1.7 - Conjuntivae (Chemosis): 1.3 - Overall irritation score: (Draize score) 25.8 of 110
	DESCRIPTION OF LESIONS: 1 h p.a.: dulling of the corneal surface in 4 animals, sloughing of corneal epithelium in 1 animal. Slight iriditis was observed in 2 animals. Minimal to moderate conjunctival redness and chemosis in all animals. 5 animals showed slight conjunctival discharge. 24 h p.a.: Dulling of the cornea was seen in 5 animals
	24 h p.a.: Dulling of the cornea was seen in 5 animals. Diffuse corneal opacity was observed in one animal. Slight iriditis was observed in all animals. Minimal to moderate conjuctival redness and chemosis was observed in all treated eyes. Minimal to moderate discharge was seen in five animals. 48 h p.a.: Diffuse or translucent corneal opacity was observed in 5 animals. Slight iriditis was observed in all animals. Minimal to moderate conjuctival redness and chemosis was observed in all treated eyes. Minimal to moderate discharge was seen in 2 animals, severe discharge in 1 animal. 72 h p.a.: Diffuse or translucent corneal opacity was observed in 3 animals. Slight iriditis was observed in all animals. Minimal to moderate conjuctival redness and chemosis was observed in all treated eyes. Minimal to moderate discharge was seen in 2 animals, severe discharge in 1 animal. 72 h p.a.: Diffuse or translucent corneal opacity was observed in 3 animals. Slight iriditis was observed in all animals. Minimal to moderate conjuctival redness and chemosis was observed in all treated eyes. Minimal to moderate discharge was seen in 2 animals. day 7: Translucent corneal opacity was observed in one treated eye, Iriditis was observed in one animal, minimal to moderate conjunctival redness in 2 animals.
	14 d p.a.: Minimal conjunctival redness was observed in one treated eye. REVERSIBILITY: All effects were reversible within 21 days.
Test condition:	OTHER EFFECTS: No other effects were reported. TEST ANIMALS: Rabbits - Strain: New Zealand White - Sex: male and female - Source: David Percival Ltd. U.K. - Age: 12 to 16 weeks - Weight at study initiation: 2.54 to 3.12 kg - Number of animals: 6 - Controls: second eye
	ADMINISTRATION/EXPOSURE - Preparation of test substance: used undiluted - Amount of substance instilled: 0.1 ml - Vehicle: none

OECD SIDS	
5. TOXICITY	

	EXAMINATIONS	
	- Ophtalmoscopic examination: standard ophthalmoscope	
	- Scoring system: Draize	
	- Observation period: 21 days	
Reliability:	(1) valid without restriction	
Flag:	Material Safety Dataset, Critical study for SIDS endpoint	
01-DEC-2004	(46)

5.3 Sensitization

Type: Species:	other: human maximisation test human	
Method: Year:	other: no data 1972	
Result:	A maximisation test according to Kligman, 1966 and Kligman Eppstein, 1975 was reported in 23 volunteers. 4% of the testsubstance in petrolatum produced no sensitization reactions.	and
Reliability:	(4) not assignable Original publication not available	
Flag:	Critical study for SIDS endpoint	
20-JUL-2005		(32)

5.4 Repeated Dose Toxicity

Type: Species: Strain: Route of administ Exposure period: Frequency of trea Doses: Control Group:	Sub-chronic rat Sex: male/female other: Charles River CD ration: oral feed 90 d tment: daily males: 35.93 mg/kg b.w./d; females: 41.14 mg/kg b.w./d yes, concurrent no treatment
Method: Year: GLP:	other: as described by author 1967 no
Test substance:	other TS: purity > 90%
Remark:	No substance-related differences were found between control and test rats with respect to growth, food intake, haematological and clinical chemistry parameters, blood-urea level, organ weights or organ pathology;
Test condition:	 TEST ORGANISMS Number of animals: 10 to 16 males and females ADMINISTRATION / EXPOSURE Duration of test/exposure: 90 days Type of exposure: dietary, the test material was incorporated into the diet either as 16.7 % emulsion in gummi arabicum, as 16.7 % adsorbate on microcrystalline cellulose or as 10% solution in ethanol or peanut oil. (Not specifed). The dietary levels were adjusted during the study so that animals received on a mg/kg per day basis a level in access of 100-fold the maximum estimated dietary intake of humand from flavoring agents. This level was exceeded by 10 to 40% during

Reliability: Flag: 01-DEC-2004	<pre>the study. - Doses: 35.93 mg/kg bw for males, 41.14 mg/kg bw for females (average doses) CLINICAL OBSERVATIONS AND FREQUENCY: Body weight and food intake were recorded weekly. Haematological evaluations and blood urea determination were performed on 50% of the animals in week 7 and on 50% at termination (week 13). At autopsy liver and kidneys were weighed and histopathological examination was performed on a wide range of organs (not further specified). (2) valid with restrictions Scientific study, but methodological deficiency, one dose only tested. Used as coroborative evidence. Critical study for SIDS endpoint</pre>
Type:	Sub-acute
Species: Strain: Route of administ	Wistar ration: gavage
Exposure period:	39 to 51 days (from 14 days before mating to day 3 of lactation)
Frequency of trea	<pre>:ment: daily, 7 days per week ind. 14 days</pre>
Doses:	0. 100. 300. 1000 mg/kg bw per day
Control Group:	yes, concurrent vehicle
NOAEL:	= 300 mg/kg bw
LOAEL:	= 1000 mg/kg bw
Method:	OECD combined study TG422
Year:	2004
GLP:	yes
Test substance:	other TS: Dimethyl malonate
Method:	OECD Combined Repeated Dose and Reproduction/Developmental
D	Screening Test.
Result:	groups.
	TOUTO DECOMOR / DEDECTO DV DOCE I DVEL
	TOXIC RESPONSE/EFFECIS BI DOSE LEVEL:
	- Clinical signs:
	No test item related clinical signs were observed throughout
	- FOR·
	No treatment related changes were observed.
	- Body weight gain:
	No treatment related effects on body weight and body weight
	gain were observed. - Food consumption:
	No treatment related effects were observed.
	- Clinical chemistry:
	No treatment related effects were observed.
	- Haematology:
	- Organ weights:
	No treatment related effects were observed.
	- Gross pathology:
	No treatment related effects were observed.

	- Histopathology:
	1000 mg/kg bw: Livers of males and females showed a
	significantly increased incidence of hepatocellular
	hypertrophy. The change was considered reversible as the
	incidence was not significantly increased in the high dose
	require when the significantly increased in the high door
	200 and 100 mm/hm has No torestruct aslated sharpes of the
	300 and 100 mg/kg bw: No treatment related changes of the
	liver were observed.
	All other histopathological findings were not considered
	treatment related.
	STATISTICAL RESULTS: Significantly increased hepatocellular
	hypetrophy in the high dose group only.
Test condition:	TEST ORGANISMS
	- HSDCpb-WII rats
	- Age at start of treatment: 11-12 weeks
	- Weight at study initiation: malos: 377-370 g. fomalos:
	- Weight at study initiation. mates. 377-379 g, females.
	210-219 g
	- Number of animals: Main group: 10 m, 10 f, recovery groups:
	5 m, 5 f
	ADMINISTRATION / EXPOSURE
	- Duration of test/exposure:
	Males: Test groups: 39 days, male recovery group: 39 exposure
	days, 45 test days.
	Females: Treatment groups: 51 +- 7 days, recovery group: 39
	exposure days, 45 test days,
	- Type of exposure () rai gavage
	- Post exposure period: 14 days
	Vehicle. Double distilled veter
	- Venicie: Double distilled water
	- Concentration in Venicle: 10 mg/ml, 30 mg/ml, 100 mg/ml
	- Total volume applied: 10 ml/kg bw
	- Doses: 100, 300, 1000 mg/kg bw
	Treatment:
	Male rats: The test item was administered once daily, 7 days
	per week by gavage for 2 weeks prior to mating, during the
	mating period and approximately 2 weeks post mating.
	Female rats: The test item was administered once daily, 7 days
	per week by gavage for 2 weeks prior to mating, during the
	mating period program wand up to lactation day 4
	matring period, pregnancy and up to inclusion day 4.
	the first dose recovery group animats (mates and remates)
	the test item was administered once daily, / days per week by
	gavage throughout the treatment period.
	CLINICAL OBSERVATIONS AND FREQUENCY:
	- Daily observations for appearance, behaviour, clinical signs
	and preterminal deaths. Females were observed for signs of
	difficult and pronlonged parturition.
	- Twice daily: morbidity and mortality.
	- Detailed clinical observations: once before exposure and at
	least once per week thereafter Signs included were changes in
	skin fur aves mucous membranes occurrence of secretions or
	excretions and autonomic activity changes in soit necture
	excretions and autonomic activity, changes in gait, posture,
	response to nandling, benavioural changes, difficult or
	prolonged parturition.
	Functional observation battery (FOB): Examinations were
	performed in randomly selected 5 animals of each group at the
	end of the dosing period for males and during the lactation
	period for females and included homecage observations,
	handling observations, open field tests, sensory observations.
	neuromuscular observations and physiological observations
	restriction product of the product o

(body temperature).

implantation.

Body weights were recorded at the beginning of the study, at least weekly thereafter and at termination. All dams were weighed on gestation days 0, 7, 14 and 20 and lactation days 0 and 4. Food consumption was recorded weekly. The fertility index for males and females was determined.

LITTER DATA: All pups from each litter were examined for any external deformities, litter size and sex distribution was dertermined. Pup weights were recorded on day 0 and 4. All pups were examined for malformations and subject to gross

pathological examination. Pup survival index up to lactation

HAEMATOLOGY/CLINICAL CHEMISTRY: Standard haematological and clinical chemistry parameters were determined at the end of the pre-mating period and the recovery period in 5 randomly selected males and females of each group.

ORGAN WEIGHTS: Organ weights of liver, adrenals, kidneys, thymus spleen, brain and heart were determined of 5 males and females of each group. Testes and epididymis weights of all adult males of each group were also determined.

GROSS PATHOLOGY.

day 4 was determined.

All adult animals and pups were examined for any structural abnormalities and pathological changes.

HISTOPATHOLOGY:

The following tissues of 5 males and females of the control and high dose group as well as all animals of the recovery and recovery control groups were examined microscopically: all gross lesions, brain, spinal cord, gastrointestinal tract, liver, kidney, adrenals, spleen, heart, thymus, thyroid, trachea, lungs, testes (fixed in Bouins fluid), epididymes (fixed in Bouins fluid), ovaries, uterus, seminal vesicles, coagulating glands, prostate, urinary bladder, axillary lymph nodes, mesenteric lymph nodes, sciatic nerve, femur with marrow, bone marrow smear. Stages of spermatogenesis and interstitial testicular structure in male gonads were determined additionally. Livers of 5 males and females in the mid and low dose groups and testes of 5 males of the mid and low dose groups were also examined.

STATISTICAL ANALYSIS:

Dunnett's t-Test: body weight, body weight change, food intake, haematology, clinical chemistry, organ weight, FOB, gestation length, litter size, No. corpora lutea, No.

Z-Test/Student's t-Test: Mating performance, conception rate, fertility index, gestation index, live birth index, viability index, sex ratio, pup survival data, No. littered, No. dead pups, No. live pups, Pup survival data, Pre- and Post-implantation loss. Histopathological data. t-Test/ANOVA: dose correlation Test substance: Dimethyl malonate, purity: 99.8%. Reliability: (1) valid without restriction Guideline study, GLP Flag: Material Safety Dataset, Critical study for SIDS endpoint

5. TOXICITY

(19)

11-AUG-2004

5.5 Genetic Toxicity 'in Vitro'

Type:		Cytogenetic assay			
System of testing:		Human peripheral lymphocytes			
Concentration:		312.5, 625, 1250, 2500, 5000 µg/ml medium			
Cytotoxic Concentration:		5000 µg/ml			
Metabolic activation:		with and without			
Result:		negative			
Method:	OECD Guide-line 473				
Year:	2003				
GLP:	yes				
Test substance:	other TS: Dimethyl malonate				
Result:	GENOTO2 - With The mean at cond 3.5% and histor: increas - With chromos 625 to contro2 5%. The aberrat All pos that we with th MITOTIC Pretest Without At cond 2500 µg 5000 µg 5000 µg Main es Without 1.0) Without 1.0) Without 2500 µg 5000 µg 5000 µg Main es Without 1.0) Without 2500 µg 5000 µg Main es Without 1.0) Without 1.0) Without 1.0) Without 1.0) Without 1.0) Without 1.0) Without 1.0) Without 1.0) Without 1.0) Without 1.0) Without 1.0) Mithout 1.0) Without 2.000 µg	<pre>KIC EFFECTS: metabolic activation: an incidence of chromosomal aberrations excluding gaps sentrations from 625 to 5000 µg/ml ranged from 1.5% to hd was comparable to control rates and within the local control range of 0 to 5%. There was no dose related se in chromosomal aberrations. No polyploidy was noted. but metabolic activation: The mean incidence of somal aberrations excluding gaps at concentrations from 5000 µg/ml ranged from 1.0% to 3% and was comparable to a rates and within the historical control range of 0 to ere was no dose related increase in chromosomal clons. No polyploidy was noted. Bitive and negative controls gave the expected results ere within the ranges of the laboratory and consitent hose reported in the literature. C INDEX: :: : : : : : : : : : : : : : : : : :</pre>			

	DATE: 21.01.200
	STATISTICAL RESULTS: The incidence of chromosomal aberrations (excluding gaps) was not significantly different from the controls with and without metabolic activations at all tested dose levels using Fisher exact test ($P \leq 0.05$). The positive controls induced a statisitcally significant increase in chromosomal aberrations excluding gaps.
Test condition:	Cell culture: Human peripheral blood was obtained by venipuncture from healthy donors without medication and collected in heparinised vessels. 0.5 ml samples of whole blood were added to tubes containing 5 ml of complete culture medium and incubated at 37 °C with occasional shaking. Solucet: DMSO
	Negative control: Solvent: DMSO
	Positive control: Mitomycin C in the absence of metabolic activation (0.1 and 0.2 µg/ml medium), cyclophosphamide in the presence of metabolic activation (10 to 20 µg/ml medium). Metabolic activation system: Postmitochondrial (S9) fraction of rats treated with Arochlor 1254
	With concentrations from 10 to 5000 µg/ml medium with and without metabolic acitvation, 48 h after culture establishment, 24 h incubation. Examination of 1 slide per culture, 1000 lymphocytes per culture. Calculation of mitotic index. Main study:
	Experiment 1: The test item or test item plus S9 mix was added to the the cultures after 48 h of culture and incubated for 4 h at 37 °C.
	After centrifugation and washing the resuspended cell pellet was incubated for futher 20 h in the dark. Colcemid was added to arrest cell division and the cells incubated for a further 2 h. The cells were harvested, fixed in freshly prepared methanol: glacial acetic acid (4: 1) and slides prepared.
	Experiment 2: With S9: same procedure as experiment 1.
	In the absence of S9 a continuous treatment for 24 h was performed. After centrifugation and washing the resuspended cell pellet was incubated for futher 20 h in the dark. Colcemid was added to arrest cell division and the cells
	incubated for a further 2 h. The cells were harvested, fixed in freshly prepared methanol: glacial acetic acid (4: 1) and slides prepared.
	All cultures were run in duplicate using blood from a different donor.
	For each treatment and culture 100 metaphases per plate were examined.
	For the determination of cytotoxicity 1000 cells were scored and the mitotic index determined as percentage of cells in metaphase.
	Statistical evaluation: Fisher Exact Test.
Test substance:	Dimethyl malonate, purity: 99.8%.
Reliability:	(1) valid without restriction
Flag:	Material Safety Dataset, Critical study for SIDS endpoint

5. TOXICITY

17-AUG-2004

(23)

MALONIC ACID DIESTERS

ID: 105-53-3

OECD SIDS MALONIC ACID DIESTERS 5. TOXICITY ID: 105-53-3 DATE: 21.01.2005 Type: Ames test Salmonella typhimurium TA 98, TA 100, TA 1535, TA 1537 System of testing: Concentration: 481 ug/plate (maximal concentration) Metabolic activation: with and without Result: negative Method: other: According to Ames et al., Mut. Res. 31(6), 347-364 Year: 1975 GLP: no data Test substance: no data solvent: ethanol Remark: Ames test Type: System of testing: Salmonella typhimurium TA 97, TA 98, TA 100 Concentration: 5000 µg/plate (maximal concentration) **Cytotoxic Concentration:** > 5000 µg/plate Metabolic activation: with and without Result: negative Method: other: no data GLP: yes Test substance: as prescribed by 1.1 - 1.4 GENOTOXIC EFFECTS: Result: - With metabolic activation: negative - Without metabolic activation: negative Up to 5000 µg/plate increase of revertants per plate that ecedded the control rate of revertants by a factor of 2 or more was observed in any of the strains tested with and without metabolic activation. All positive and negative controls gave the expected results that were within the ranges of the laboratory and consitent with those reported in the literature. CYTOTOXIC CONCENTRATION: - With metabolic activation: > 5000 µg/plate - Without metabolic activation: > 5000 µg/plate No cytotoxicity was observed up to the highest concetration level. Test condition: SYSTEM OF TESTING - Species/cell type: Salmonella typhimurium TA 97, TA 98, ТΑ 100 - Metabolic activation system: Aroclor-1254 induced male Wistar rat liver post-mitochondrial fraction (S-9) Preexperiment for toxicity in S. Typhimurium TA 100. Solvent: Dimethylulfoxide (DMSO) - Number of replicates: One experiment 3 replicates per concentration and strain. - Application: - Positive and negative control groups: Positive controls: Without S9: TA98: 2-Nitrofluorene (50 µg/plate) TA100: Sodium azide (2 µg/plate) TA97: 9-Aminoacridine (50 µg/plate) With S9: All strains: 2-Aminoanthracene (5 µg/plate) Negative control: solvent: DMSO CRITERIA FOR EVALUATING RESULTS: A two-fold increase in revertants compared to cocurrent negative controls indicates a positive response.

OECD SIDS		MALONIC ACID DIESTERS
5. TOXICITY		ID: 105-53-3
		DATE: 21.01.2005
	STATIS exceed analys	FICAL METHODS: If two-fold increase is reached or ed: Analysis of variance (F-Test) and regression is.
Reliability:	(2) v 3 stra	alid with restrictions ins only tested
Flag:	Critic	al study for SIDS endpoint
23-JUL-2004		(44)
Type: System of testing Metabolic activa Result:	g: tion:	Escherichia coli reverse mutation assay Escherichia coli Sd-4-73 without negative
Method: Year: GLP: Test substance:	other: 1958 no no data	Paper disk method with streptomycin-dependent E. coli a
		(92)
Type: System of testing	J:	Ames test Salmonella typhimurium TA98, TA 100, TA 1535, TA 1537, TA 1538
Concentration: Cytotoxic Concent Metabolic activat Result:	tration:	5000 µg/plate (maximal concentration) > 5000 µg/plate with and without negative
Method: Year:	Direct 1984	ive 84/449/EEC, B.14
GLP: Test substance:	yes as pre	scribed by 1.1 - 1.4
Result: Test condition:	GENOTO - With number observe All po that we with to CYTOTO - With - With No cyte concen SYSTEM - Spec	<pre>KIC EFFECTS: and without metabolic activation: No increase in the of revertants per plate compared to controls was ed in any of the tested strains and concentrations. sitive and negative controls gave the expected results ere within the ranges of the laboratory and consitent nose reported in the literature. KIC CONCENTRATION: metabolic activation: > 5000 µg/plate but metabolic activation: > 5000 µg/plate btration of 5000 µg/plate. OF TESTING ies/cell type: Salmonella typhimurium TA 1535,</pre>
	TA 1 - Meta liver - Solv - Numb incorp experin - Conc - Posi - Nega - Posi withou	<pre>b37, TA 1538, TA 98, TA 100 polic activation system: phenobarbiturate induced rat S9 fraction ent: DMSO er of replicates: 2 main studies, one plate pration, one pre-incubation test. Three replicates per ment. entrations tested: 8, 40, 200, 1000, 5000 µg/plate tive and negative controls: tive control: solvent DMSO tive control: t S9 mix:</pre>

OECD SIDS					MALON	IC ACID DIESTERS
5. TOXICITY						ID: 105-53-3
						DATE: 21.01.2005
	- TA 98, - TA 100, - TA 1537 With S9 m Cyclophos	1538: Nitrof 1535 Sodium : Aminocridir ix: phamide (93-1	luorene azide ne 114 µg/y	(111-30 (295-37 (78-194 plate)	4 μg/plat 2 μg/plat μg/plate	.e) .e) :)
	- Pre-inc STATISTIC	ubation time: AL METHODS: N	: 30 min Mean val	n at 37 lues and	°C standard	l deviations by
Reliability:	(1) vali	d without res	strictio	on		
Flag: 23-JUL-2004	Material	Safety Datase	et, Crit	tical st	udy for S	IDS endpoint (50)
5.6 Genetic Toxic	ity 'in Vi	vo'				
5.7 Carcinogenici	ty					
5.8.1 Toxicity to	Fertility					
Туре:		other: OECD (with the Rep	Combined	d Repeat on/Devel	ed Dose T opmental	'oxicity Study Screening Test
Species:		rat				
Sex:		male/female				
Strain: Route of administ	ration:	MISLAI				
Exposure Period:		39 to 51 days	s (from	14 davs	before m	ating to day 3 of
-		lactation)	Υ.	L.		5 1
Frequency of trea Premating Exposur	tment: e Period	daily, 7 days	s per we	eek		
male:		2 weeks				
IEMALE:		∠ weeks Males• 39 day	vs fom:	alos 51	+- 7 davs	recovery
Duracion or cest.		aroups: 39 da	avs, remo avs	1162 21	i / uays	, iecovery
Doses:		100, 300, 100	20 mg/kg	g bw		
Control Group:		yes, concurre	ent veh:	icle		
NOAEL Parental:	:	= 300 mg/kg k	WC			
NOAEL F1 Offsprin	g:	> 1000 mg/kg	bw		a an fant	
Result:		NO treatment	related	1 ellect	s on iert	llity
Method:	OECD comb toxicity	ined repeated screening tes	d dose a st	and repr	oductive/	developmental
Year:	2004					
GLP: Test substance:	yes other TS:	Dimethyl ma	alonate			
Method:	OECD Comb Screening	ined Repeated Test.	d Dose a	and Repr	oduction/	Developmental
Result:	For effec	ts on parent	animals	s: See s	ection 5.	4, repeated dose
	toxicity.	·				
	Reproduct	ive results				
	Males. al	l dose arouns	s: 100%			
	Females,	all dose groups		08		
	- Duratio	n of gestatio	on:			
	Dose (mg/	kg bw) I	Duration	n (days)	+- SD	
	0		22 +-	- 0.3		
	100 300		23 +-	- U.5 - 0 5		
	000		2J F	0.0		

OECD SIDS 5. TOXICITY

MALONIC ACID DIESTERS ID: 105-53-3 DATE: 21.01.2005

1000 22 +- 0.4 - Gestation index: 100 % in all dose groups. - Parturition: 100 % in all dose groups - Effects on sperm: No treatment related effects - Number of implantations: Dose (mg/kg bw) No. Percent 0 12.3 88.1 100 84.7 11.8 300 12.0 88.9 1000 11.6 88.6 - Number of corpora lutea: Dose (mg/kg bw) No. 0 14.0 13.9 100 300 13.5 1000 13.1 Percentage pre-implantation loss Dose (mg/kg bw) Percent 0 11.9 100 15.3 300 11.1 1000 11.4 Percentaga post-implantation loss Dose (mg/kg bw) Percent 0 8.1 100 19.1 300 10.4 1000 15.1 Litter results: - Number of pups born Dose (mg/kg bw) No. 103 0 100 76 300 86 1000 84 No of live litters Dose (mg/kg bw) No. 0 9 100 8 300 8 1000 8 Mean litter size index Dose (mg/kg bw): 0 11.4 9.5 100 300 10.8 1000 10.5 Mean viable litter size: Dose (mg/kg bw): 0 11.3 100 9.5 300 10.8 1000 9.9 No. of pups alive on day 0 Dose (mg/kg bw) No. 0 102 100 76 300 86

1000 79 Live birth index: Dose (mg/kg bw) 0 99 100 100 300 100 1000 94 Sex ratio at birth (no of males/total number born x 100) Dose (mg/kg bw) 46.6 0 100 60.5 300 54.7 1000 46.4 24 hour survival: 100% all dose groups. No of pups alive on day 4 of lactation Dose (mg/kg bw) No. 0 101 100 75 83 300 1000 78 Day 4 survival index: Dose (mg/kg bw): 0 99.0 100 98.7 300 96.5 1000 98.7 Sex ratio day 4 Dose (mg/kg bw): 44.7 0 100 60.5 300 53.5 1000 41.7 No of pups dead or cannibalised up to day 4 Dose (mg/kg bw): \cap 2 100 1 300 3 1000 6 Observations and necropsy findings on pups: No treatment related effects were observed. STATISTICAL RESULTS: Fertility indices for males and females were not statistically different from controls in all dose groups. In the low dose group post implantation loss and consequently the percentage of live pups born was significantly reduced compared to controls (P <= 0.05). These changes were considered incidental and not treatment related as the effects were not observed at the higher dose groups. No statistical significant differences from controls were observed for the number of pregnancies, number littered, number of live litters, mean litter size, mean viable litter size, sex ratio at birth, number of pups dead at first observation or day 2 to 4, number of live pups on day 0,3 and 4 and the associated survival indices, external abnormalities of life and dead pups at all dose levels. A significantly higher percentage of male rats in the low dose group on day 4 was considered incidental and not treatment related as a similar change was not found in the higher dose groups. The mean number and the mean weight of male and female (and

OECD SIDS					
5. TOXICITY					
	hoth	SAVAS	combined)	פמוומ	during

MALONIC ACID DIESTERS ID: 105-53-3 DATE: 21.01.2005

Test condition:	<pre>both sexes combined) pups during different intervals of the lactation period were not statistically significantly different from controls except from a significantly lower (P <= 0.05) mean number of female pups on lactation day 4 in the low dose group which was considered incidental and not related to treatment. TEST ORGANISMS - HSDCpb-WU rats - Age at start of treatment: 11-12 weeks - Weight at study initiation: males: 377-379 g, females: 210-219 g - Number of animals: Main group: 10 m, 10 f, recovery groups: 5 m, 5 f ADMINISTRATION / EXPOSURE - Duration of test/exposure: Males: Test groups: 39 days, male recovery group: 39 exposure days, 45 test days. Females: Treatment groups: 51 +- 7 days, recovery group: 39 exposure days, 45 test days. - Type of exposure: Oral gavage - Post exposure period: 14 days</pre>
	 Vehicle: Double distilled water Concentration in vehicle: 10 mg/ml, 30 mg/ml, 100 mg/ml Total volume applied: 10 ml/kg bw Doses: 100, 300, 1000 mg/kg bw Treatment: Male rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period and approximately 2 weeks post mating.
	Female rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period, pregnancy and up to lactation day 4. For the high dose recovery group animals (males and females) the test item was administered once daily, 7 days per week by gavage throughout the treatment period.
	 MATING PROCEDURES: Male/female ratio: 1:1 per cage. Cohabitation period until evidence of pregnancy (sperm in vaginal smear) was observed. CLINICAL OBSERVATIONS AND FREQUENCY: Daily observations for appearance, behaviour, clinical signs and preterminal deaths. Females were observed for signs of difficult and prolonged parturition. Twice daily: morbidity and mortality. Detailed clinical observations: once before exposure and at least once per week thereafter. Signs included were changes in skin, fur, eyes, mucous membranes, occurrence of secretions or excretions and autonomic activity, changes in gait, posture, response to handling, behavioural changes, difficult or prolonged parturition.
	Functional observation battery (FOB): Examinations were performed in randomly selected 5 animals of each group at the end of the dosing period for males and during the lactation period for females and included homecage observations, handling observations, open field tests, sensory observations, neuromuscular observations and physiological observations (body temperature).

Body weights were recorded at the beginning of the study, at

least weekly thereafter and at termination. All dams were weighed on gestation days 0, 7, 14 and 20 and lactation days 0 and 4. Food consumption was recorded weekly.

The fertility index for males and females was determined.

LITTER DATA: All pubs from each litter were examined for any external deformities, litter size and sex distribution was dertermined. Pup weights were recorded on day 0 and 4. All pups were examined for malformations and subject to gross pathological examination. Pup survival index up to lactation day 4 was determined.

HAEMATOLOGY/CLINICAL CHEMISTRY: Standard haematological and clinical chemistry parameters were determined at the end of the pre-mating period and the recovery period in 5 randomly selected males and females of each group.

ORGAN WEIGHTS: Organ weights of liver, adrenals, kidneys, thymus spleen, brain and heart were determined of 5 males and females of each group. Testes and epididymis weights of all adult males of each group were also determined.

GROSS PATHOLOGY. All adult animals and pups were examined for any structural abnormalities and pathological changes.

HISTOPATHOLOGY:

The following tissues of 5 males and females of the control and high dose group as well as all animals of the recovery and recovery control groups were examined microscopically: all gross lesions, brain, spinal cord, gastrointestinal tract, liver, kidney, adrenals, spleen, heart, thymus, thyroid, trachea, lungs, testes (fixed in Bouins fluid), epididymes (fixed in Bouins fluid), ovaries, uterus, seminal vesicles, coagulating glands, prostate, urinary bladder, axillary lymph nodes, mesenteric lymph nodes, sciatic nerve, femur with marrow, bone marrow smear. Stages of spermatogenesis and interstitial testicular structure in male gonads were determined additionally. Livers of 5 males and females in the mid and low dose groups and testes of 5 males of the mid and low dose groups were also examined.

STATISTICAL ANALYSIS: Dunnett's t-Test: body weight, body weight change, food intake, haematology, clinical chemistry, organ weight, FOB, gestation length, litter size, No. corpora lutea, No. implantation. Z-Test/Student's t-Test: Mating performance, conception rate, fertility index, gestation index, live birth index, viability index, sex ratio, pup survival data, No. littered, No. dead pups, No. live pups, Pup survival data, Pre- and Post-implantation loss. Histopathological data. t-Test/ANOVA: dose correlation Dimethyl malonate, purity: 99.8%. Test substance: Reliability: (1) valid without restriction Flag: Material Safety Dataset, Critical study for SIDS endpoint 11-AUG-2004 (19) 5. TOXICITY

5.8.2 Developmental Toxicity/Teratogenicity

Species: Sex: male/female rat Strain: Wistar Route of administration: gavage 39 to 51 days (from 14 days before mating to day 3 of Exposure period: lactation) daily, 7 days per week Males: 39 days, females 51 +- 7 days, recovery Frequency of treatment: Duration of test: groups: 39 days 100, 300, 1000 mg/kg bw Doses: yes, concurrent vehicle Control Group: NOAEL Maternal Toxity: = 300 mg/kg bwNOAEL Teratogenicity: >= 1000 mg/kg bw Method: OECD Combined Repeated Dose and Reproduction/Developmental Screening Test. Result: For effects on parent animals: See section 5.4, repeated dose toxicity. Reproductive results - Fertility index: Males, all dose groups: 100% Females, all dose groups: 100% - Duration of gestation: Dose (mg/kg bw) Duration (days) +- SD 0 22 +- 0.3 23 +- 0.5 100 300 23 +- 0.5 1000 22 +- 0.4 - Gestation index: 100 % in all dose groups. - Parturition: 100 % in all dose groups - Effects on sperm: No treatment related effects - Number of implantations: Dose (mg/kg bw) No. Percent 0 12.3 88.1 100 84.7 11.8 12.0 300 88.9 1000 11.6 88.6 - Number of corpora lutea: Dose (mg/kg bw) No. 14.0 0 100 13.9 300 13.5 1000 13.1 Percentage pre-implantation loss Dose (mg/kg bw) Percent 0 11.9 100 15.3 300 11.1 1000 11.4 Percentage post-implantation loss Dose (mg/kg bw) Percent 0 8.1 100 19.1 300 10.4 1000 15.1 Litter results:

- Number of pups born Dose (mg/kg bw) No. 103 0 100 76 300 86 1000 84 No of live litters Dose (mg/kg bw) No. 0 9 100 8 300 8 1000 8 Mean litter size index Dose (mg/kg bw): 0 11.4 100 9.5 300 10.8 1000 10.5 Mean viable litter size: Dose (mg/kg bw): 0 11.3 100 9.5 300 10.8 9.9 1000 No. of pups alive on day 0 Dose (mg/kg bw) No. 0 102 100 76 300 86 1000 79 Live birth index: Dose (mg/kg bw) 0 99 100 100 300 100 1000 94 Sex ratio at birth (no of males/total number born x 100) Dose (mg/kg bw) 0 46.6 100 60.5 300 54.7 1000 46.4 24 hour survival: 100% all dose groups. No of pups alive on day 4 of lactation Dose (mg/kg bw) No. 0 101 100 75 300 83 1000 78 Day 4 survival index: Dose (mg/kg bw): 99.0 0 100 98.7 300 96.5 1000 98.7 Sex ratio day 4 Dose (mg/kg bw): 0 44.7 100 60.5
300 53.5 1000 41.7 No of pups dead or cannibalised up to day 4 Dose (mg/kg bw): 0 2 100 1 300 3 1000 6 Observations and necropsy findings on pups: No treatment related effects were observed. STATISTICAL RESULTS: Fertility indices for males and females were not statistically different from controls in all dose groups. In the low dose group post implantation loss and consequently the percentage of live pups born was significantly reduced compared to controls (P <= 0.05). These changes were considered incidental and not treatment related as the effects were not observed at the higher dose groups. No statisitcal significant differences from controls were observed for the number of pregnancies, number littered, number of live litters, mean litter size, mean viable litter size, sex ratio at birth, number of pups dead at first observation or day 2 to 4, number of live pups on day 0,3 and 4 and the associated survival indices, external abnormalities of life and dead pups at all dose levels. A significantly higher percentage of male rats in the low dose group on day 4 was considered incidental and not treatment related as a similar change was not found in the higher dose groups. The mean number and the mean weight of male and female (and both sexes combined) pups during different intervals of the lactation period were not statisitcally significantly different from controls except from a significantly lower (P <= 0.05) mean number of female pups on lactation day 4 in the low dose group which was considered incidental and not related to treatment. Test condition: TEST ORGANISMS - HSDCpb-WU rats - Age at start of treatment: 11-12 weeks - Weight at study initiation: males: 377-379 g, females: 210-219 g - Number of animals: Main group: 10 m, 10 f, recovery groups: 5 m, 5 f ADMINISTRATION / EXPOSURE - Duration of test/exposure: Males: Test groups: 39 days, male recovery group: 39 exposure days, 45 test days. Females: Treatment groups: 51 +- 7 days, recovery group: 39 exposure days, 45 test days. - Type of exposure: Oral gavage - Post exposure period: 14 days - Vehicle: Double distilled water - Concentration in vehicle: 10 mg/ml, 30 mg/ml, 100 mg/ml - Total volume applied: 10 ml/kg bw - Doses: 100, 300, 1000 mg/kg bw Treatment: Male rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period and approximately 2 weeks post mating. Female rats: The test item was administered once daily, 7 days

per week by gavage for 2 weeks prior to mating, during the mating period, pregnancy and up to lactation day 4. For the high dose recovery group animals (males and females) the test item was administered once daily, 7 days per week by gavage throughout the treatment period. MATING PROCEDURES: Male/female ratio: 1:1 per cage. Cohabitation period until evidence of pregnancy (sperm in vaginal smear) was observed. CLINICAL OBSERVATIONS AND FREQUENCY: - Daily observations for appearance, behaviour, clinical signs and preteerminal deaths. Females were observed for signs of difficult and pronlonged parturition. - Twice daily: morbidity and mortality. - Detailed clinical observations: once before exposure and at least once per week thereafter. Signs included were changes in skin, fur, eyes, mucous membranes, occurrence of secretions or excretions and autonomic activity, changes in gait, posture, response to handling, behavioural changes, difficult or prolonged parturition. Functional observation battery (FOB): Examinations were performed in randomly selected 5 animals of each group at the end of the dosing period for males and during the lactation period for females and included homecage observations, handling observations, open field tests, sensory observations, neuromuscular observations and physiological observations (body temperature). Body weights were recorded at the beginning of the study, at least weekly thereafter and at termination. All dams were weighed on gestation days 0, 7, 14 and 20 and lactation days 0 and 4. Food consumption was recorded weekly. The fertility index for males and females was determined.

LITTER DATA: All pups from each litter were examined for any external deformities, litter size and sex distribution was dertermined. Pup weights were recorded on day 0 and 4. All pups were examined for malformations and subject to gross pathological examination. Pup survival index up to lactation day 4 was determined.

HAEMATOLOGY/CLINICAL CHEMISTRY: Standard haematological and clinical chemistry parameters were determined at the end of the pre-mating period and the recovery period in 5 randomly selected males and females of each group.

ORGAN WEIGHTS: Organ weights of liver, adrenals, kidneys, thymus spleen, brain and heart were determined of 5 males and females of each group. Testes and epididymis weights of all adult males of each group were also determined.

GROSS PATHOLOGY. All adult animals and pups were examined for any structural abnormalities and pathological changes.

HISTOPATHOLOGY:

The following tissues of 5 males and females of the control and high dose group as well as all animals of the recovery and recovery control groups were examined microscopically: all

OECD SIDS	MALONIC ACID DIESTERS
5. TOXICITY	ID: 105-53-3
	DATE: 21.01.2005
	gross lesions, brain, spinal cord, gastrointestinal tract, liver, kidney, adrenals, spleen, heart, thymus, thyroid, trachea, lungs, testes (fixed in Bouins fluid), epididymes (fixed in Bouins fluid), ovaries, uterus, seminal vesicles, coagulating glands, prostate, urinary bladder, axillary lymph nodes, mesenteric lymph nodes, sciatic nerve, femur with marrow, bone marrow smear. Stages of spermatogenesis and interstitial testicular structure in male gonads were determined additionally. Livers of 5 males and females in the mid and low dose groups and testes of 5 males of the mid and low dose groups were also examined.
Test substance:	<pre>STATISTICAL ANALYSIS: Dunnett's t-Test: body weight, body weight change, food intake, haematology, clinical chemistry, organ weight, FOB, gestation length, litter size, No. corpora lutea, No. implantation. Z-Test/Student's t-Test: Mating performance, conception rate, fertility index, gestation index, live birth index, viability index, sex ratio, pup survival data, No. littered, No. dead pups, No. live pups, Pup survival data, Pre- and Post-implantation loss. Histopathological data. t-Test/ANOVA: dose correlation Dimethyl malonate, purity: 99.8%.</pre>
Reliability: Flag:	(1) valid without restriction Material Safety Dataset, Critical study for SIDS endpoint
11-AUG-2004	(19)

5.8.3 Toxicity to Reproduction, Other Studies

5.9 Specific Investigations

5.10 Exposure Experience

5.11 Additional Remarks

Type: Biochemical or cellular interactions

Remark: Administration of 1000 mg diethyl malonate/kg b.w. s.c. to rats decreased the hepatic glutathione concentration. 1 h after application the value approximated 60 % of the control value, and this new steady state was maintained for about 2.5 h. In fed rats the depletion of glutathione increased the rate constant of glutathione turnover by 319 %. In contrast, administration of diethyl malonate to fasted rats resulted in only a 76 % increase in the fractional rate of glutathione turnover.

(59)

Type: Cytotoxicity

Remark: In vitro incubation of ascites sarcoma BP8 cells with 1 mM diethyl malonate for 48 h led to 5 % inhibition of growth rate.

OECD SIDS	MALONIC ACID DIESTERS
5. TOXICITY	ID: 105-53-3 DATE: 21.01.2005
	(80)
Туре:	Cytotoxicity
Remark:	In vitro incubation of human diploid embryonic lung fibroblasts (MRC-5) with 25 mM diethyl malonate for 30 min did not lead to any membrane damage.
	(93)
Туре:	Cytotoxicity
Remark:	In vitro incubation of isolated brown fat cells from adult hamsters with 1 mM diethyl malonate for 5 min led to 59 % inhibition of the noradrenaline induced respiration.
	(77)
Туре:	Cytotoxicity
Remark:	In vitro incubation of chicken tracheal segments with 5 mM diethyl malonate for 60 min did not inhibit the ciliary activity.
Туре:	Metabolism
Remark:	In vitro incubation of 10 umoles diethyl malonate with 2 ug purified lipase from pork adipose tissue for 20 min yielded 1.9 umoles acid (no further specification; 37 degree C; pH 7.0).
10-AUG-2004	(64)
Type:	Metabolism
Remark:	In vitro incubation of 29.5 mg diethyl malonate/ml with 0.5 mg alpha-Chymotrypsin/ml for 20 h yielded 73 % monoethyl malonate; 25 degree C; pH 7.2 (enzyme source not specified).
10-AUG-2004	(15)
Туре:	other: dermal adsorption in vitro
Remark:	Percentage of the applied radioactive dose recovered in the acceptor cell, in the skin and on the skin surface over 24 h: diethyl malonate in the acceptor cell: $0.2 - 1.6$ %; diethyl malonate in the skin: $0.2 - 0.9$ %; diethyl malonate in the skin surface: $0.6 - 0.7$ %. The skin mediated hydrolysis of radiolabelled diethyl malonate to monoethyl malonate and malonic acid amounted to 15 - 35 % of the applied radioactivity dose, corrected for hydrolysis products in the starting solution. Percentage of hydrolysis products recovered in the acceptor cell: $20 - 21$ % of the applied dose; percentage of hydrolysis products recovered in the skin and on the skin surface: $3 - 4$ % of the applied dose each. The maximum penetration rate of hydrolysis products was reached after 5 h and amounted to ca. 2 % of the applied dose/h.

OECD SIDS	MALONIC ACID DIESTERS
5. TOXICITY	ID: 105-53-3
	DATE: 21.01.2005
	Preincubation of skin samples for 5 min in an 80 degree C water bath increased the penetration rate of diethyl malonate and decreased the amount and penetration rate of hydrolysis products. The total recovery of radioactivity amounted to 50 - 80 % of the applied dose. Test conditions: 37 degree C; acceptor cell fluid flow rate: 5 ml/h; acceptor cell fluid collection: hourly between hours
	I and IZ, 25 and 24, binourly from nours 12 to 22
18-OCT-2004	
Туре:	other: inhibition of tumour growth
Result:	A 27% inhibition of tumour growth compared to controls was seen for grafted tumours and a 25% inhibition for spontaneous carcinoma.
Test condition:	Groups of 5 Dilute Brown mice either grafted with sarcoma or with a primary tumor induced by injection of 1 mg methylcholanthrene recieved daily doses of 1/4 of the LD50 (40 mg/kg bw) by gavage 6d/week for 14 days.

10-AUG-2004

(6)

- 6. REFERENCES
 - Admans G, Takahashi Y, Ban S, Kato H, Abe H, Hanai S (2001). Artificial neural network for predicting the toxicity of organic molecules. Bulletin of the Chemical Society of Japan 74 (12), 2451-2461.
 - (2) Agarwal PN and Puvathingal JM (1965). Inhibition of Growth and Proteolytic Activity of the Fungus Ctenomyces by Ethyl Malonate J. Sci. Technol. 3, 76.
 - (3) Arnett EM, Harrelson Ja Jr. (1987). Ion Pairing and Reactivity of the Enolate Anions. VIII Enolisation, Hydrogen-Bonding and the Correlation of Pka's with Rates of Alkylation and Redox Potentials of some ß-Di and Tri-Carbonyl Compounds in Dimethylsulfoxide. Gazz. Chem. Ital. 117, 237-243.
 - (4) Beck AB, Macbeth AK, Pennycuick SW (1932). Surface tension Determinations of Malonic Esters, and the Constitutive Nature of the Parachor. J.Chem.Soc. 2258-2264.
 - (5) BIA, Berufsgenossenschaftliches Institut für Arbeitssicherheit, GESTIS-Database (2nd Edition), Hauptverband der gewerblichen Berufsgenossenschaften (HVBG) (Editor), Sankt Augustin, 04.01.2002
 - (6) Boyland E (1940). 142. Experiments on the Chemotherapy of Cancer 4. Further Experiments with Aldehydes and their Derivatives. Biochemical Journal 34, 1196-1201.
 - (7) Broderius SJ, Kahl MD, Hoglund MD (1995). Use of joint toxic response to define the primary mode of action for diverse industrial organic chemicals. Environ. Toxicol. Chem. 14 (9), 1591-1605
 - (8) Brooke LT, Call DJ, Geiger DL, and Northcott CE (1984). Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales Promelas). Volume 1. Ed. by LT Brooke, DJ Call, DL Geiger, and CE Northcott. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, 241-242. (also cited in Aquire)
 - (9) Brühl JW (1894). Studien über Tautomerie. Journal fuer Praktische Chemie/Chemiker-Zeitung 2 (50) 119-221.
 - (10) Call DJ, Brooke LT, Ahmad N, Vaishnav DD (1981). Aquatic Pollutant Hazard Assessments and Development of a Hazard Prediction Technology by Quantitative Structure-Activity Relationships. Center for Lake Superior Environmental Studies, University of Wisconsin.
 - (11) Cataldo DA, Ligotke MW, Harvey SD, Follows RJ, Li SW, Van Voris P and Wentsel RS (1990). Acute Environmental Toxicity and Persistence of DEM, A Chemical Agent Simulant: Diethyl Malonate, NTIS/DE 91009248, 61 pp.; from: Energy Res. Abstr. No. 13484
 - (12) Chekhovskaya EV et al. (1973). Probl. Okr. Ispol''z. Vod. 3, 85-88

6. REFERENCES

- (13) Chellquist EM and Reifenrath WG (1988). Distribution and Fate of Diethyl Malonate and Diisopropyl Fluorophosphate on Pig Skin in Vitro. J. Pharm. Sci. 77, 850-854.
- (14) CIVS, Chemikalieninformationssystem zu verbraucherrelevanten Stoffen, (2003). DIMDI Bundesinstitut für Risikobewertung (BfR), Berlin, Revision date 29.12.2000, Printing date 30.04.2003
- (15) Cohen SG and Crossley J (1964). Kinetics of Hydrolysis of Dicarboxylic Esters and Their alpha-Acetamido Derivatives by alpha-Chymotrypsin. J. Am. Chem. Soc. 86, 4999-5003.
- (16) Daubert TE and Danner RP (1989) as quoted in: SRC PhysProp Database, 17.06.2003
- (17) Degussa (2004). Degussa AG personal communication, 4.10.2004
 production process and use of diethylmalonat.
- (18) Degussa (2004g). Degussa AG, Dr. H. Brachhold personal communication on the evaluation of the hydrolysis studies with DMM and DEM of 15.10.2004.
- (19) Degussa AG (2003), unpublished Report. Combined Repeated Dose Toxicity study with Reproduction/Developmental Screening Test by Gavage with Dimethyl malonate in Wistar Rats. Degussa AG REG. No. 2003-0146-DGT.
- (20) Degussa AG (2003), unpublished report. Estimation of the Henry's Law Constant of Diethyl malonate CAS-No.: 105-53-3 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0412-DKB.
- (21) Degussa AG (2003), unpublished report. Estimation of the Photodegradation of Diethyl malonate CAS-No.: 105-53-3 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0444-DKB.
- (22) Degussa AG (2003), unpublished report. Estimation of the Soil or Sediment Adsorption Coefficient (Koc) of Diethyl malonate CAS-No.: 105-53-3 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0430-DKB.
- (23) Degussa AG (2003), unpublished Report. In vitro assessment of the clastogenic activity of Dimethyl malonate in cultured human peripheral lymphocytes. Degussa AG REG. No. 2003-0150-DGM.
- (24) Degussa AG (2004), unpublished report. Determination of the abiotic degradation (hydrolysis as a function of pH) of Diethyl malonate (DEM) in accordance with EEC-Guideline C.7 Degussa AG-Reg-Nr.: 2003-0348-DGO.
- (25) Degussa AG (2004), unpublished report. Estimation of the Equilibrium Partitioning Characteristics in the Environment of Diethyl malonate CAS-No.: 105-53-3 by Mackay Calculation (Level I) (V2.11 Model). Degussa AG-Reg-Nr.: 2004-0182-DKB.
- (26) Degussa AG (2004), unpublished report. Estimation of the

Equilibrium Partitioning Characteristics in the Environment of Diethyl malonate, CAS: 105-53-3 by Mackay Calculation (Level III). Degussa AG-Reg-Nr.: 2004-0178-DKB.

- (27) Degussa AG (2004), unpublished report. Estimation of the Partition coefficient (n-Octanol/Water) of Diethyl malonate CAS-No.: 105-53-3 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation). Degussa AG-Reg-Nr.: 2004-0180-DKB.
- (28) Degussa AG (2004). Safety Data Sheet, "Diethylmalonat (DEM)". Version 4.4, Revision date 08.07.2004, Printing date 26.07.2004
- (29) Degussa AG (2005). Personal communication of July 27, 2005.
- (30) Dill B, Heiker FR and Kirschning A (2003). Roempp Online, Version 2.0, Georg Thieme Verlag, Stuttgart
- (31) ECDIN Environmental Chemicals Data and Information Network Joint Research Centre (IRC) of the Commission of the European Communities (CEC), Ispra, Italien as quoted in DIMDI (2003) database: CIVS Chemikalieninformationssystem zu verbraucherrelevanten Stoffen (c) of the BfR Bundesinstitut für Risikobewertung. Document No. 0003010, Date 29.12.2000
- (32) Epstein W-L. (1975) unpublished results, as quoted in Opdyke DLJ (1976). Fd. cosmet. Toxicol., 14, 745-746.
- (33) Fassett DW (1963). Esters in Industrial Hygiene and toxicology, ed. by Patty, 2nd. Ed. Vol II p. 1867, as quoted in Opdyke DLJ, (1976). Fd. cosmet. Toxicol., 14, 745-746.
- (34) Fellows RJ, Harvey SD, Ligotke MW, Li SW, Cataldo DA and Van Voris P (1991). Environmental Persistence and Toxicity of Diethyl Malonate and Methyl Salicylate. Gov. Rep. Announcements and Index 20, NTIS/DE 91012775, 1-14.
- (35) Fischer R, Fischer G, Kren G (1966). Die kritische Mischungstemperatur in der Analytik. Pharmazeutische Zentralhalle fur Deutschland 105 (2), 73-87.
- (36) Florin J, Rutberg L, Curvall M and Enzell CR (1980). Screening of Tobacco Smoke Constituents for Mutagenicity using the Ames' Test. Toxicology 18, 219-232.
- (37) Freitag D, Lay JP and Korte F (1984). Environmental Hazard Profile - Test Results as Related to Structures and Translation into the Environment. QSAR Environ. Toxicol., 111-136.
- (38) Geiger D L, Northcott CE, Call DJ, and Brooke LT (1984). Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales Promelas). Volume 2. Ed. by DL Geiger, CE Northcott, DJ Call, and LT Brooke. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, 169-170. (Also cited in Aquire)
- (39) Geiger DL, Poirier SH, Brooke LT, and Call DJ (1984). Acute

6. REFERENCES

Toxicities of Organic Chemicals to Fathead Minnows (Pimephales Promelas). Volume 3. Ed. by DL Geiger, SH Poirier, LT Brooke, and DJ Call. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, 177-178. (Also cited in Aquire)

- (40) Gollakota KG and Halvorson HO (1963). Biochemical Changes Occurring during Sporulation of Bacillus Cereus T, J. Bacteriol. 85, 1386-1393.
- (41) Hansch C, Leo A, Hoekman D (1995). Exploring QSAR Hydrophobic, Electronic and Steric Constants 14, 201. In Heller S ed. ACS Professional Reference Book, American Chemical Society, Washington DC.
- (42) Hawkins GS and Reifenrath WG (1984). Development of an in Vitro Model for Determining the Fate of Chemicals Applied to Skin. Fundam. Appl. Toxicol. 4, S133-S144.
- (43) Hoigne J and Bader H (1983). Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water-I. Water Res. 17, 173-183.
- (44) Huels AG (1987). unpublished report No. DYN 1/S. Study to determine the ability of 18 compounds to induce mutation in three histidine-requiring strains of Salmonella typhimurium Degussa AG-Reg-Nr.: 87-0235-DKM.
- (45) Huels AG (1988). unpublished report F956. Goldorfentest nach DIN 38412 Teil 15. Degussa AG-Reg-Nr.: 88-0650-DKO.
- (46) Huels AG (1989). unpublished report No. 11/221. Acute Eye Irritation Test in the Rabbit. Degussa AG-Reg-Nr.: 89-0276-DGT.
- (47) Huels AG (1993), unpublished report PZ-93/09. Bestimmung der Bakterientoxizität von Malonsäurediethylester im Pseudomonas-Zellvermehrungs-Hemmtest (DIN 38412 Teil 8) Degussa AG-Reg-Nr.: 93-0232-DGO
- (48) Huels AG (1993). unpublished report DDA-26. Bestimmung der biologischen Abbaubarkeit von Malonsäurediethylester im DOC-DIE AWAY Test. Degussa AG-Reg-Nr.: 93-0240-DGO
- (49) Huels AG (1993). unpublished report DK-546. Bestimmung der Auswirkungen von Malonsäurediethylester auf das Schwimmverhalten von Daphnia magna (nach EG 84/449, Nov. 1989) Degussa AG-Reg-Nr.: 93-0234-DGO.
- (50) Huels AG (1993). Unpublished report No. AM-93/19. Bestimmung der Mutagenität von Malonsäurediethylester im Salmonella/Säuger- Mikrosomen-Mutagenitätstest nach Ames Mutagenitätstest nach der Richtlinie 84/449/EWG B.14. Degussa AG-Reg-Nr.: 93-0238-DGM
- (51) Huels AG (1993). unpublished report. AW-297. Bestimmung der Auswirkungen von Malonsäurediethylester auf das Wachstum von Scenedesmus subspicatus 86.81.SAG (Algenwachstumshemmtest nach Richtlinie 88/302/EWG). Degussa AG-Reg-Nr.:

93-0236-DGO.

- (52) Huels AG (1994), unpublished report RW 038. Bestimmung der Auswirkungen von Malonsäurediethylester auf Regenwürmer (Eisenia foetida foetida) (Toxizitätstest für Regenwürmer nach 88/302 EWG) Degussa AG-Reg-Nr.: 94-0234-DGO
- (53) Huels AG (1995). unpublished report PF-043. Bestimmung der Auswirkungen von Malonsäurediethylester auf das Wachstum terrestrischer Pflanzen (Pflanzenwachstumshemmtest nach OECD-Testguideline 208). Degussa AG-Reg-Nr.: 95-0322-DGO
- (54) Hughes DW (1981). Malonic acid and derivatives in: Kirk Othmer, Encyclopedia of chemical technology, 3rd ed. (14), 796-810.
- (55) Jacobi S, Hoffmann H (1989). Hydrolytic stability of Alkyl 1H-Benzotriazolcarboxylates. Arch. Pharm. (Weinheim) 322, 89-93.
- (56) Jaeger FM (1917). Über die Temperaturabhängigkeit der molekularen freien Oberflächenenergie von Flüssigkeiten im Temperaturbereich von -80 bis +1650 °C. Zeitschrift fuer Anorganische und Allgemeine Chemie 101, 1-214.
- (57) Jaworska JS, Hunter RS, Gobble JR, Schultz TW (1997) Structure-activity relationships for diesters: aquatic toxicity to Tetrahymena. pp. 277-283.
- (58) Koeppen AH, Mitzen EJ, Papandrea JD (1978). Metabolism of Malonic acid in Rat Brain after Intracerebral Injection. Journal of Neurochemistry 31 (3), 739-745.
- (59) Lauterburg BH and Mitchell JR (1982). In Vivo Regulation of Hepatic Glutathione Synthesis: Effects of Food Derivation of Glutathione Depletion by Electrophilic Compounds. Adv. Exp. Med. Biol. 136, 453-461.
- (60) Lecat (1928). Nouveaux Azeotropes Binaires. Ann. Soc. Scient. Bruxelles 48 I, 113-126.
- (61) Leo AJ (1978). Report on the Calculation of Octanol/Water Log P Values for Structures in EPA Files. as quoted in ISHOW (2003). CIS, Printing date 04.08.2003
- (62) Lide DR (2003). CRC Handbook of Chemistry and Physics. 84th Edition. CRC Press Boca Raton, London, New York, Washington, 2003-2004.
- (63) Loke W-K, U S-H, Lau S-K, Lim J-S, Tay G-S, Koh C-H (1999).
 Wet Decontamination-induced Stratum Corneum
 Hydration-Effects on the Skin Barrier Function to
 Diethylmalonate. Journal of Applied Toxicology 19, 285-290.
- (64) Lynn WS and Perryman NC (1960). Properties and Purification of Adipose Tissue Lipase. J. Biol. Chem. 235, 1912-1916.
- (65) MacPhee C and Ruelle R (1969). Lethal Effects of 1888 chemicals upon four species of fish from western North

America. University of Idaho Forest, Wildl. Range Exp. Station Bull. No. 3, Moscow, ID; 112 p. (also cited in Aquire)

- (66) Martin TM, Young DM (2001). Prediction of the Acute Toxicity (96-h LC50) of Organic Compounds to the Fathead Minnow (Pimephales promelas) Using a Group Contribution Method. Chemical Research in Toxicology 14 (10), 1378-1385.
- (67) Merck (2002), Safety Data Sheet accord. EU-Guideline 91/155/EWG, "Diethylmalonat zur Synthese", Revision date 15.08.2002, Printing date 29.08.2003
- (68) Meylan WM and Howard PH (1993) as quoted in: SRC PhysProp Database, 17.06.2003
- (69) Misra JN and Vijayaraghavan PK (1956). Ethyl Malonate An Inhibitor for Termite Cellulase. Curr. Sci. 25, 229-230.
- (70) Moreno (1975), unpublished report to RIFM, as quoted in Opdyke DLJ (1976). Fd. cosmet. Toxicol., 14, 745-746.
- (71) Morgan JLR and Chazal PM (1913). The Weight of Falling Drop and the Laws of Tate, XV. The Drop Weights of Certain Organic Liquids and the Surface Tensions and Capillary Constants Calculated from them. J.Amer.Chem.Soc. 35, 1821-1834.
- (72) Mumford SA, Phillips JWC (1950). The Physical Properties of Some Aliphatic Compounds. J.Chem.Soc. 75-84.
- (73) OECD (2004a). ICCA HPV dossier on methanol (CAS No. 67-56-1). OECD Agreed Conclusions and Recommendations. Available from http://cs3-hq.oecd.org/scripts/hpv
- (74) OECD (2004b). ICCA HPV dossier on ethanol (CAS No. 64-17-5). Final Draft. Available from http://cs3-hq.oecd.org/scripts/hpv .
- (75) O`Neil MJ, Smith A, Heckelman PE, Budavari S, (Editors) (2001). The Merck Index (13th Edition), Merck & Co., Inc. Whitehouse Station, NJ.
- (76) Palomaa MH, Mikkilä I (1942). Studien über ätherartige Verbindungen, XXVII. Mitteil.*): Trübe Phase bei Verbindungen mit Reaktionsminimum. Chemische Berichte 75, 1659-1667.
- (77) Petterson B, Curvall M and Enzell CR (1980). Effects of Tobacco Smoke Compounds on the Noradrenaline Induced Oxidative Metabolism in Isolated Brown Fat Cells. Toxicology 18, 1-15.
- (78) Petterson B, Curvall M and Enzell CR (1982). Effects of Tobacco Smoke Compounds on the Ciliary Activity of the Embryo Chicken Trachea In Vitro. Toxicology 23, 41-55.
- (79) Peyton GR, Gee CS, Bandy J and Maloney SW (1989). Catalytic-Competition Effects of Humic Substances on Photolytic Ozonation of Organic Compounds. Adv. Chem. Ser.

219, 639-661.

- (80) Pilotti A, Ancker K, Arrhenius E and Enzell C (1975). Effects of Tobacco and Tobacco Smoke Constituents on Cell Multiplication In Vitro. Toxicology 5, 49-62.
- (81) Pollak P (1978) Malonsäure und Malonsäure-Derivate, in: Ullmanns Encyclpädie der technischen Chemie, 4. Aufl. (16), 415-418, 422-423.
- (82) Posternak JM, Linder A and Vodoz CA (1969). Summaries of Toxicological Data. Food Cosmet. Toxicol. 7, 405-407.
- (83) Reifenrath WG, Chellquist EM, Shipwash EA and Jederberg WW (1984).
 Evaluation of Animal Models for Predicting Skin Penetration in Man, Fundam. Appl. Toxicol. 4, S224-S230.
- (84) Reifenrath WG, Mershon MM, Brinkley FB, Miura GA, Broomfield CA and Cranford HB (1984). Evaluation of Diethyl Malonate as a Simulant for 1,2,2-Trimethylpropyl Methylphosphonofluoridate (Soman) in Shower Decontamination of the Skin. J. Pharm. Sci. 73, 1388-1392.
- (85) Schatz A, Trelawny S, Schatz V and Mohan RR (1957). Metabolism of Esters by Streptomyces nitrificans. Proc. Soc. Exp. Biol. Med. 94, 702-705.
- (86) Schultz TW, Seward JR (2000). Dimyristoyl phosphatidylcholine/water partitioning-dependent modeling of narcotic toxicity to Tetrahymena pyriformis. Quantitative Structure-Activity Relationships 19 (4), 339-344.
- (87) Smyth HF, Carpenter CC, Weil CS, Pozzani UC, Striegel JA and Nycum JS (1969). Range-Finding Toxicity Data: List VII. Am. Ind. Hyg. Assoc. J. 30, 470-476.
- (88) SPIN database (2004). Online search in the SPIN database on 23.11.2004.
- (89) SRC PhysProp Database, 17.06.2003
- (90) STN data base Karlsruhe, ACS on STN (2004)
- (91) Swedish Product Register (2005). Personal communication to the BUA of
- (92) Szybalski W (1958). Special Microbiological Systems. II. Observations on Chemical Mutagenesis in Microorganisms. Ann. N.Y. Acad. Sci. 76, 475-489.
- (93) Thelestam M, Curvall M and Enzell CR (1980). Effect of Tobacco Smoke Compounds on the Plasma Membrane of Cultured Human Lung Fibroblasts. Toxicology 15, 203-217.
- (94) Timmermans MJ, Delcourt Y (1934). Travaux du Bureau International D'Etalons Physico-Chimiques VI Etude des Constantes Physiques de Vingt Composes Organiques. Journal de Chimie Physique et de Physico-Chimie Biologique 31, 85-124.

OECD SIDS 6. REFERENCES

- (95) Vogel AI (1934). Physical Properties and Chemical Constitution. Part I. Esters of Normal Dibasic Acids and of Substituted Malonic Acids. J.Chem.Soc. 333-341.
- (96) Voss M (2000). Neurophysiological and behavioral responses to olfactory stimuli in the snail Helix pomatia L. Physiological Research 49 (4), 463-469.
- (97) WHO (2000). Safety evaluation of certain food additives and contaminants, WHO Food Additive Series 44.
- (98) Yalkowsky SH and Dannenfelser RM (1992) as quoted in: SRC PhysProp Database, 17.06.2003

S I D S

Dossier

Existing Chemical CAS No. EINECS Name EC No. Molecular Weight Structural Formula Molecular Formula	ID: 108-59-8 108-59-8 dimethyl malonate 203-597-8 132.12 COC(=0)CC(=0)OC C5H804
Producer Related Part Company: Creation date:	Degussa AG 19-JUN-2001
Substance Related Part Company: Creation date:	Degussa AG 19-JUN-2001
Memo:	Überarbeitungsversion
Printing date: Revision date: Date of last Update:	26-AUG-2005 28-JUN-2004 26-AUG-2005
Number of Pages:	73
Chapter (profile):	Chapter: 1.0.1, 1.0.2, 1.0.4, 1.1.0, 1.1.1, 1.2, 1.3, 1.4, 1.5, 1.6.1, 1.6.2, 1.7, 1.7.1, 1.7.2, 1.8, 1.8.1, 1.8.2, 1.8.3, 1.8.4, 1.8.5, 1.8.6, 1.9.1, 1.9.2, 1.10,
Reliability (profile): Flags (profile):	Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, non confidential, SIDS

1. GENERAL INFORMATION

DATE: 21.01.2005

1.0.1 Applicant and Company Information

Type: Name: Contact Person: Street: Town:	<pre>lead organisation Degussa AG - ZN Wolfgang Dr. W. Mayr, Dr. S. Jacobi Rodenbacher Chaussee 4 63457 Hanau</pre>
Country:	Germany
Phone:	+49 6181 59 4139
Telefax:	+49 6181 59 2083
Email:	wilfried.mayr@degussa.com

Туре:	other: contact point
Name:	Degussa AG - ZN Wolfgang
Contact Person:	Dr. W. Mayr Date:
Street:	Rodenbacher Chaussee 4
Town:	63457 Hanau
Country:	Germany
Phone:	+49 6181 59 4139
Telefax:	+49 6181 59 2083
Email:	wilfried.mayr@degussa.com

1.0.2 Location of Production Site, Importer or Formulator

1.0.4 Details on Category/Template

Comment:	Dimethylmalonate, CAS No.: 108-59-8, Diethylmalonate, CAS No: 105-53-3
Remark :	The category of simple diesters of malonic acid, dimethylmalonate and diethylmalonate has been defined because of the similar properties of the simple esters and their likelihood to be cleved under physiological conditions yielding malonic acid and the corresponding alcohols. Where data are lacking for one of the members of the category they can reasonably be substituted by data of the other member of the category due to the structural similarity. The production and use pattern of Diethylmalonate (DEM) and Dimethylmalonate (DMM) are comparable. The two chemicals Diethylmalonate and Dimethylmalonate have very similar physico-chemical properties and both esters are hydrolyzed via a two step reaction to malonic acid and the corresponding alcohol, methanol or ethanol. It is likely that unspecific esterases in the body catalyze the hydrolysis. The alcohols and malonic acid are physiological substances that are metabolized via physiological pathways. Ethanol and Methanol were assessed evaluated in SIAM 19 (OECD, 2004a,b). For ethanol it was concluded that the chemical is currently of low priority for further work, because the hazardous properties of ethanol are manifest only at doses associated with consumption of alcoholic beverages. As it is impossible to reach these exposure levels as a consequence of the manufacture and use of malonates, it can be expected that malonic acid will be the metabolite that determines the toxicity of DEM. For methanol, SIAM 19 decided that this chemical is a candidate for further work. Methanol exhibits potential hazardous properties for human health (neurological effects, CNS depression, ocular

OECD SIDS	MALONIC ACID DIESTERS
1. GENERAL INFORMATION	ID: 108-59-8
	DATE: 21.01.2005

effects, reproductive and developmental effects, and other organ toxicity). The effects of methanol on the CNS and retina in humans only occur at doses at which formate accumulates due to a rate-limiting conversion to carbon dioxide. In primates, formate accumulation was observed at methanol doses greater than 500 mg/kg bw (which would require a DMM dose of more than 1,000 mg/kg bw). As there were no indications of a methanol associated toxicity from a well performed repeated dose toxicity study with DMM in rodents (which are, however, known to be less sensitive to methanol toxicity than humans), and because methanol toxicity would not be expected up to doses as high as 1,000 mg DMM/kg bw/day, it was concluded that methanol does not make a relevant contribution to the toxicity profile of DMM. A possible mode of action for systemic toxicity of DMM and DEM can only be deduced from the repeated dose study with DMM, indicating a reversible liver hypertrophy at the cellular level at high doses of 1000 mg/kg bw/day. This effect can be an indication of an induction of metabolism in the liver rather than a clear systemic toxicity.

18-AUG-2005

(58) (59)

1.1.0 Substance Identification

IUPAC Name:	dimethyl malonate		
Smiles Code:	O=C (OC) CC (=O) OC		
Mol. Formula:	С5Н8О4		
Mol. Weight:	132.12		

1.1.1 General Substance Information

Purity type:	typical for marketed substance
Substance type:	organic
Physical status:	liquid
Purity:	ca. 99.5 - % w/w
Colour:	colourless
Odour:	slightly ester-like

28-JUL-2005

1.2 Synonyms and Tradenames

Dimethyl malonate

29-NOV-2004

Dimethyl propanedioate

21-JUL-2005

Dimethylmalonate

29-NOV-2004

DMM

DMM

(64)

(22)

(64)

OECD SIDS	MALONIC ACID DIESTERS
1. GENERAL INFORMATION	ID: 108-59-8
	DATE: 21.01.2005
21-JUL-2005	
Malonic acid, dimethylester	
21-JUL-2005	
Malonsaeuredimethylester	
Methandicarbonsaeuredimethylester	
Methyl malonate	
21-JUL-2005	(64)
Propandisaeuredimethylester	

Propanedioic acid, dimethyl ester

21-JUL-2005

1.3 Impurities

Purity type: CAS-No: EC-No: EINECS-Name: Contents:	typical for marketed substance 67-56-1 200-659-6 methanol ca3 - % w/w	
28-JUL-2005		(22)

Purity type:	typical for marketed substance	
CAS-No:	609-02-9	
EC-No:	210-173-6	
EINECS-Name:	dimethyl methylmalonate	
Contents:	ca2 - % w/w	
28-JUL-2005		(22)

28-JUL-2005

1.4 Additives

1.5 Total Quantity

1.6.1 Labelling

Labelling:	no labelling required (no dangerous properties)
Remark:	Last update MSDS Chapter 15 "Labelling and Classification" on 2003-07-23
29-NOV-2004	(21) (51)

(64)

OECD SIDS MALO		DIES	TERS
1. GENERAL INFOR	RMATION I	D: 108	8-59-8
	DATE	: 21.01	.2005
1.6.2 Classificat	ion		
Classified:	no classification required (no dangerous properties)		
29-NOV-2004		(21)	(51)
1.7 Use Pattern			
Type: Category:	type Non dispersive use		
Type: Category:	type Wide dispersive use		
29-NOV-2004			(60)
Type: Category:	industrial Chemical industry: used in synthesis		
Type: Category:	use Intermediates		
		(26)	(60)
1.7.1 Detailed Us	e Pattern		
1.7.2 Methods of 3	Manufacture		
1.8 Regulatory Me	asures		
1.8.1 Occupationa	l Exposure Limit Values		

1.8.2 Acceptable Residues Levels

1.8.3 Water Pollution

Classified by:	KBw	IS (DE)		
Labelled by:	KBw	IS (DE)		
Class of danger:	1	(weakly	water	polluting)

Country:	Gerr	nany		
Remark:	No.	3353	in	catalogue

(21)

1.8.4 Major Accident Hazards

Legislation: Stoerfallverordnung (DE) Substance listed: no

Country: Germany

1. GENERAL INFORMATION

Remark: 29-NOV-2004 Stoerfallverordnung 2000, (12. BischV, BGB1. I, 2000, 631) (21)

1.8.5 Air Pollution

1.8.6 Listings e.g. Chemical Inventories

1.9.1 Degradation/Transformation Products

1.9.2 Components

1.10 Source of Exposure

Source of exposure:	Environment:	exposure	from p	production		
Exposure to the:	Substance					
Result:	From product:	ion there	are no	o emissions	into	Į.

water or air. Exhausts are incinerated and waste water is treated in a biological sewage treatment plant. Product containing waste waters (e.g. from maintenance operations) are incinerated. No waste containing DMM or DEM is produced. From use as flavoring agent no emission data are known. (12)

21-JUL-2005

21-JUL-2005

21-JUL-2005

Source of exposure: other: human exposure, product register information Exposure to the: Substance

Result: The Swedish Product Register (2004) contains confidential data on DMM on the whole and the note that there are no consumer products containing DMM. One entry on DMM is contained in the Swiss Product Register (2004): 1 commercial product with a DMM-content of 100 %, i.e. the pure chemical. The SPIN database (2004) does not contain any entries on DMM.

(65) (67) (68)

Source of exposure: other: human occupational exposure Exposure to the: Substance

Result: The German producer uses closed systems including gas tight flunshes for loading and de-loading operations and closed valve-syringe systems for sampling. From the process description very low occupational exposure is anticipated. No data are available for the uses. As the majority of the products are used as intermediates in the chemical industry a controlled exposure situation is anticipated.

(12)

Source of exposure: Human: exposure of the consumer/bystander Exposure to the: Substance

Result: WHO (2000) evaluated the combined daily intake of 47 flavoring substances including DEM in Europe and the US. The annual production volume of these 47 substances was 200 metric tons in Europe and 1700 metric tons in the US. From

OECD SIDS		MALONIC A	CID DIESTERS
1. GENERAL INF	FORMATION	D	ID: 108-59-8 ATE: 21.01.2005
	this an estimated per capi and 300 mg in the US was d 60 kg these intakes would bw/day in Europe and the U considered of no concern.	ta daily intake of 28 erived (based on a bo correspond to 0.47 ar S, respectively). Thi	<pre>mg in Europe ody weight of id 5 mg/kg .s intake was</pre>
21-JUL-2005			(72)
1.11 Additional	Remarks		
Memo:	Dimethyl malonate could also g extract in banana (Musa sa	be detected in trace pientum) aroma.	es < 5 µg/100
Flag: 12-AUG-2004	Critical study for SIDS endp	oint	(6)
Memo:	Dimethyl malonate could be d compound in fresh blackberri	etected in traces as es	aroma
Flag: 12-AUG-2004	Critical study for SIDS endp	oint	(24)
Memo:	Dimethyl malonate could be i constituent of green and rip [L.] Merr.)	dentified as a volati ened pineapple (Anana	le s comosus
Result:	Umano et al.(1993) report co and dimethyl malonate in gre	ncentrations of total en and ripe pineapple	. volatiles es:
	Fruit total vola	tiles dimethyl malo	onate
	Green pineapples 0.0006% =	6mg/kg 0.3% of total = 18 micro-g	. volatiles g/kg
	Ripe pineapples 0.0009% =	9mg/kg 0.18% of tota = 17 micro-g/	il volatiles /kg
Flag: 12-AUG-2004	Critical study for SIDS endp	oint	(9) (70)
Memo:	In blended pineapple pulp di concentrations of 19 ppb and	methyl malonate occur is a volatile flavor	rs in component
Flag: 12-AUG-2004	Critical study for SIDS endp	oint	(69)
Memo:	In traces dimethyl malonate compound of fresh blackberri	could be detected as es (Rubus laciniata I	aroma J.).
Flag: 12-AUG-2004	Critical study for SIDS endp	oint	(24)
Remark:	Dimethyl malonate is a volat radix (= the root of Astraga occurs in the oily extract i flavor components. Dimethyl winey odor	ile flavor component lus membranaceus, Bur n quantities of 3.4 % malonate has a mild f	of Astragali nge) and s of all 35 Fruity and
Flag: 12-AUG-2004	Critical study for SIDS endp	oint	(55)

1. GENERAL INFORMATION

1.12 Last Literature Search

Type of Search:Internal and ExternalChapters covered:3, 4, 5Date of Search:13-JUL-2000

Remark: CIS, DIMDI 18-AUG-2004

Type of Search:Internal and ExternalChapters covered:3, 4, 5Date of Search:17-AUG-2004

Remark: CIS, DIMDI, STN, Dialog 18-AUG-2004

1.13 Reviews

2. PHYSICO-CHEMICAL DATA

2.1 Melting Point

Value: Decomposition: Sublimation:	= -62 degree C no at degree C no					
GLP:	no					
Reliability:	(2) valid with restrictions Data of different handbooks	(7)	(26)	(51)	(61)	(63)
Value:	= -62 degree C					
Year: GLP: Test substance:	1916 no no data					
Reliability:	(2) valid with restrictions					
Flag:	Data from handbook (Beilstein) Critical study for SIDS endpoint					(43)
Value:	-61.9 degree C					
Reliability:	(2) valid with restrictions Data from handbook				(38)	(50)
Value:	-61.9 degree C					
Year: GLP: Test substance:	1942 no no data					
Reliability: Flag:	(2) valid with restrictions Well documented secientific reference Critical study for SIDS endpoint					(62)
2.2 Boiling Point						
Value:	180 - 181 degree C					
Reliability:	(2) valid with restrictions				(26)	(61)
Value: Year: GLP: Test substance:	180 degree C at 1026 hPa 1934 no no data					
Reliability:	(2) valid with restrictions					(71)
Value:	180.7 degree C					

Year:

2. PHYSICO-CHEMICAL DATA

1889

GLP: Test substance:	no no data		
Reliability:	(2) valid with restrictions		(73)
Value: Decomposition:	= 181 degree C at 1013 hPa no		
Method: GLP:	other: DIN 51751 no		
Reliability:	(2) valid with restrictions		(21)
Value:	181 degree C at 988 hPa		
Year: GLP: Test substance:	1894 no no data		
Remark: Reliability:	Boiling point 84 °C at 13 mm Hg (17 hPa). (2) valid with restrictions		(8)
Value:	181 degree C		
Reliability: 29-NOV-2004	(2) valid with restrictions		(7)
Value:	181.4 degree C		
Reliability:	(2) valid with restrictions		(63)
Value:	181.4 degree C at 1013 hPa		
Reliability:	(2) valid with restrictions Data from handbook	(38)	(50)
Value:	= 181.4 degree C at 1013 hPa		
Test substance:	no data		
Reliability:	(2) valid with restrictions Data from handbook (Beilstein)		

Flag: 21-JUL-2005

2.3 Density

Type :	dens	sity					
Value:	ca.	1.15	g/cm³	at	20	degree	С

Critical study for SIDS endpoint

(48)

OECD SIDS 2. PHYSICO-CHEMICAL DATA

DATE: 21.01.2005

Method: GLP:	other: DIN 51757 no		
Reliability: 29-NOV-2004	(2) valid with restrictions	(21)	(51)
Type: Value:	density 1.15 g/cm³ at 20 degree C		
Reliability: 29-NOV-2004	(2) valid with restrictions		(51)
Type: Value:	relative density 1.1527 at 20 degree C		
Method: Year: GLP: Test substance:	other: pycnometer-method 1934 no no data		
Remark: Reliability: Flag:	Relative densities determined at other temperatures: 1.1066 at 63.4 °C, 1.0774 at 86.4 °C. (2) valid with restrictions Critical study for SIDS endpoint		
Type: Value:	relative density 1.1528 at 20 degree C		(71)
Reliability:	(2) valid with restrictions		(63)
Type: Value:	relative density 1.1528 at 20 degree C		
Year: GLP: Test substance:	1942 no no data		
Reliability: Flag:	(2) valid with restrictions Critical study for SIDS endpoint		(62)
Type: Value:	density = 1.1539 g/cm³ at 20 degree C		
Reliability:	(2) valid with restrictions Data from handbook (Beilstein)		(41)
Type: Value:	density 1.154 g/cm³ at 20 degree C		
Reliability: 29-NOV-2004	(2) valid with restrictions	(7)	(61)

OECD SIDS 2. PHYSICO-CHEMICAL DATA

DATE: 21.01.2005

Type: Value:	relative density 1.1544 at 20 degree C	
Year: GLP: Test substance:	1894 no no data	
Reliability:	(2) valid with restrictions	(8)
Type: Value:	density 1.153 g/cm³ at 25 degree C	
Reliability:	(2) valid with restrictions	(38)
Type: Value:	relative density 1.1447 at 30 degree C	
Year: GLP: Test substance:	1932 no no data	
Reliability:	(2) valid with restrictions	(5)
Type: Value:	relative density 1.1465 at 30 degree C	
Year: GLP: Test substance:	1913 no no data	
Remark: Reliability:	Relative densities at other temperatures: 1.1649 at 10 °C, 1.128 at 50 °C. (2) valid with restrictions	

(56)

2.3.1 Granulometry

2.4 Vapour Pressure

Value:	.15 hPa at 20 degree C		
Reliability: 21-JUL-2005	(4) not assignable	(7)	(51)
Value:	ca48 hPa at 20 degree C		
Method: Year: GLP: Test substance:	other (calculated) 1967 no data no data		
Remark:	The value at 20 deg C is an estimate obtained by interpolation of the data given in the reference usin	ıg th	e

OECD SIDS MALONIC ACID DIESTERS 2. PHYSICO-CHEMICAL DATA ID: 108-59-8 DATE: 21.01.2005 Clausius-Clapeyron equation (log VP = - delta h(vap)/2.3 R x1/T + const (see standard textbooks of physics), i.e. linear regression of log VP versus 1/T (K)). 180.7 degree C: 760 Torr = 1013 hPa 121.9 degree C: 100 Torr = 133 hPa 72.0 degree C: 10 Torr = 13.3 hPa 35.0 degree C: 1 Torr = 1.33 hPa $\log VP = -2762 * (1/T) + 9.1061$ (T in K, VP in hPa) Reliability: (2) valid with restrictions Data from handbook Flag: Critical study for SIDS endpoint 21-JUL-2005 (11)= .5 hPa at 20 degree C Value: GLP: no Reliability: (4) not assignable 21-JUL-2005 (21)ca. .5 at 20 degree C Value: Method: other (measured) Year: 2003 GT.P · no data no data Test substance: The value at 20 degree C is an estimate obtained by Result: interpolation of the data given in the reference using the Clausius-Clapeyron equation (log VP = - delta h(vap)/2.3 R x1/T + const (see standard textbooks of physics), i.e. linear regression of log VP versus 1/T (K)). Vapour pressure (hPa) Temperature (°C) 1.0 30 66.7 10.0 100 114.7 1000 180.2 The resulting regression equation is: $\log VP = -2745 \times 1/T + 9.065$ The authors also quote extrapolated values for the following temperatures: Vapour pressure (hPa) Temperature (°C) - 22 0.01 0.1 1 (2) valid with restrictions Reliability: Data from handbook Flag: Critical study for SIDS endpoint 29-NOV-2004 (50)Value: 19.6 hPa at 25 degree C Method: other (calculated) Year: 1985 GLP: no data Test substance: no data

Remark: Vapour pressure reported as 14.7 mm Hg

OECD SIDS	MALONIC ACID DIEST	ERS
2. PHYSICO-CHEM	ICAL DATA ID: 108- DATE: 21.01.2	59-8 2005
Reliability:	(4) not assignable Primary reference containing information on the estimation method was not obtained.	
29-NOV-2004	((57)
Value:	= 60.65 hPa at 101 degree C	
Remark:	Other vapour pressures reported: 429.6 hPa at 152.1 °C, 204 hPa at 202 °C.	2
Reliability:	(2) valid with restrictions Data from handbook (Beilstein)	(3)
2.5 Partition Coe:	fficient	
Partition Coeff.: log Pow:	octanol-water =36	
Method:	other (calculated): Calculated using advanced chemistry development (ACD/Labs) Software 2004	
Reliability:	(2) valid with restrictions	
- 30-NOV-2004	Calculated data, internationally accepted method.	(66)
Partition Coeff.: log Pow:	octanol-water =09	
Method: Year: GLP:	other (calculated): KOWWIN (LOGKOW (c)) Program Version 1.6 Syracuse Research corporation, Merill Lane, Syracuse, New York, 13210 USA 2004	56
Reliability:	(2) valid with restrictionsCalculated data, internationally accepted method.	
30-NOV-2004		
Partition Coeff.: log Pow:	octanol-water 05	
Method: Year: GLP:	other (measured) 1995 no data	
Test substance:	no data	
Reliability:	(2) valid with restrictions Measured, no details, but standard as basis for QSAR calculations.	
Flag: 20-AUG-2004	Critical study for SIDS endpoint (25) ((51)
Partition Coeff.: log Pow:	octanol-water = 1.43	

OECD SIDS	MALONIC ACID DIES	TERS
2. PHYSICO-CHEM	IICAL DATA ID: 108 DATE: 21.01	8-59-8 1.2005
Reliability: 21-JUL-2005	substituent method. (4) not assignable No details reported.	(4)
2.6.1 Solubility	in different media	
Solubility in:	Water	
Remark:	slightly soluble in water, miscible with alcohol, ether, oils; no further specification of alcohol or ether given (2) valid with restrictions	
	(2) Valla Mich 100011001010 (61)	(63)
Solubility in:	Water	
Remark:	very slightly soluble in water; soluble in alcohol and ether; no further specification of alcohol or ether given	
Reliability.	(2) Valla with restrictions	(26)
Solubility in:	Water	
Remark: Reliability:	not miscible with water (2) valid with restrictions	(51)
Solubility in: Value: Descr.:	Water = 142 g/l at 20 degree C of very high solubility	
GLP: Test substance:	no as prescribed by 1.1 - 1.4	
Reliability: 21-JUL-2005	(4) not assignable	(21)
Solubility in: Value:	Water 99.5 g/l at 25 degree C	
Method: Year: GLP: Test substance:	other: estimated data 1996 no data no data	
Reliability:	(4) not assignable Peer reviewed data base.	
Flag: 30-NOV-2004	Critical study for SIDS endpoint	(53)
Solubility in: Value:	Water 160 g/l at 20 degree C	
Reliability:	(4) not assignable database data	

2. PHYSICO-CHEMICAL DATA

21-JUL-2005

Value:

Type:

Method:

Year:

GLP:

2.6.2 Surface Tension

Value:	35.9 mN/m at 30 degree C			
Method: Year: GLP: Test substance:	other: maximal bubble-pressure method by Sugden 1932 no no data			
Reliability: 30-NOV-2004	(2) valid with restrictions			(5)
Value:	38.24 mN/m			
Year: GLP: Test substance:	1913 no no data			
Reliability: 30-NOV-2004	(2) valid with restrictions			(56)
2.7 Flash Point				
Value: Type:	= 90 degree C other: no data			
Method: Year: GLP: Test substance:	other: no data 1981 no data no data			
Reliability: Flag: 21-JUL-2005	(2) valid with restrictions Critical study for SIDS endpoint	(7)	(26)	(51)
Value: Type:	= 90 degree C closed cup			
Method: Year: GLP:	other: DIN 51758 1978 no data			
Reliability:	(2) valid with restrictions			(62)

(38)

= 90 degree C

other: no data

other: no data

1981

no data

Reliability: (2) valid with restrictions

(7)

2. PHYSICO-CHEMICAL DATA

2.8 Auto Flammability

Value:	= 440 degree C		
Method: GLP: Test substance:	other: DIN 51794 no as prescribed by 1.1 - 1.4		
Reliability: Flag: 21-JUL-2005	(2) valid with restrictions Critical study for SIDS endpoint		(21)
Value:	440 degree C		
Reliability: 20-AUG-2004	(4) not assignable No details.	(7)	(51)
2.9 Flammability			
Result:	flammable		
Reliability: 20-AUG-2004	(4) not assignable		(51)
2.10 Explosive P	roperties		
Result:	other: 1.3 - 17.4%		
Reliability:	(2) valid with restrictions (7) (2	21)	(51)
Result:	other: no data		
Remark: Reliability:	combustible (2) valid with restrictions		(26)
2.11 Oxidizing P	roperties		
Result:	other: irreversible oxidation potential (Eox) of potass enolate of dimethyl malonate = - 0.293 +- 0.006 V relat ferrocene (reversible Eox of ferrocene) at 25 degree C dimethyl sulfoxide	sium tive in	n e to
Method: Year:	other: Enolization, alkylation and redox potentials for beta-di-and tri-carbonyl compounds 1987	r sc	ome

GLP:no dataRemark:The data give the degree of enolization relative to
ferrocene.Test condition:purified commercially available substance

OECD SIDS		MALONIC ACID DIESTERS
2. PHYSICO-CHEMI	CAL DATA	ID: 108-59-8
		DATE: 21.01.2005
30-NOV-2004		(1)
2.12 Dissociation	Constant	
Acid-base Const.:	pKa = 15.88 +- 0.06	
Result:	Dimethyl malonate has a pKa of 15.	88 +- 0.06 in dimethyl
12-AUG-2004	Suffortue at a temperature of 25	(1) (2)
2.13 Viscosity		
2.14 Additional Re	emarks	
Remark:	refractive index: 1.4140 (no tempe	rature mentioned) (26)
Remark:	refractive index: 1.4149 (17 degre	e C) (61)
Remark:	refractive index: 1.4135 (20 degre	e C) (63)

Remark:	refractive	index:	1.4138	(20	degree	C)
						(38)

3. ENVIRONMENTAL FATE AND PATHWAYS

3.1.1 Photodegradation

Type:	air
Light source:	Sun light
INDIRECT PHOTOLYS	IS
Sensitizer:	ОН
Conc. of sens.:	500000 molecule/cm ³
Rate constant:	.00000000000525 cm ³ /(molecule * sec)
Degradation:	50 % after 30.6 day(s)
Method:	other (calculated): AOPWIN (AOP(c)) Program, Version 1.90, Syracuse Research Corporation, Merrill Lane, Syracuse, New York, 13210, U.S.A., 2000
Year:	2003
GLP:	no
Test substance:	no data
Remark: Reliability:	Assumption for the calculation: 24 hours sunlight. (2) valid with restrictions Calculated data, internationally accepted method.
Flag:	Critical study for SIDS endpoint

(15) (52)

3.1.2 Stability in Water

Type: t1/2 pH7: t1/2 pH9:	abiotic = 5.7 hour(s) at 50 degree C <= 2.4 hour(s) at 50 degree C	
Method: Year: GLP: Test substance:	Directive 92/69/EEC, C.7 2004 yes as prescribed by 1.1 - 1.4	
Method: Result:	OECD TG 111 Results of the main test at pH4:	
	50 °C: t1/2 = 858.7 h 65 °C: t1/2 = 294.9 h 76 °C: t1/2 = 114.7 h	
	The extrapolated value for 25 °C: $t1/2 = 8422$ h.	
	At pH 7: 50 °C: t1/2 = 5.7 h 25 °C: t1/2 = 52.5 h	
hydrolysis:	At pH 9 only the pretest was performed indicating rapid	
Reliability:	50 °C: 95.9% hydrolysis within 2.4 h. (1) valid without restriction Guideline study, GLP	
Flag: 21-JUL-2005	Material Safety Dataset, Critical study for SIDS endpoint	(17)

21-JUL-2005

3. ENVIRONMENTAL FATE AND PATHWAYS

3.1.3 Stability in Soil

3.2.1 Monitoring Data (Environment)

Type of measurement: other: natural occurrence Medium: biota

Remark: see data reported in 1.11 12-AUG-2004

3.2.2 Field Studies

3.3.1 Transport between Environmental Compartments

Type:	adsorption
Media:	water - soil
Method:	other: (calculation) PCKOCWIN (PC-KOC (c)) Program, Version 1.66, Syracuse Research Corporation, Merrill Lane, Syracuse, New York, 13210, U.S.A., 2000
Year:	2003
Remark:	no GLP
Result:	The soil or sediment adsorption coefficient (Koc) of Dimethyl malonate was calculated as Koc = 1.74.
Reliability:	(2) valid with restrictions
	Calculated data, internationally accepted method.
Flag:	Critical study for SIDS endpoint
21-JUL-2005	(18)
Туре:	volatility
Media:	water - air
Method:	other: (calculation) Henrywin Program, Version 3.10, Syracuse Research Corporation, Merrill Lane, Syracuse, New York, 13210, U.S.A., 2000
Year:	2003
Method:	Bond Estimation Method
Remark:	no GLP
Result:	Henry's Law Constant [25 °C] = 4.17E-007 atm-m³/mole = 0.0422 Pa m3/mole = 1.71E-005 unitless
Reliability:	(2) valid with restrictions
	Calculated data, internationally accepted method.
Flag:	Critical study for SIDS endpoint
21-JUL-2005	(14)

3.3.2 Distribution

Media: Method: Year:	air - biota Calculation 2004	- sediment(s) - soil - water according Mackay, Level I
Result:	Air: Soil:	1.55 % < 0.01 %
	Water: Sediment:	98.44 % < 0.01 %

Test condition:	Biota: < 0.01 % Data used: Molar mass: 132.12 g/mol Vapour pressure: 48 Pa Water solubility: 142 g/1 Melting Point: -62 °C logKow: -0.05
	Volumes used: Air: 6 000 000 000 Soil: 45 000 Water: 7 000 000 Sediment: 21 000 Susp. Sediment: 35 Biota: 7 Aerosol: 0.12
Reliability:	(2) valid with restrictions Calculated data, internationally accepted method.
Flag:	Critical study for SIDS endpoint
24-MAR-2005	(19)
Media: Method: Year:	air - biota - sediment(s) - soil - water Calculation according Mackay, Level III 2004
Method:	Estimation of the Equilibrium Partitioning Characteristics in the Environment. Calculation Mackay Level III, V2.70 Model (2002) Environmental
Result:	Compartment Release Release Release 100 % in air 100 % in water 100 % in soil
Test condition:	Air 2.63 0 0.02 Water 61.3 99.9 61.7 Soil 36.0 0.01 38.3 Sediment 0.02 0.04 0.02 Conclusion: Under equilibrium steady state flow conditions the substance distributes to water and soil when released into the air or soil compartiment, while the majority of the substance will stay in the water compartment when released into water. Input parameters Molecular mass: 132.12 g/mol Temperature: 20 °C logKow: -0.05 Water solubility: 142 g/1 Vapour pressure: 48 Pa Melting Point: -62 °C Half-life in air: 734 hours
Reliability:	Emission rates default 3000 kg/h to either air, water or soil. (2) valid with restrictions Calculated data, internationally accepted method.
Flag: 01-DEC-2004	Critical study for SIDS endpoint (20)

3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 108-59-8 DATE: 21.01.2005

MALONIC ACID DIESTERS

3. ENVIRONMENTAL FATE AND PATHWAYS

3.5 Biodegradation

<pre>Inoculum: Concentration: Degradation: = 100 % after 28 day(s) Fesult: readily biodegradable Method: other: DOC DIE AWAY-Test, Directive 92/69/EEC, part II, C.4-A Year: 1932 GDP: yes Test substance: as prescribed by 1.1 - 1.4 Result: Kinetics of biodegradation: % decrease of DOC day FE1(s) F22(s) FC1(s) FC2(s) 0 0 0 0 0 0 7 86 87 99 99 14 100 100 99 99 14 100 100 99 99 21 95 99 98 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - Wrie than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance is readily biodegradable under the test conditions. Toyle of sludge; activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Super stant is discarded and the sludge resuspended with mineral medium, turther centrifugation 10 min at 100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation 10 min at 100 x g, the supernatant is discarded and the sludge (4.9 g/l dry mass of activated sludge) - Thitial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil focure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITAL TEST SUBSTANCE CONCENTRATION: 9.2 mpDC/l in the test flasks, 10.42 mp DC/l in the control flasks</pre>	Type:	aerobic			
Concentration: 10.6 mg/l related to DOC (Dissolved Organic Carbon) Degradation: Fold % after 28 day(8) Result: Method: other: DOC DIE AWAY-Test, Directive 92/69/EEC, part II, C.4-A Year: GTP: yes Test substance: Result: Kinetics of biodegradation: % decrease of DOC day FE1(8) FE2(8) FC1(8) FC2(8) O 0 0 0 0 0 7 86 87 99 99 14 100 100 99 99 21 95 99 98 98 27 95 99 100 99 98 FEI ans FE2: FLasks with test substance and inoculum FC1 and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two filasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Type of sludge: activated sludge, predominantly domestic - Sompling site: activated sludge, predominantly domestic - Sompling site: activated sludge hasin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Thitial cell concentration: 24.5 mg/l TEST SYSTM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminum foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITAL TEST SUBSTANCE CONCENTRATION: 9.2 mpDC/l in the test flasks, 10.42 mp DC/l in the control flasks	Inoculum:	activated sludge, domestic, non-adapted			
Degradation: = 100 \$ after 28 day(s) Result: readily biodegradable Method: other: DOC DIE AWAY-Test, Directive 92/69/EEC, part II, C.4-A Year: 1992 GLP: yes Test substance: as prescribed by 1.1 - 1.4 Result: Kinetics of biodegradation: % decrease of DOC day FE1(%) FE2(%) FC1(%) FC2(%) 0 0 0 0 0 0 7 86 87 99 99 14 100 100 99 99 14 100 100 99 98 FE1 ans FE2: Flasks with test substance and inoculum FCI and FC2: Flasks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test aubstance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test aubstance is readily biodegradable under the test conditions. The test aubstance is readily biodegradable under the test conditions. - Type of sludge: activated sludge, predominantly domestic - Sampling site: activated sludge (4.9 g/1 dry mass of activated aludge) - Initial cell concentration: 24.5 mg/1 TEST SYSTEM - Number of culture flasks per concentratio	Concentration:	10.6 mg/l related to DOC (Dissolved Organic Carbon)			
Result: readily biodegradable Method: other: DOC DIE AWAY-Test, Directive 92/69/EEC, part II, C.4-A Year: 1992 GLP: yes Test substance: as prescribed by 1.1 - 1.4 Result: Kinetics of biodegradation: % decrease of DOC day FEI(%) FE2(%) FC2(%) 0 0 0 0 7 86 87 9 9 21 95 99 100 100 28 99 100 90 9 21 95 99 100 100 28 99 100 90 98 FEI ans FE2: Flasks with test substance and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegra	Degradation:	= 100 % after 28 day(s)			
<pre>Method: other: DOC DIE AWAY-Test, Directive 92/69/EEC, part II, C.4-A Year: 1992 GLP: yes Test substance: as prescribed by 1.1 - 1.4 Result: Kinetics of biodegradation: % decrease of DOC day FEI(%) FE2(%) FCI(%) FC2(%) 0 0 0 0 0 7 86 87 99 99 14 100 100 99 99 21 95 99 100 100 28 99 100 99 98 FEI ans FE2: Plasks with test substance and inoculum FCI and FC2: Flasks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Twee of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernation of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aliminum foil closure - Number of culture flasks per concentration: 2 - Avation device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>	Result:	readily biodegradable			
<pre>Method: other: DOC DIE AWAY-Test, Directive 92/69/EEC, part II, C.4-A Year: 1992 GLP: yes Test substance: As prescribed by 1.1 - 1.4 Result: Kinetics of biodegradation: § decrease of DOC day FE1(§) FE2(§) FC1(§) FC2(§)</pre>	nebulo:	icaaiiy bioacgiaaabic			
<pre>Method: Year: 1992 GLP: ges Test substance: as prescribed by 1.1 - 1.4 Result: Re</pre>	Mathadi	other, DOC DIE AWAY-Test Directive 92/60/FEC part II C 1-A			
<pre>Year: 1992 GLP: yes Test substance: as prescribed by 1.1 - 1.4 Result: Kinetics of biodegradation: % decrease of DOC day FE1(%) FE2(%) FC1(%) FC2(%) 0 0 0 0 0 0 7 86 87 99 99 14 100 100 99 99 21 95 99 100 100 28 99 100 99 98 FE1 ans FE2: Flasks with test substance and inoculum FC1 and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance is readily biodegradable under the test conditions. Test condition: Test condition: T</pre>	Method:	other: Doc Die AWAI-Test, Directive 92/69/EEC, part II, C.4-A			
 GLP: yes Test substance: as prescribed by 1.1 - 1.4 Result: Kinetics of biodegradation: % decrease of DOC day FE1(%) FE2(%) FC1(%) FC2(%) 0 0 0 0 0 0 7 86 87 99 99 14 100 100 99 99 12 95 99 98 98 827 95 99 100 90 98 FE1 ans FE2: Flasks with test substance and inoculum FC1 and FC2: Falsks control substance (sodium benzoate) and inoculum Breakdown product: no Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance is readily biodegradable under the test conditions: The test substance is readily biodegradable under the test conditions. The test substance is readily biodegradable under the test conditions. The test substance is readily biodegradable under the test conditions. The test substance is readily biodegradable under the test condition. Topo of sludge: activated sludge, predominantly domestic - Sampling site: activated sludge perdominantly domestic - Sampling site: activated sludge for 10 min at 1100 x g, the supernation of fine activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlemmyer flask with slight aluminium for id closure Avantion device: slaking machine Measuring equipment: Cachon analyzer (Schimadau) INITIAL TEST SUSENANCE CONCENTRATION: 9.2 mgOC/l in the test flasks, 10.4 2m pOC/l in the control flasks 	Year:	1992			
Test substance: as prescribed by 1.1 - 1.4 Result: Kinetics of biddegradation: % decrease of DOC day FE1(%) FE2(%) FC1(%) FC2(%) 0 0 0 0 7 86 87 99 99 92 14 100 100 99 99 92 21 95 99 100 100 100 28 99 100 99 98 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - - Remarks: The difference of biddegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biddegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biddegradable under the test conditions. - Type of sludge: activated sludge, predominantly domestic - Sampling site: activated sludge, predominantly domestic - Source: Sewage plant Marl-0st - Sampling site: activated sludge tesupenedowith mineral medium, further centrifugation 10	GLP:	yes			
Result: Kinetics of biodegradation: % decrease of DOC day FE1(%) FE2(%) FC1(%) FC2(%) 0 0 0 0 14 100 109 99 21 95 99 100 100 28 99 100 99 98 28 99 100 99 98 FE1 ans FE2: Flasks with test substance and inoculum FC1 and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99%) degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test condition: NOCULW/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge tesupended with mineral medium, further centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resupended with mineral medium, further centrifugation 10 min at	Test substance:	as prescribed by 1.1 - 1.4			
Result: Kinetics of biodegradation: % decrease of DOC day FE1(%) FE2(%) FC1(%) FC2(%) 0 0 0 0 7 86 87 99 99 14 100 100 99 99 12 95 99 100 100 28 99 100 99 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum - - Breakdown product: no - - - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Sampling site: activated sludge hasin - Preparation of inoculum:: Centrifugation 10 min at 1100 x g, the supernaton					
<pre>day FE1(%) FE2(%) FC1(%) FC2(%)</pre>	Result:	Kinetics of biodegradation: % decrease of DOC			
0 0 0 0 7 86 87 99 99 14 100 100 99 99 14 100 100 99 99 21 95 99 100 100 28 99 100 99 98 FE1 ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g the supernatant is discarded and the sludge res		day FE1(%) FE2(%) FC1(%) FC2(%)			
<pre> 0 0 0 0 0 0 7 86 87 99 99 99 14 100 100 99 99 12 95 99 98 98 27 95 99 100 100 28 99 100 99 99 21 95 99 100 99 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Two of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-Ost Sampling site: activated sludge, predominantly domestic Sampling site: activated sludge basin Preparation of incoulum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resupended with mineral medium, further centrifugation for 10 min at 1100 x g, the supernatant is discarded and the sludge resupended with mineral medium, further centrifugation 12 min at 1100 x g, the supernatant is discarded and the sludge resupended with mineral medium, further centrifugation 12 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeation device: shaking machine Masuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DO</pre>		· · · · · · · · · · · · · · · · · · ·			
 7 86 87 99 99 14 100 100 99 99 19 5 99 99 98 98 21 95 99 100 100 28 99 100 99 98 FEI ans FE2: Flasks with test substance and inoculum FC1 and FC2: Falsks control substance (sodium benzoate) and inoculum Breakdown product: no Breakdswn product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. INOCULUM/TEST ORGANISM Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost Sampling site: activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminum foil closure Number of culture flasks per concentration: 2 Aeration device: slaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 					
 14 100 100 99 99 14 100 100 99 99 121 95 99 98 98 100 100 99 98 100 28 99 100 99 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Torge of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-Ost Sampling site: activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: slaking machine Measuring equipment: carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 					
 14 100 100 99 98 98 21 95 99 98 98 98 27 95 99 100 99 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Toype of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g, Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 					
<pre>21 95 99 98 98 27 95 99 100 99 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Source: Sewage plant Marl-Ost - Source: Sewage plant Marl-Ost - Source: Sewage plant Marl-Ost - Sampling site: activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culuure flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOc/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		14 100 100 99 99			
 27 95 99 100 100 28 99 100 99 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM Type of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		21 95 99 98 98			
28 99 100 99 98 FEI ans FE2: Flasks with test substance and inoculum FCI and FC2: Falsks control substance (sodium benzoate) and inoculum Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Tource: Sewage plant Marl-Ost Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernation is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		27 95 99 100 100			
FE1 ans FE2: Flasks with test substance and inoculum FC1 and FC2: Falsks control substance (sodium benzoate) and inoculum Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. The test substance is readily biodegradable under the test conditions. Tope of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of incculum: Centrifugation 10 min at 1100 x g, the supenatant is discarded and the sludge resuspended with mineral medium, further centrifugation 10 min at 1100 x g Resugension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminim foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		28 99 100 99 98			
<pre>FEl ans FE2: Flasks with test substance and inoculum FCl and FC2: Falsks control substance (sodium benzoate) and inoculum - Breakdown product: no - Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. The test substance is readily biodegradable under the test succe: Sewage plant Marl-Ost = Sampling site: activated sludge, predominantly domestic = Source: Sewage plant Marl-Ost = Sampling site: activated sludge tesuspended with mineral medium, further centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) = Initial cell concentration: 24.5 mg/l TEST SYSTEM = Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure = Number of culture flasks per concentration: 2 = Aeration device: shaking machine = Measuring equipment: Carbon analyzer (Schimadzu) INITIAL T</pre>					
<pre>FC1 and FC2: Falsks control substance (sodium benzoate) and inoculum</pre>		FE1 ans FE2: Flasks with test substance and inoculum			
 Breakdown product: no Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Toyle of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		FC1 and FC2. Falsks control substance (sodium benzoate) and			
 Breakdown product: no Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM Type of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		inoculum			
 Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. The test substance is readily biodegradable under the test conditions. Thoy of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		Inocutum			
 Breakdown product: no Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM Type of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 					
 Remarks: The difference of biodegradation between the two flasks containing the test substance at the end of the test is less than 20% More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INTITAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		- Breakdown product: no			
<pre>flasks containing the test substance at the end of the test is less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		- Remarks: The difference of biodegradation between the two			
<pre>less than 20% - More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INTTIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		flasks containing the test substance at the end of the test is			
 More than 70% of biodegradation was reached within 14 days in the control flasks containing sodium benzoate (99% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM Type of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-0st Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		less than 20%			
<pre>in the control flasks containing sodium benzoate (9% degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		- More than 70% of biodegradation was reached within 14 days			
<pre>degradation after 7 days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INTIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks </pre>		in the control flasks containing sodium henzoate (90%			
<pre>degradation alter / days): the inoculum activity is sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		dependention of the 7 device the incomplete entry is			
<pre>sufficient. The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		degradation after / days): the inoculum activity is			
The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		sufficient.			
The test substance was degraded to 86-87% after 7 days and 95 to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks					
<pre>to 100% after 14 to 28 days. Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		The test substance was degraded to 86-87% after 7 days and 95			
Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: Toype of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		to 100% after 14 to 28 days.			
Conclusions: The test substance is readily biodegradable under the test conditions. Test condition: Test condition: Test condition: Toype of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		-			
The test substance is readily biodegradable under the test conditions. Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		Conclusions			
<pre>Test conditions. Test conditions. Test condition: INOCULUM/TEST ORGANISM Type of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks </pre>		The test substance is readily biodegradable under the test			
<pre>Conditions. Test condition: INOCULUM/TEST ORGANISM</pre>		The test substance is feadily brodegradable under the test			
<pre>Test condition: INOCULUM/TEST ORGANISM - Type of sludge: activated sludge, predominantly domestic - Source: Sewage plant Marl-Ost - Sampling site: activated sludge basin - Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks </pre>		conditions.			
 Type of sludge: activated sludge, predominantly domestic Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 	Test condition:	INOCULUM/TEST ORGANISM			
 Source: Sewage plant Marl-Ost Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		- Type of sludge: activated sludge, predominantly domestic			
 Sampling site: activated sludge basin Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		- Source: Sewage plant Marl-Ost			
 Preparation of inoculum: Centrifugation 10 min at 1100 x g, the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		- Sampling site: activated sludge basin			
<pre>the supernatant is discarded and the sludge resuspended with mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		- Preparation of inoculum: Centrifugation 10 min at 1100 x g,			
<pre>mineral medium, further centrifugation for 10 min at 1100 x g Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		the supernatant is discarded and the sludge resuspended with			
Resuspension of the activated sludge (4.9 g/l dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		minoral modium further contribution for 10 min at 1100 y a			
<pre>Resuspension of the activated sludge (4.9 g/1 dry mass of activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		Reference and the set of the set			
<pre>activated sludge) - Initial cell concentration: 24.5 mg/l TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks</pre>		Resuspension of the activated sludge (4.9 g/1 dry mass of			
 Initial cell concentration: 24.5 mg/l TEST SYSTEM Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		activated sludge)			
TEST SYSTEM - Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		- Initial cell concentration: 24.5 mg/l			
 Culturing apparatus: 2000 ml Erlenmeyer flask with slight aluminium foil closure Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		TEST SYSTEM			
aluminium foil closure - Number of culture flasks per concentration: 2 - Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		- Culturing apparatus: 2000 ml Erlenmever flask with slight			
 Number of culture flasks per concentration: 2 Aeration device: shaking machine Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks 		aluminium foil closure			
- Aeration device: shaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		- Number of culture flasks per concentration. 2			
- Aeration device: snaking machine - Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		Number of culture flashs per concentration, 2			
- Measuring equipment: Carbon analyzer (Schimadzu) INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		- Actaction device: Shaking machine			
INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test flasks, 10.42 mg DOC/l in the control flasks		- Measuring equipment: Carbon analyzer (Schimadzu)			
flasks, 10.42 mg DOC/l in the control flasks		INITIAL TEST SUBSTANCE CONCENTRATION: 9.2 mgDOC/l in the test			
		flasks, 10.42 mg DOC/l in the control flasks			

MALONIC ACID DIESTERS

3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 108-59-8 DATE: 21.01.2005

(42)

METHOD OF PREPARATION OF TEST SOLUTION: Stock solution: 1000 mg/l (459 mg DOC/l) DURATION OF THE TEST: 28 days ANALYTICAL PARAMETER: Dissolved organic carbon (DOC) SAMPLING: After 0, 7, 14, 21, 27, 28 days. TEST CONDITIONS - Composition of stock nutrient solution: 8.5 g/l KH2PO4 a) 21.75 g/l K2HPO4 33.3 g/l Na2HPO4 * 2 H2O 20.0 g/l (NH4)Cl b) 22.5 g/l MgSO4 * 7 H2O c) 27.5 g/l CaCl2 d) 0.25 g/l FeCl3 * 6 H2O - Additional substrate: No - Test temperature: 22 +- 0.2 °C - Addition of stock solutions: a) 20 ml, b) - d): 2 ml each - Aeration of dilution water: no - Concentration of suspended solids: 24.5 mg/l CONTROLS: 2 Flasks without test substance, but with inoculum, REFERENCE SUBSTANCE: 2 Flasks with Benzoic acid, sodium salt, 10.42 mg DOC/l and inoculum. No abiotic control (with test substance, without inoculum) and no inhibitory control was included in the test. FACTORS AFFECTING TEST: Test substance: - Stability: see hydrolysis as function of pH, section 3.1.2 stability in water - Vapor pressure: 0.5 hPa (20 °C) - Water solubility: 142 q/l (20 °C) - Adsorption potential (log Pow): -0.05 - Toxicity to microorganisms: >= 177 g/l Reliability: (1) valid without restriction Guideline study, GLP Flag: WGK (DE), Material Safety Dataset, Critical study for SIDS endpoint 21-JUL-2005 (32)

3.6 BOD5, COD or BOD5/COD Ratio

3.7 Bioaccumulation

3.8 Additional Remarks

Memo:	Uptake	into	clouds
-------	--------	------	--------

Result: The droplet train technique was used to investigate the uptake of gaseous dicarboxylic acids including DMM into water droplets. The uptake coefficients were calculated to be in the range of 0.04 to 0.09 at temperatures between 265 and 285 K indicating an efficient capture in the droplets according to the authors. This could be a principal elimination way from the atmosphere. Hydrolysis of the esters could additionally lead to the presence of dicarboxylic acids in the cloud that could be a source of cloud condensation nuclei.

01-DEC-2004
Remark: In the MITI-List dimethyl malonate is not mentioned in the sections biodegradation and bioaccumulation. (54)

4. ECOTOXICITY

AQUATIC ORGANISMS

4.1 Acute/Prolonged Toxicity to Fish

Type: Species: Exposure period:	flow through Brachydanio reric 96 hour(s)) (Fish, f	resh water)
Unit:	mg/l	Anal	ytical mon:	itoring: yes
LC0:	= 7			
LC50:	= 21			
LC100:	= 50			
	0.0			
Method:	Directive 84/449	FFC C 1	"Acute toy	icity for fish"
Voor:	109/		ACULC LOX.	leity for fish
IEal.	1904			
	yes			
Test substance:	as prescribed by	1.1 - 1.4		
	DECUIEC. EXDOCED			
Result:	RESULTS: EXPOSED	1		
	- Nominal/measure	ea concentr	ations:	
	Nominal (mg/l) me	easured (mg	/l) (mean o	of 5 days)
	20		/	. U
	36		13	. 8
	50		23	.0
	70		50	.0
	100		74	.5
	- Effect data (Mo LC50 (96 h): 21 LC0 (96 h): LC100 (96 h): 50. (graphical evalua - Concentration / 24 h Conc. (mg/l) No.	ortality): 0 mg/l 7.0 mg/l 0 mg/l ation) ' response surviving	curve: No dead ⁹	& mortality
	control	10	0	0
	7.0	10	0	0
	13.8	10	0	0
	23.0	6	4	40
	50.0	0	10	100
	74.5	0	10	100
	48 h			
	Conc. (mg/l) No.	surviving	No dead	k mortality _
	control	10	0	0
	7.0	10	0	0
	13.8	9	1	10
	23 0	4	-	60
	50 0	0	10	100
	JU.U 74 E	0	10	100
	/4.3	U	ΤU	TUU
	72 h			
	Conc (ma/1) Mc	eurrinina	No dood	mortality
	conc. (mg/T) NO.	SULVIVIIIG	no ueau	• mortarrly _
	control	10	0	
	7 0	10	0 0	0 0
	13.8	- 0	1	10
		-	-	

OECD SIDS				MALONIC A	ACID DIESTERS			
4. ECOTOXICITY					ID: 108-59-8			
				D	ATE: 21.01.2005			
	23.0	4	6	60				
	50.0	0	10	100				
	74.5	0	10	100				
	96 h	N	- Nll	0				
	Conc. (mg/1)	No. survivir	ng No dead	% mortality	_			
	control	10	0					
	7.0	10	0	0				
	13.8	9	1	10				
	23.0	4	6	60				
	50.0	0	10	100				
	74.5	0	10	100				
Test condition:	TEST ORGANIS	MS	Dania rar	in (Drachuda)	nio rorio)			
	- Supplier		West Aqua	rium Bad La	uterberg			
	- Age/size/w	eight/loading	a: 3 cm +- 0	.5 cm/0.41 g	ucciberg			
	- Feeding:	019110/ 10001119	TetraMin	1 % of the b	ody weight			
	- Pretreatme	nt: treatment	: 3 times a	week with Ma	lachitgreen			
	14 days of	quarantine						
	- Feeding du	ring test: no)					
	STOCK AND TE	ST SOLUTION A	AND THEIR PR	REPARATION				
	- Solution:	301.2 g/2.5 1	L					
	- Vehicle, solvent: deionized water							
	was not comp	letelv stable	and the de	viations from	m the nominal			
	concentratio	ns were on av	verage more	than 20 %. Th	herefore the			
	mean values of the measured concentrations were used.							
	DILUTION WATER							
	- Source:	Drinkir	ng water of	Gelsenwasser	AG			
	- Aeration:	Continu	lously					
	- Hardness:	13.6°C	dH 7 7					
	- ph: - Oxygen con	7.3 = 7	/,/) 4 mg/l					
	- Holding wa	ter: Dechlori	inated drink	ing water (G	elsenwasser			
	AG)				0100111100001			
	TEST SYSTEM							
	- Test type: flow through test							
	- Concentrations: 25, 36, 50, 70, 100 mg/l							
	- Dosing rate: 6.9 +- 0.1 ml/10 min							
	- Flow rate: 10 l/h							
	- Exposure vessel type: 45 1 aquaria - Number of replicates, fish per replicate: 1, 10							
	- Number of replicates, fish per replicate: 1, 10 - Test temperature: 20 +- 1 °C							
	- Test temperature: 20 +- 1 C - Dissolved oxygen: 8.6 - 9.4 mg/l							
	- pH: 7.3 - 7.6							
	- Adjustment of pH: no							
	- Photoperiod: light/dark: 16 h/8 h							
	DURATION OF	THE TEST: 96	hours					
	SAMPITNC: at	D 24 48	? 72 and 96 h					
	MONITORING O	F TEST SUBSTI	ANCE CONCENT	'RATION:				
	By HPLC anal	vsis						
Reliability:	(1) valid w	ithout restri	lction					
-	Guideline st	udy, GLP, suk	ostance spec	ific analysi	S			
Flag:	WGK (DE), Ma	terial Safety	y Dataset, C	ritical stud	y for SIDS			
0.4 AUG 0005	endpoint				(05)			
24-AUG-2005					(35)			

OECD SIDS 4. ECOTOXICITY

Туре:	other: no data
Species:	Pimephales promelas (Fish, fresh water)
Exposure period:	96 hour(s)
Unit:	mg/l Analytical monitoring: no data
LC50:	= 17
Method:	other: Quantitative structure-activity relationship (QSAR)
Year:	1991
GLP:	no data
Remark:	Probably also quoted by Eldred et al., 1999 for a QSAR development.
	Results are recalculated from the log $(1/LC50)$ value (QSAR = 0.1264 mmol/1).
24-AUG-2005	(10) (23)

4.2 Acute Toxicity to Aquatic Invertebrates

Type: Species: Exposure period: Unit: EC0: EC50:	static Daphnia magna 48 hour(s) mg/l >= 1000 > 1000	(Crustacea) Anal	ytical moni	.toring: no	
Method: Year: GLP: Test substance:	Directive 84/44 1984 yes as prescribed b	9/EEC, C.2 by 1.1 - 1.4	"Acute toxi	city for Dap	phnia"
Result:	RESULTS: EXPOSE - Nominal/measu 250, 350, 500 - Effect data (highest concer - Concentration concentration t (mg/l)	ED ared concentr), 700, 1000 (immobilizati atration test a / response cotal No. No.	rations: mg/l (nomin on)(48 h): ced) curve: 48 h mobile No.	al only) EC50: > 100 immobile %;	00 mg/l immobile
	control	20	20		0
	250	20	20	0	0
	350	21	20	1	5
	500	20	20	0	0
	700	20	20	0	0
	1000	21	21	0	0
	- Effect data (highest concer - Concentration concentration t (mg/l)	(immobilizati ntration test n / response cotal No. No.	lon)(24 h): ted) curve: 24 h mobile No.	EC50 > 1000	mg/l immobile
	control	20	20	0	0
	250	20	20	0	0
	350	21	20	1	5
	500	20	20	±	0
	500	20	20	U	U
	/00	20	20	U	U

OECD SIDS				MALONIC	ACID DIESTERS
4. ECOTOXICITY				Ι	ID: 108-59-8 DATE: 21.01.2005
	1000	21	21	0	0
	- Cumulativ - Effect co water sol Based on th hydrolysis however be during the than the hy RESULTS CON	ve immobilizat: oncentration vs lubility: 142 of ne effective co an EC50 of > ' a conservative test hydrolys: ydrolysis rate NTROL:	ion: >= 1000 s. test subst g/l (20°C) pncentration 728 mg/l can e approach, a is might actu at pH7 used	mg/l corrected f be calculat s due to th ally have k for the cal	for potential ted. This may he lower pH been slower Lculation.
	RESULTS: TE - Concentra - Results (concentrati	EST WITH REFERM ations: (immobilization ion % immobi	ENCE SUBSTANC n) (24 h): ilized daphni	:E .ds	
	(mg/1)				
Tost condition.	0.9 1.9	I CMC	30 100		
Test condition:	TEST ORGANI - Strain: - Source/su - Breeding in M4-mediu - Age: < 1 - Feeding: - Feeding: - Feeding c - Control g control: pc STOCK AND T - Vehicle, - Concentra STABILITY C information DILUTION WA - Source: S - Aeration: - Hardness: - Salinity: - Ca/Mg rati	ISMS Daphn: upplier: Hüls A method: Breed: um in 11 beakes day Desmodesmus su during test: no group: negative otassium dichro TEST SOLUTION A solvent: wates ation of vehic: DF THE TEST CHI n (hydrolysis a ATER Synthetic fresh : no : CaCl2 x 2 H20 : KCl: 5.5 mg/2 tio: 4 : 1 to: 10 : 1	ia magna Stra AG ing method ac rs water exch abspicatus one e control (wa omate AND THEIR PRE c Le/ solvent: EMICAL SOLUTI as function o h water D: 294 mg/l,	us IRCHA cording to ange every ter only), PARATION 2000 mg/l ONS: see st of pH). MgSO4 x 7 F	Elendt (1990) 2 to 3 days. positive tability H2O: 123 mg/1
	 pH: 6.4 t Oxygen co TEST SYSTEM Test type Concentra Exposure Number of replicates, Test temp Dissolved pH: Adjustmen Intensity DURATION OF TEST PARAME MONITORING nominal con Statistical Cavalli-Sfc 	<pre>co 6.8 ontent: 7.7 to 4 e: static ations: (nomination vessel type: 1 f replicates, 1 f re</pre>	<pre>8.4 mg/l al): 250, 350 cound bottom individuals p s - 2°C - 8.4 mg/l - 6.8 on: dark hours zation ANCE CONCENTR sed. oit ananlysis</pre>	9, 500, 700, flasks per replicat RATION: not according	to

OECD SIDS	MALONIC ACID DIESTERS
4. ECOTOXICITY	ID: 108-59-8
	DATE: 21.01.2005
Reliability:	(2) valid with restrictions Guideline study, GLP, but no analytical substance

determination.Flag:WGK (DE), Material Safety Dataset, Critical study for SIDS
endpoint24-AUG-2005(33)

4.3 Toxicity to Aquatic Plants e.g. Algae

Species: Endpoint: Exposure period:	Scenedesmus su growth rate 72 hour(s)	bspicatı	ıs (Alq	gae)				
Unit:	mg/l		Analyt	cical mon	itoring:	no		
NOEC:	= 20							
EC10:	= 68							
EC50:	= 386							
Method:	Directive 87/3	02/EEC,	part C,	p. 89	"Algal i	nhibit	ion test"	
Year:	1988							
GLP:	yes	1 1 1	1 4					
Test substance:	as prescribed	by I.I -	- 1.4					
Method:	Method: 88/302	/EEC or	OECD 20)1				
Result:	RESULTS:							
	Nominal concen	trations	s only					
	- Effect data/	Element	values	•				
	- Cell density	data:						
	Cell density i	n cells	x 10exp	o4/ml (st	andard c	leviati	on)	
	(at 24, 48, an	d 72 h r	nean val	Lues of 8	paralle	el expe	riments for	
	controls and 5	experir	ments fo	or test s	ubstance	e conce	ntrations)	
	0 h:							
	Control 10	20 40	80	160 32	0			
	0 mg/l mg/l	mg/l mg,	/l mg/l	mg/l mg	/1			
	2 2	2 2	2	2 2			_	
	Time Control 0 mg/l	10 mg/l	20 4 mg/l n	10 80 ng/l mg/	160 l mg/) 32 'l mg	0 /l	
	24 h 7	6	(1 4)	6	6	5		
	(s.a.) (1.1)	(⊥)	(1.4)	(1.4) $(1.$	2) (1.	3) (0	.5)	
	48 h 27	29	32	31 26	2	20	14	
	(s.d.) (4.1)	(5.5)	(5.5) (5	5.8) (3.2) (2.	5) (1	.2)	
	50.1.404							
	72 h 134	141	129 1	LI3 71	4	13	23	
	(s.d.) (6.1)	(8.1)	(/.⊥)	(4.5) (2.	8) (2	(.5)	3.6)	
	- Growth curve Area under the	s: growth	curve a	and % inh	ibition			
	Control	10	20	40	80	160	320	
	0 mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	
	Area Q6	100 5	98 5	80 5	62 5	42 5	25 5	
	% inhib.	-4.7	-2.6	6.8	34.9	55.7	73.4	

OECD SIDS 4. ECOTOXICITY

<pre>Control 10 20 40 80 160 320 0 mg/l mg/l mg/l mg/l mg/l mg/l mg/l u 1.40 1.42 1.39 1.35 1.19 1.02 0.81 % inhib1.2 0.9 4.1 15.1 27 41.9 pH-development during the test: Control 10 20 40 80 160 320 0 mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>		Growth 0-72 h	rate (u)						
<pre>u 1.40 1.42 1.39 1.35 1.19 1.02 0.81 % inhib1.2 0.9 4.1 15.1 27 41.9 pH-development during the test: Control 10 20 40 80 160 320 0 mg/l mg/l mg/l mg/l mg/l mg/l mg/l 0 h 7.3 7.3 7.3 7.3 7.3 7.3 7.1 72 h 9 9 8.5 5.6 5 4.7 4.7 Due to the lower pH in the test substance vials compared to controls a hydrolysis of the test substance during the study cannot be completely excluded. STATISTICAL RESULTS: Cell growth (biomass): 72 h EbC50: 147.9 mg/l 72 h EbC50: 147.9 mg/l 72 h EbC50: 386.4 mg/l 72 h EbC50: 386.4 mg/l 72 h EbC50: 386.4 mg/l 72 h EbC50: 366.4 mg/l 72 h ErC50: 366.</pre>			Control 0 mg/l	10 mg/l	20 mg/l	40 mg/l	80 mg/l	160 mg/1	320 mg/l
<pre>pH-development during the test: Control 10 20 40 80 160 320 0 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 0 h 7.3 7.3 7.3 7.3 7.3 7.3 7.1 72 h 9 9 8.5 5.6 5 4.7 4.7 Due to the lower pH in the test substance vials compared to controls a hydrolysis of the test substance during the study cannot be completely excluded. STATISTICAL RESULTS: Cell growth (biomass): 72 h EbC50: 147.9 mg/1 72 h EbC50: 147.9 mg/1 72 h EbC50: 242.2 mg/1 72 h EbC50: 386.4 mg/1 72 h EbC50: 386.4 mg/1 72 h ErC50: 386.4 mg/1 75 h ErC50: 386.4 mg/1 76 h ErC50: 200 > highest test concentration of 320 mg/1 Recalculation of the results taking into account potential hydrolysis at pH7 leads to 72 h EC50 values of 240 mg/1 for growth rate and 92 mg/1 for biomass. This may however be a conservative approach, as due to the lowered pH during the test hydrolysis might actually have been slower than the hydrolysis rate at pH7 used for the calculation. TEST ORGNISMS - Strain: Desmodesmus subspicatus (Scenedesmus subspicatus), 86.81 SAG - Source/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding - Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. - Method of cultivation: Cell density: 20000 cells/ml, culture</pre>		u % inhib	1.40	1.42 -1.2	1.39 0.9	1.35 4.1	1.19 15.1	1.02 27	2 0.81 41.9
<pre>0 h 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.1 72 h 9 9 8.5 5.6 5 4.7 4.7 Due to the lower pH in the test substance vials compared to controls a hydrolysis of the test substance during the study cannot be completely excluded.</pre> STATISTICAL RESULTS: Cell growth (biomass): 72 h EbC50: 147.9 mg/l 72 h EbC50: 147.9 mg/l 72 h EbC90: > highest tested concentration of 320 mg/l Growth rates: 72 h ErC50: 386.4 mg/l 72 h ErC50: 386.4 mg/l 72 h ErC90: > highest test concentration of 320 mg/l Recalculation of the results taking into account potential hydrolysis at pH7 leads to 72 h EC50 values of 240 mg/l for growth rate and 92 mg/l for biomass. This may however be a conservative approach, as due to the lowered pH during the test hydrolysis might actually have been slower than the hydrolysis rate at pH7 used for the calculation. TEST ORGANISMS - Strain: Desmodesmus subspicatus (Scenedesmus subspicatus), 86.81 SAG - Surce/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding - Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. - Method of cultivation: Cell density: 20000 cells/ml, culture		pH-deve Con 0 m	lopment d trol 10 g/l mg	uring t 20 /l mg	he tes 4 /1 m	t: 0 g/l	80 mg/l	160 mg/l	320 mg/l
 72h 9 9 8.5 5.6 5 4.7 4.7 Due to the lower pH in the test substance vials compared to controls a hydrolysis of the test substance during the study cannot be completely excluded. STATISTICAL RESULTS: Cell growth (biomass): 72 h EbC50: 147.9 mg/l 72 h EbC50: 147.9 mg/l 72 h EbC50: 242.2 mg/l 72 h EbC50: 386.4 mg/l 72 h ECC50: 386.4 mg/l 72 h ErC90: > highest tested concentration of 320 mg/l Growth rates: 72 h ErC90: > highest test concentration of 320 mg/l Recalculation of the results taking into account potential hydrolysis at pH7 leads to 72 h EC50 values of 240 mg/l for growth rate and 92 mg/l for biomass. This may however be a conservative approach, as due to the lowered pH during the test hydrolysis might actually have been slower than the hydrolysis rate at pH7 used for the calculation. TEST ORGANISMS Strain: Desmodesmus subspicatus (Scenedesmus subspicatus), 8.6.1 SG Source/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. Method of cultivation: Cell density: 2000 cells/ml, culture 		0 h 7.	3 7.	37.	3 7	.3	7.3	7.3	7.1
<pre>Due to the lower pH in the test substance vials compared to controls a hydrolysis of the test substance during the study cannot be completely excluded.</pre> STATISTICAL RESULTS: Cell growth (biomass): 72 h EbC50: 147.9 mg/l 72 h EbC50: 147.9 mg/l 72 h EbC90: > highest tested concentration of 320 mg/l Growth rates: 72 h ErC50: 386.4 mg/l 72 h ErC10: 68.1 mg/l 72 h ErC90: > highest test concentration of 320 mg/l Recalculation of the results taking into account potential hydrolysis at pH7 leads to 72 h Ec50 values of 240 mg/l for growth rate and 92 mg/l for biomass. This may however be a conservative approach, as due to the lowered pH during the test hydrolysis might actually have been slower than the hydrolysis rate at pH7 used for the calculation. TEST ORGANISMS - Strain: Desmodesmus subspicatus (Scenedesmus subspicatus), 86.81 SAG - Source/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding - Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. - Method of cultivation: Cell density: 20000 cells/ml, culture		72 h 9	9	8.	5 5	.6	5	4.7	4.7
<pre>STATISTICAL RESULTS: Cell growth (biomass): 72 h EbC50: 147.9 mg/l 72 h EbC10: 42.2 mg/l 72 h EbC90: > highest tested concentration of 320 mg/l Growth rates: 72 h ErC50: 386.4 mg/l 72 h ErC50: 386.4 mg/l 72 h ErC90: > highest test concentration of 320 mg/l Recalculation of the results taking into account potential hydrolysis at pH7 leads to 72 h EC50 values of 240 mg/l for growth rate and 92 mg/l for biomass. This may however be a conservative approach, as due to the lowered pH during the test hydrolysis might actually have been slower than the hydrolysis rate at pH7 used for the calculation. TEST ORGANISMS - Strain: Desmodesmus subspicatus (Scenedesmus subspicatus), 86.81 SAG - Source/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding - Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. - Method of cultivation: Cell density: 20000 cells/ml, culture</pre>		Due to control cannot	the lower s a hydro be comple	pH in lysis o tely ex	the te f the cluded	st subs test su •	tance vi bstance	als com during	npared to the study
<pre>Growth rates: 72 h ErC50: 386.4 mg/l 72 h ErC10: 68.1 mg/l 72 h ErC90: > highest test concentration of 320 mg/l Recalculation of the results taking into account potential hydrolysis at pH7 leads to 72 h EC50 values of 240 mg/l for growth rate and 92 mg/l for biomass. This may however be a conservative approach, as due to the lowered pH during the test hydrolysis might actually have been slower than the hydrolysis rate at pH7 used for the calculation. TEST ORGANISMS - Strain: Desmodesmus subspicatus (Scenedesmus subspicatus), 86.81 SAG - Source/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding - Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. - Method of cultivation: Cell density: 20000 cells/ml, culture</pre>		STATIST Cell gr 72 h Eb 72 h Eb 72 h Eb	ICAL RESU owth (bio C50: 147. C10: 42. C90: > hi	LTS: mass): 9 mg/l 2 mg/l ghest t	ested	concent	ration c	of 320 m	ng/l
<pre>Recalculation of the results taking into account potential hydrolysis at pH7 leads to 72 h EC50 values of 240 mg/l for growth rate and 92 mg/l for biomass. This may however be a conservative approach, as due to the lowered pH during the test hydrolysis might actually have been slower than the hydrolysis rate at pH7 used for the calculation. TEST ORGANISMS - Strain: Desmodesmus subspicatus (Scenedesmus subspicatus), 86.81 SAG - Source/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding - Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. - Method of cultivation: Cell density: 20000 cells/ml, culture</pre>		Growth 72 h Er 72 h Er 72 h Er	rates: C50: 386. C10: 68.1 C90: > hi	4 mg/l mg/l ghest t	est co	ncentra	tion of	320 mg/	<i>"</i> 1
 Strain: Desmodesmus subspicatus (Scenedesmus subspicatus), 86.81 SAG Source/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. Method of cultivation: Cell density: 20000 cells/ml, culture 	Test condition:	Recalcu hydroly growth conserv test hy hydroly TEST OR	lation of sis at pH rate and ative app drolysis sis rate GANISMS	the re 7 leads 92 mg/l roach, might a at pH7	sults to 72 for b as due ctuall used f	taking h EC50 iomass. to the y have or the	into acc values This ma lowered been slo calculat	count po of 240 ay howev d pH dur ower that cion.	otential mg/l for ver be a ring the an the
 Source/supplier: Institut für Wasser-, Boden- und Lufthygiene, Berlin and Hüls AG, own breeding Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. Method of cultivation: Cell density: 20000 cells/ml, culture 		- Strai 86 81 S	n: Desmod AG	esmus s	ubspic	atus (S	cenedesn	nus subs	spicatus),
 Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. Method of cultivation: Cell density: 20000 cells/ml, culture 		- Sourc	e/supplie	r: Inst	itut f	ür Wass	er-, Boo	len- und	l
in sterile Erlenmeyer flasks on light-tables, light intensity: 8000 Lux, white, medium according to EC-guideline 88/302/EEC, temperature: 24 +- 2 °C		 Laboratory culture: From a stem culture, prepared 3 days prior to the start of the experiment. Method of cultivation: Cell density: 20000 cells/ml, culture in sterile Erlenmeyer flasks on light-tables, light intensity: 8000 Lux, white, medium according to EC-guideline 88/302/EEC, temperature: 24 to 2 °C 							
- Controls: without test substance		- Contr	ols: with	out tes	t subs	tance		a /m]	
STOCK AND TEST SOLUTION AND THEIR PREPARATION		STOCK A	AI CEII C ND TEST S	OLUTION	AND T	2x 10e HEIR PF	EPARATIC)N	
- 1 g/l in water STABILITY OF THE TEST CHEMICAL SOLUTIONS: see stability information (hydrolysis as function of pH). DILUTION WATER		- 1 g/l STABILI informa DILUTIO	in water TY OF THE tion (hyd N WATER	TEST C rolysis	HEMICA as fu	L SOLUI nction	'IONS: se of pH).	e stabi	lity
- Aeration: no		- Sourc - Aerat	e. Deroni ion: no emem	zeu wat	eτ				

OECD SIDS	MALONIC ACID DIESTERS
4. ECOTOXICITY	ID: 108-59-8
	DATE: 21.01.2005
- Test type: static	

	iest type. statte		
	- Number of replicates:	5 to 8	
	- Concentrations: (nominal)	10, 20, 40, 80, 160, 320 mg/l	
	- Test temperature:	24 +- 2 °C	
	- pH:	pH at the beginning of the test: 7	1.1
	to 7.3, at the end of the	ne test: 4.7 to 9.0.	
	- Intensity of irradiat:	ion: 8000 Lux	
	MONITORING OF TEST SUBS	IANCE CONCENTRATION: not performed,	
	nominal concentrations w	used.	
	Statistical Method:		
	Probit analysis accordin	ng to Cavalli and Sforza, 1972.	
Reliability:	(2) valid with restrict	tions	
	Guideline study, GLP, bu	ut no analytical substance	
	determination.		
Flag:	WGK (DE), Material Safet	ty Dataset, Critical study for SIDS	3
	endpoint		
24-AUG-2005			(37)

4.4 Toxicity to Microorganisms e.g. Bacteria

Type:	aquatic
Species:	Photobacterium phosphoreum (Bacteria)
Exposure period:	5 minute(s)
Unit:	mg/1 Analytical monitoring: no data
EC50:	= 38
Method:	other: Microtox
Year:	1982
GLP:	no data
Test substance:	other TS: Dimethyl malonate, unknown purity
Remark: Test substance: 26-AUG-2005	Results are recalculated from log 1/EC50 = 0.288 mmol/l. stock solution contained 2 % NaCl (10)
Type:	aquatic
Species:	Pseudomonas putida (Bacteria)
Exposure period:	18 hour(s)
Unit:	g/1 Analytical monitoring: no
EC10:	= 6
EC50: >=	= 177
Method:	other: DIN 38412, part 8
GLP:	yes
Test substance:	as prescribed by 1.1 - 1.4
Remark: Reliability: Flag: 24-AUG-2005	EC50 values extrapolated beyond the range of concentrations used in experiment (<= 6.2 g/l) (1) valid without restriction Critical study for SIDS endpoint (36)
Type:	aquatic
Species:	Tetrahymena pyriformis (Protozoa)
Unit:	mmol/1 Analytical monitoring: no data
EC50:	= 20
Method:	other

OECD SIDS	MALONIC ACID DIESTERS
4. ECOTOXICITY	ID: 108-59-8
	DATE: 21.01.2005
Year:	1997
GLP:	no data
Method:	2-dimensional static 50% inhibition growth concentration (IGC50) for axenic cultures of the ciliate Tetrahymena pyriformis according to Schultz, 1996.
Remark:	The data were used to develop a QSAR model.
Test condition:	Stock solutions: In DMSO at concentrations of 5 to 50 mg/l. Population density measured photometrically at 540 nm.
Test substance:	Dimethyl malonate, purity >= 95%
Flag:	Critical study for SIDS endpoint
26-AUG-2005	(40)

4.5 Chronic Toxicity to Aquatic Organisms

4.5.1 Chronic Toxicity to Fish

4.5.2 Chronic Toxicity to Aquatic Invertebrates

4. ECOTOXICITY

TERRESTRIAL ORGANISMS

4.6.1 Toxicity to Sediment Dwelling Organisms

4.6.2 Toxicity to Terrestrial Plants

- 4.6.3 Toxicity to Soil Dwelling Organisms
- 4.6.4 Toxicity to other Non-Mamm. Terrestrial Species
- 4.7 Biological Effects Monitoring
- 4.8 Biotransformation and Kinetics
- 4.9 Additional Remarks

5.0 Toxicokinetics, Metabolism and Distribution

In Vitro/in vivo: Type: Species:		In vivo Metabolism rat
Doses females.		$5 \mu 1/0.5 mCi$
Route of administ	ration:	other: intracerebral injection
Deg. product:		yes
Method: Year: GLP:	other 1978 no data	
Test substance:	other TS: C1 acitivity 12	or C2 14-C-radiolabeled malonic acid, specific mCi and 42 mCi respectively
Result:	The authors we to acetyl-Cov after intrace A rapid reflue reported. Lake the expired a but not after present in gl degradation of these amino a [2-14C]acetyl activation ar experiments we In vitro the amino acids. radioactivity The authors of following row	verified that the decarboxylation of malonic acid A by various mammalian tissues also occurs in vivo erebral injection. Ex of unreacted malonic acid in venous blood was beled 14CO2 was recovered from venous blood and air after administration of C-1 labeled product, F C-2 labeled product. High radioactivity was lutamate, aspartate and GABA. Sequential of glutamate and aspartate proved that labeling of acids occurred from [1-14C]acetyl-CoA and L-CoA respectively via the Krebs-cycle. Malonate and decarboxylation were similar to in vitro with isolated mitochondria from different tissues. radiolabel was however not incorporated into In the in vivo experiment a minor amount of y was also incorporated in brain lipids. conclude that malonic acid is metabolised via the atte:
	In vitro: Acetyl-CoA	> Acetyl-CoA + CO2 > acetate + CoASH
	In vivo: Acet formation of also be incro	cyl-CoA enters the Krebs cycle and is used for the aspartate, glutamate and GABA. A minor amount may oporated into lipids.
Test condition:	Intracerebral malonic acid rats were kil removed, weig reaction prod analysed for	I injection of either C1- or C2- 14C- radiolabeled to anesthetized adult male and female rats. The led after 2, 5, 10, 15 or 30 min and the brains ghed, homogenized and analysed for radiolabeled ducts. Venous blood and expired air was also radioactivity.
Reliability:	(2) valid wi Well document	th restrictions red scientific reference
Flag: 16-AUG-2005	Critical stud	dy for SIDS endpoint (47)
In Vitro/in vivo: Type:		In vivo Metabolism

OECD SIDS	MALONIC ACID DIESTERS
6. REFERENCES	ID: 108-59-8
	DATE: 21.01.2005

Remark: DMM is likely to be metabolized by unspecific (serine-) esterases of different tissues, in particular in the liver to the mono ester and finally to malonic acid and the corresponding alcohol, methanol. This is corroborated by the findings of the abiotic hydrolysis, in particular at alkaline pH that can be regarded as qualitatively similar to the hydrolysis catalyzed by unspecific esterases (Jacobi and Hoffmann, 1989). The hydrolysis products are likely to be metabolized via physiological pathways as the tricarboxylic acid cycle because they are part of the normal intermediate metabolism (WHO, 2000). 21-JUL-2005

5.1 Acute Toxicity

5.1.1 Acute Oral	Toxicity	
Type: Species: Value:	LD50 rat = 5331 mg/kg bw	
Method: GLP: Test substance:	other: no data no data no data	
Reliability: 04-AUG-2004	(4) not assignable Secondary Reference only.	(51)
Type: Species: Value:	LD50 rat ca. 4700 mg/kg bw	
Method: Year: GLP: Test substance:	other: Acute Oral Toxicity 1978 no data no data	
Reliability: 04-AUG-2004	(4) not assignable Data from handbook	(63)
Type: Species: Value:	LD50 rat = 4577 - 6164 mg/kg bw	
Method: Year: GLP: Test substance:	other: Acute Oral Toxicity 1976 no data no data	
Remark: Reliability: 04-AUG-2004	No details reported. (4) not assignable Secondary Reference only.	(49)
Type:	LD50	

OECD SIDS

6. REFERENCES

Species: Strain: Sex: No. of Animals: Doses: Value:	rat other: Bor: WISW (SPF Cpb) male/female 10 2000 mg/kg bw > 2000 mg/kg bw	
Method: Year: GLP:	other: OECD Guide-line 401 of 1987 yes	1987
Test substance:	as prescribed by 1.1 - 1.4	
Remark:	both female and male Limittest	
Result:	MORTALITY: No mortality occured during th CLINICAL SIGNS: None. No influ NECROPSY FINDINGS: No indicat: changes were observed.	he study. uence on body weight gain. ions of substance related organ
Test condition:	<pre>TEST ORGANISMS: - Source: - Age: - Weight at study initiation: ADMINISTRATION: - Doses: - Doses per time period: - Volume administered or conce - Post dose observation period EXAMINATIONS: Clinical symptoms were recorded</pre>	<pre>Fa. Winkelmann, Borchen 6 - 8 weeks 128.6 +- 20 % 2000 mg/kg bw once entration: 1.74 cm³/kg bw d: 2 weeks ed 0.5, 1, 2, 3, 4, 5, and 6</pre>
	hours after adminsitration of daily for the following two we at the day of adinmistration of and 14. After 14 days the anin inhalation, sectioned and inve- organ changes.	the test substance and once eeks. Body weight was determined of the test substance, on days 7 mals were killed by CO2 estigated for any macroscopic
Reliability:	(1) valid without restriction Guideline study, GLP	n
Flag: 01-DEC-2004	Material Safety Dataset, Crit:	ical study for SIDS endpoint (31)

5.1.2 Acute Inhalation Toxicity

5.1.3 Acute Dermal Toxicity

Type: Species: Strain:	LD50 rat other: Bor: WISW (SPE Cpb)
Sex:	male/female
No. of Animals:	10 2000 mm (hm hm
Doses:	2000 mg/kg bw
Value:	> 2000 mg/kg bw
Method:	OECD Guide-line 402 "Acute dermal Toxicity"
Year:	1987
GLP:	yes
Test substance:	as prescribed by 1.1 - 1.4

OECD SIDS		MALONIC ACID DIESTERS
6. REFERENCES		ID: 108-59-8 DATE: 21.01.2005
Remark: Result:	both female and male MORTALITY: No mortality was o CLINICAL SIGNS: No substance observed. No local effects we site. No substance related ef weight gain were reported.	bserved during the study. related clinical signs were re observed at the application fects on body weight or body
Test condition:	NECROPSY FINDINGS: No indicat organ effects were observed. application site were found. TEST ORGANISMS:	ions for any substance related No changes of the skin at the
	- Source: - Weight at study initiation: ADMINISTRATION:	Fa. Winkelmann, Borchen 200 - 300 g
Reliability: Flag: 04-AUG-2004	 Area covered: of body surface) Occlusion: Vehicle: Concentration in vehicle: Total volume applied: Doses: Removal of test substance: the skin was washed with warm EXAMINATIONS: Clinical symptoms were record after application of the test following two weeks. The appl substance related local effect days 0 (day of application of After the 14 day observation inhalation of CO2, sectioned related macroscopic organ cha (1) valid without restriction Guideline study, GLP Material Safety Dataset, Crit 	<pre>intact shorn backside skin (10% semiocclusive none undiluted test substance 1.74 cm³/kg 2000 mg/kg bw 24 hours after application, water ed 0.5, 1, 2, 3, 4, 5, and 6 h substance and once daily in the ication area was exmined for ets. Body weights were recorded at the test substance), 7 and 14. period all animals were killed by and investigated for substance nges. n ical study for SIDS endpoint (28)</pre>
Type: Species: Value:	LD50 rabbit > 5000 mg/kg bw	
Method: GLP: Test substance:	other: no data no data no data	
Reliability: 12-AUG-2004	(4) not assignable	(51)
Type: Species: Value:	LD50 rabbit > 5000 mg/kg bw	
Method: Year: GLP: Test substance:	other: Acute Dermal Toxicity 1976 no data no data	
Reliability:	(4) not assignable No details reported.	

20-AUG-2004

5.1.4 Acute Toxicity, other Routes

5.2 Corrosiveness and Irritation

5.2.1 Skin Irritation

Species:	rabbit
Exposure:	Occlusive
Exposure Time:	24 hour(s)
Result:	irritating
Method:	other: Skin Irritation
Year:	1976
GLP:	no data
Test substance:	no data
Remark:	Dimethyl malonate applied full strength to intact or abraded rabbit skin for 24 h under occlusion was irritating. No further information available. Not classifiable according to current EEC directives.
04-AUG-2004	(4) not assignable Secondary Reference only. (49)
Species:	rabbit
Concentration:	undiluted
Exposure:	Semiocclusive
Exposure Time:	4 hour(s)
No. of Animals:	3
Result:	not irritating
EC classificat.:	not irritating
Method:	OECD Guide-line 404 "Acute Dermal Irritation/Corrosion"
Year:	1992
GLP:	yes
Test substance:	as prescribed by 1.1 - 1.4
Result:	Primary irritation score (24, 48, 72 hours) AVERAGE SCORE - Erythema: 3/3 animals: 0 - Edema: 3/3 animals: 0 Slight erythema (grade 1 was observed in all 3 animals 30 to 60 min after removal of the patch. OTHER EFFECTS: No substance related clinical signs or macroscopic organ findings at necropsy were reported.
Test condition:	<pre>TEST ANIMALS: - Strain: Small white russian, Chbb: HM, SPF - Sex: one male, 2 females - Source: Fa. Dr. Karl Thomae GmbH, Biberach - Weight at study initiation: 2 - 3 kg - Number of animals: 3 ADMINISTRATION/EXPOSURE - Preparation of test substance: undiluted test substance - Area of exposure: shorn skin of the dorsal area of the body, 6 cm2 - Occlusion: semiocclusive - Vehicle: none - Total volume applied: 0.5 cm³</pre>

OECD SIDS	MALONIC ACID DIESTERS
6. REFERENCES	ID: 108-59-8
	DATE: 21.01.2005
	 Postexposure period: 72 hours Removal of test substance: remove by washing with warm water after 4 h. EXAMINATIONS Scoring system: According to OECD No. 404 Examination time points: 30 to 60 min, 24 h, 48 h, 72 h.
Reliability:	(1) valid without restriction Guideline study, GLP
Flag: 12-AUG-2004	Material Safety Dataset, Critical study for SIDS endpoint (29)

5.2.2 Eye Irritation

Species:	rabbit
Concentration:	undiluted
Dose:	.1 ml
Exposure Time:	24 hour(s)
Comment:	rinsed after (see exposure time)
No. of Animals:	3
Result:	slightly irritating
EC classificat.:	not irritating
Method:	OECD Guide-line 405 "Acute Eye Irritation/Corrosion"
Year:	1992
GLP:	yes
Test substance:	as prescribed by 1.1 - 1.4
Result:	AVERAGE SCORE
	Primary irritation score (24, 48, 72 hours)
	Iris: animal 1: 1.0 animal 2: 0.33
	animal 3: 0.67
	Cornea: animal 1: 1.67 animal 2: 1.33
	animal 3: 1.0
	Conj. redness: 3/3 animals: 2.0
	Conj. chemosis: animal 1: 1.67 animal 2+3: 1.33
	Mean scores:
	Conjunctivae redness: 2.00
	Conjuctivae chemosis: 1.44
	Iris inflammatory changes: 0.67
	Corneal opacity: 1.33
	DESCRIPTION OF LESIONS:
	<pre>1 h p.a.: Medium grade erythema of the conjunctivae and slight corneal opacity as well as excretion of a white exsudate from the treated eyes was observed in all 3 animals. 2 animals had additionally a very slight edema, one a marked edema. 24 h p.a.: All 3 animals showed medium grade erythema and marked edema of the conjunctivae, indications of an irritaiton of the iris with intact pupil reaction. The cornea was slightly opaque (in 2 animals the whole area was affected, in 1 animal about half of the area). Exsudation was still observed in one animal. 48 h p.a.: The medium grade erythema was unchanged in all animals, while edema was reduced in 2 animals. 2 animals still showed iridal irritation while it was reduced in one animal. In 2 animals corneal opacity had increased slightly. Exsudation was still observed in one animal. 72 h p.a.: The medium grade erythema was unchanged in all animals, while edema was reversed. Iridal irritation was still</pre>
	observed in one animal. Slight corneal opacity was seen in 2

OECD SIDS	MALONIC ACID DIESTERS
6. REFERENCES	ID: 108-59-8
	DATE: 21.01.2005
Test condition:	<pre>animals (covering one and 3 quarts of the surface respectively) while in 1 animal corneal opacity wa still unchanged. 6 d p.a.: Corneal and iris reactions were reversed completely in all animals, very slight conjunctival irritation and chemosis was observed in 2 animals. 8 d p.a.: All effects were reversible by day 8. REVERSIBILITY: Effects were reversible within 8 days. TEST ANIMALS: - Strain: Small white Russian, Chbb: HM, SPF - Sex: male - Source: Fa. Dr. Karl Thomae GmbH, Biberach - Weight at study initiation: 2 - 3 kg - Number of animals: 3 - Control: untreated second eye of the animals</pre>
	ADMINISTRATION/EXPOSURE - Preparation of test substance: undiluted test substance - Amount of substance instilled: 0.1 cm ³ - Vehicle: none - Postexposure period: 8 days p.a.
Reliability:	EXAMINATIONS - Ophtalmoscopic examination: Fluorescein-test prior to the administration of the test substance to ensure intactness of cornea and 24 h, 48 h, 72 h, 6 d p.a. - Scoring system: According to OECD No. 405. - Observation period: 8 days (1) valid without restriction
Flag:	Guideline study, GLP Material Safety Dataset, Critical study for SIDS endpoint
04-AUG-2004	(27)

5.3 Sensitization

Type:	Buehler Test
Species:	guinea pig
Concentration 1st:	Induction 100 %
2nd:	Induction 100 %
3rd:	Challenge 100 %
No. of Animals:	10
Result:	not sensitizing
Classification:	not sensitizing
Method: Year:	OECD Guide-line 406 "Skin Sensitization"
GLP:	ves
Test substance:	as prescribed by 1.1 - 1.4
Remark:no reaction observed in any of 10 animalsResult:RESULTS OF PILOT STUDY: No skin irritation was obser of the tested concentrations after 6, 24, and 48 h p RESULTS OF TEST	
	 Sensitization reaction: None of the test animals and non e of the control animals showed a positive skin reaction 24, 48, or 72 h after the challenge application. Under the conditions of the test the substance is not skin sensitizing. Clinical signs: None observed, body weight development during the study was normal.

OECD SIDS	MALONIC ACID DIESTERS
6. REFERENCES	ID: 108-59-8 DATE: 21.01.2005
Test condition:	TEST ANIMALS: Guinea pigs - Strain: Dunkin Hartley, Pirbright White Bor:DHPW (SPF) - Sex: female - Source: Winkelmann, Borchen
	 Age: juvenile adult rats Weight at study initiation: 376-458 g Number of animals: 10 Controls: 20 ADMINISTRATION/EXPOSURE
	 Study type: Bühler test Preparation of test substance for induction: udiluted during all 3 induction applications.
	- Induction schedule: 6 h occlusive applications on day 0, day 7 and day 14
	 Challenge schedule: day 28, 6 h occlusive Concentrations used for challenge: undiltued test substance EXAMINATIONS
	- Grading system: according to OECD 406
	 Positive control: regular assessment of the reliability and sensitivity of the test system with standard allergens. Deviations from guideline: although a negative result was obtained, the test group consisted only of 10 animals. (The guideline recommends the use of 20 test animals in this case).
Reliability:	(2) valid with restrictions Guideline study, GLP
Flag: 30-NOV-2004	Material Safety Dataset, Critical study for SIDS endpoint (34)
Type:	other: Maximization test
Species: Result:	human not sensitizing
Method:	other: Maximization Test According to Kligman, 1966 and Kligman and Eppstein, 1975
Year:	1975
Test substance:	no data
Remark:	A maximization test was employed and carried out on 25 volunteers.
	Tested at a concentration of 8 % in petrolatum, dimethyl malonate produced no sensitization in the maximization test on human subjects.
Reliability:	(2) valid with restrictions Well documented secientific reference
Flag: 30-NOV-2004	Critical study for SIDS endpoint (44) (45) (46)
5.4 Repeated Dos	e Toxicity
Туре:	Sub-acute

Species:	rat	Sex: male/female					
Strain:	Wistar						
Route of administration:	gavage						
Exposure period:	39 to 51 days (from 14 days bef	fore mating to day 3 of					
Frequency of treatment: Post exposure period:	daily, 7 days per week 14 days						

MALONIC ACID DIESTERS ID: 108-59-8 DATE: 21.01.2005

0, 100, 300, 1000 mg/kg bw per day Doses: Control Group: yes, concurrent vehicle NOAEL: = 300 mg/kg bwLOAEL: = 1000 mg/kg bwMethod: OECD combined study TG422 Year: 2004 GLP: yes Test substance: other TS: Dimethyl malonate Method: OECD Combined Repeated Dose and Reproduction/Developmental Screening Test. Result: Mortality: No mortality was observed in any of the dose groups. TOXIC RESPONSE/EFFECTS BY DOSE LEVEL: - Clinical signs: No test item related clinical signs were observed throughout the test and recovery period in any of the dose groups. - FOB: No treatment related changes were observed. - Body weight gain: No treatment related effects on body weight and body weight gain were observed. - Food consumption: No treatment related effects were observed. - Clinical chemistry: No treatment related effects were observed. - Haematology: No treatment related changes were observed. - Organ weights: No treatment related effects were observed. - Gross pathology: No treatment related effects were observed. - Histopathology: 1000 mg/kg bw: Livers of males and females showed a significantly increased incidence of hepatocellular hypertrophy. The change was considered reversible as the incidence was not significantly increased in the high dose recovery animals. 300 and 100 mg/kg bw: No treatment related changes of the liver were observed. All other histopathological findings were not considered treatment related. STATISTICAL RESULTS: Significantly increased hepatocellular hypetrophy in the high dose group only. Test condition: TEST ORGANISMS - HSDCpb-WU rats - Age at start of treatment: 11-12 weeks - Weight at study initiation: males: 377-379 g, females: 210-219 g - Number of animals: Main group: 10 m, 10 f, recovery groups: 5 m, 5 f ADMINISTRATION / EXPOSURE - Duration of test/exposure: Males: Test groups: 39 days, male recovery group: 39 exposure days, 45 test days. Females: Treatment groups: 51 +- 7 days, recovery group: 39 exposure days, 45 test days.

OECD SIDS

6. REFERENCES

- Type of exposure: Oral gavage - Post exposure period: 14 days - Vehicle: Double distilled water - Concentration in vehicle: 10 mg/ml, 30 mg/ml, 100 mg/ml - Total volume applied: 10 ml/kg bw - Doses: 100, 300, 1000 mg/kg bw Treatment: Male rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period and approximately 2 weeks post mating. Female rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period, pregnancy and up to lactation day 4. For the high dose recovery group animals (males and females) the test item was administered once daily, 7 days per week by gavage throughout the treatment period. CLINICAL OBSERVATIONS AND FREQUENCY: - Daily observations for appearance, behaviour, clinical signs and preterminal deaths. Females were observed for signs of difficult and pronlonged parturition. - Twice daily: morbidity and mortality. - Detailed clinical observations: once before exposure and at least once per week thereafter. Signs included were changes in skin, fur, eyes, mucous membranes, occurrence of secretions or excretions and autonomic activity, changes in gait, posture, response to handling, behavioural changes, difficult or prolonged parturition. Functional observation battery (FOB): Examinations were performed in randomly selected 5 animals of each group at the end of the dosing period for males and during the lactation period for females and included homecage observations, handling observations, open field tests, sensory observations, neuromuscular observations and physiological observations (body temperature). Body weights were recorded at the beginning of the study, at least weekly thereafter and at termination. All dams were weighed on gestation days 0, 7, 14 and 20 and lactation days 0 and 4. Food consumption was recorded weekly. The fertility index for males and females was determined. LITTER DATA: All pups from each litter were examined for any external deformities, litter size and sex distribution was dertermined. Pup weights were recorded on day 0 and 4. All pups were examined for malformations and subject to gross pathological examination. Pup survival index up to lactation day 4 was determined. HAEMATOLOGY/CLINICAL CHEMISTRY: Standard haematological and clinical chemistry parameters were determined at the end of the pre-mating period and the recovery period in 5 randomly selected males and females of each group. ORGAN WEIGHTS: Organ weights of liver, adrenals, kidneys, thymus spleen, brain and heart were determined of 5 males and females of each group. Testes and epididymis weights of all adult males of each group were also determined.

	GROSS PATHOLOGY.
	All adult animals and pups were examined for any structural
	abnormalities and pathological changes
	ashormarities and pathorogrear changes.
	HISTOPATHOLOGY ·
	The following tissues of 5 males and females of the control
	The following crosses of 5 mates and tenates of the recovery and
	and high dose group as well as all animals of the recovery and
	recovery control groups were examined microscopically: all
	gross lesions, brain, spinal cord, gastrointestinal tract,
	liver, kidney, adrenals, spleen, heart, thymus, thyroid,
	trachea, lungs, testes (fixed in Bouins fluid), epididymes
	(fixed in Bouins fluid), ovaries, uterus, seminal vesicles,
	coagulating glands, prostate, urinary bladder, axillary lymph
	nodes, mesenteric lymph nodes, sciatic nerve, femur with
	marrow, bone marrow smear. Stages of spermatogenesis and
	interstitial testicular structure in male gonads were
	determined additionally. Livers of 5 males and females in the
	mid and low dose groups and testes of 5 males of the mid and
	low dose groups were also examined.
	STATISTICAL ANALYSIS:
	Dunnett's t-Test: body weight, body weight change, food
	intake, haematology, clinical chemistry, organ weight, FOB,
	gestation length, litter size, No. corpora lutea, No.
	implantation.
	Z-Test/Student's t-Test: Mating performance, conception rate,
	fertility index, gestation index, live birth index, viability
	index, sex ratio, pup survival data, No. littered, No. dead
	pups, No. live pups, Pup survival data, Pre- and
	Post-implantation loss. Histopathological data
	t-Test/ANOVA: dose correlation
Test substance:	Dimethyl malonate, purity: 99.8%.
Reliability:	(1) valid without restriction
	Guideline study. GLP
Flag:	Material Safety Dataset. Critical study for SIDS endpoint
11-AUG-2004	(13)
	(13)

5.5 Genetic Toxicity 'in Vitro'

Type :	Cytogenetic assay
System of testing:	Human peripheral lymphocytes
Concentration:	312.5, 625, 1250, 2500, 5000 µg/ml medium
Cytotoxic Concentr	ation: 5000 µg/ml
Metabolic activati	on: with and without
Result:	negative
Method:	DECD Guide-line 473
Year:	2003
GLP:	/es
Test substance:	other TS: Dimethyl malonate
Result:	GENOTOXIC EFFECTS:
	- With metabolic activation:
	The mean incidence of chromosomal aberrations excluding gaps
	at concentrations from 625 to 5000 μ g/ml ranged from 1.5% to
	3.5% and was comparable to control rates and within the
	nistorical control range of 0 to 5%. There was no dose related
	increase in chromosomal aberrations. No polyploidy was noted.
	- Without metabolic activation: The mean incidence of

DATE: 21.01.2005

chromosomal aberrations excluding gaps at concentrations from 625 to 5000 $\mu g/ml$ ranged from 1.0% to 3% and was comparable to control rates and within the historical control range of 0 to 5%. There was no dose related increase in chromosomal aberrations. No polyploidy was noted. All positive and negative controls gave the expected results that were within the ranges of the laboratory and consitent with those reported in the literature. MITOTIC INDEX: Pretest: Without S9 mix, 24 h exposure: At concentrations up to 250 μ g/ml >= 1. 1000 µg/ml; 0.44 2500 µg/ml: 0.72 5000 µg/ml: 0 With S9, 4 h exposure: At concentrations up to 1000 µg/ml: 0.72 to 1.0 (not concentration dependent) 2500 µg/ml: 0.44 5000 µg/ml: 0 Main experiment: Without S9, 4 h exposure: not significantly reduced (0.88 to 1.0) Without S9, 24 h exposure: >=1 up to 625 µg/ml. 1250 µg/ml: 0.79 2500 µg/ml: 0.54 With S9: Not significantly reduced up to 1250 µg/ml: (0.92 to 1.22) 2500 μ g/ml 0.72 and 0.87 5000 µg/ml: 0 in both experiments CYTOTOXIC CONCENTRATION: - With metabolic activation: Pretest and main test: 5000 µg/ml - Without metabolic activation: Pretest and main test: 5000 μ g/ml after 24 h. STATISTICAL RESULTS: The incidence of chromosomal aberrations (excluding gaps) was not significantly different from the controls with and without metabolic activations at all tested dose levels using Fisher exact test (P <= 0.05). The positive controls induced a statisitcally significant increase in chromosomal aberrations excluding gaps. Test condition: Cell culture: Human peripheral blood was obtained by venipuncture from healthy donors without medication and collected in heparinised vessels. 0.5 ml samples of whole blood were added to tubes containing 5 ml of complete culture medium and incubated at 37 °C with occasional shaking. Solvent: DMSO Negative control: Solvent: DMSO Positive control: Mitomycin C in the absence of metabolic activation (0.1 and 0.2 µg/ml medium), cyclophosphamide in the presence of metabolic activation (10 to 20 μ g/ml medium). Metabolic activation system: Postmitochondrial (S9) fraction of rats treated with Arochlor 1254 Preliminary cytotoxicity test: With concentrations from 10 to 5000 μ g/ml medium with and without metabolic acitvation, 48 h after culture establishment, 24 h incubation. Examination of 1 slide per

	culture, 1000 lymphocytes per culture. Calculation of mitotic index. Main study: Experiment 1: The test item or test item plus S9 mix was added to the the cultures after 48 h of culture and incubated for 4 h at 37 °C.					
	After centrifugation and washing the resuspended cell pellet was incubated for futher 20 h in the dark. Colcemid was added to arrest cell division and the cells incubated for a further 2 h. The cells were harvested, fixed in freshly prepared methanol: glacial acetic acid (4: 1) and slides prepared					
	Experiment 2: With S9: same procedure as experiment 1. Without S9:					
	In the absence of S9 a continuous treatment for 24 h was performed. After centrifugation and washing the resuspended cell pellet was incubated for futher 20 h in the dark. Colcemid was added to arrest cell division and the cells incubated for a further 2 h. The cells were harvested, fixed in freshly prepared methanol: glacial acetic acid (4: 1) and					
	slides prepared. All cultures were run in duplicate using blood from a different donor.					
	Stain: Giemsa					
	For each treatment and culture 100 metaphases per plate were					
	For the determination of cytotoxicity 1000 cells were scored and the mitotic index determined as percentage of cells in					
	Statistical evaluation:					
	Fisher Exact Test.					
Test substance:	Dimethyl malonate, purity: 99.8%.					
Reliability:	(1) valid without restriction					
Flag: 17-AUG-2004	Material Safety Dataset, Critical study for SIDS endpoint (16)					
Type: System of testing:	Ames test Salmonella typhimurium TA 1535, TA 1537, TA 1538, TA 98, TA 100					
Concentration: Metabolic activati Result:	8 - 5000 ug/plate ion: with and without negative					
Method: Year:	Directive 84/449/EEC, B.14 1992					
Test substance:	as prescribed by 1.1 - 1.4					
Method:	Method: Directive 84/449/EEC, B.14					
Result:	GENOTOXIC EFFECTS: - With metabolic activation: negative Without metabolic activation: negative					
	- WILHOUL MELADOILC ACLIVATION: Negative PRECIPITATION CONCENTRATION: no precipitation occurred					
	<pre>CYTOTOXIC CONCENTRATION: - With metabolic activation: >= 1000 ug/plate</pre>					
	- Without metabolic activation: >= 1000 µg/plate STATISTICAL RESULTS:					

OECD SIDS	MALONIC ACID DIESTERS
6. REFERENCES	ID: 108-59-8
	DATE: 21.01.2005
	The test substance did not induce a statistically significant increase in the number of revertants in any of the strains tested, neither with nor without metabolic activation. The test substance was non-mutagenic under the conditions of this test.
Test condition:	 SYSTEM OF TESTING Species/cell type: Salmonella typhimurium TA 1535, TA 1537, TA 1538, TA 98, TA 100 Metabolic activation system: phenobarbiturate induced rat liver S9 fraction of male Wistar rats. Number of replicates: 2 independent assays, one plate incorporation, on pre-incubation test. 3 replicates per concentration. Positive control substances: Without S9: Strain Substance
	TA 98, 1538 Nitrofluorene TA 100, 1535 Sodium azide TA 1537 Aminoacridine With S9: Cyclophosphamide (TA 100 only). - Pre-incubation time: 30 min at 30 +- 1°C
	STATISTICAL METHODS: Mean values and standard deviation were calculated with BIOSYS software.
Reliability:	(1) valid without restriction Guideline study in accordance with testguidelines valid at the time of the study, GLP
Flag: 04-AUG-2004	Material Safety Dataset, Critical study for SIDS endpoint (30)

5.6 Genetic Toxicity 'in Vivo'

5.7 Carcinogenicity

5.8.1 Toxicity to Fertility

Туре:	other: OECD Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Screening Test
Species:	rat
Sex:	male/female
Strain:	Wistar
Route of administration:	gavage
Exposure Period:	39 to 51 days (from 14 days before mating to day 3 of
	lactation)
Frequency of treatment:	daily, 7 days per week
Premating Exposure Period	
male:	2 weeks
female:	2 weeks
Duration of test:	Males: 39 days, females 51 +- 7 days, recovery groups: 39 days
Doses:	100, 300, 1000 mg/kg bw
Control Group:	yes, concurrent vehicle
NOAEL Parental:	= 300 mg/kg bw
NOAEL F1 Offspring:	> 1000 mg/kg bw
Result:	No treatment related effects on fertility

OECD SIDS MALONIC ACID DIESTERS 6. REFERENCES ID: 108-59-8 DATE: 21.01.2005 Method: OECD combined repeated dose and reproductive/developmental toxicity screening test Year: 2004 GLP: yes Test substance: other TS: Dimethyl malonate Method: OECD Combined Repeated Dose and Reproduction/Developmental Screening Test. Result: For effects on parent animals: See section 5.4, repeated dose toxicity. Reproductive results - Fertility index: Males, all dose groups: 100% Females, all dose groups: 100% - Duration of gestation: Dose (mg/kg bw) Duration (days) +- SD 0 22 +- 0.3 100 23 +- 0.5 300 23 +- 0.5 1000 22 +- 0.4 - Gestation index: 100 % in all dose groups. - Parturition: 100 % in all dose groups - Effects on sperm: No treatment related effects - Number of implantations: Dose (mg/kg bw) Percent No. 0 12.3 88.1 100 84.7 11.8 300 12.0 88.9 1000 11.6 88.6 - Number of corpora lutea: Dose (mg/kg bw) No. 0 14.0 100 13.9 300 13.5 1000 13.1 Percentage pre-implantation loss Dose (mg/kg bw) Percent 0 11.9 100 15.3 300 11.1 1000 11.4 Percentaga post-implantation loss Dose (mg/kg bw) Percent 0 8.1 100 19.1 300 10.4 1000 15.1 Litter results: - Number of pups born Dose (mg/kg bw) No. 0 103 100 76 300 86 1000 84 No of live litters Dose (mg/kg bw) No. 0 9 8 100

300 8 1000 8 Mean litter size index Dose (mg/kg bw): 0 11.4 100 9.5 300 10.8 1000 10.5 Mean viable litter size: Dose (mg/kg bw): 0 11.3 100 9.5 300 10.8 9.9 1000 No. of pups alive on day 0 Dose (mg/kg bw) No. 0 102 100 76 300 86 1000 79 Live birth index: Dose (mg/kg bw) 0 99 100 100 300 100 1000 94 Sex ratio at birth (no of males/total number born x 100) Dose (mg/kg bw) 0 46.6 100 60.5 300 54.7 1000 46.4 24 hour survival: 100% all dose groups. No of pups alive on day 4 of lactation Dose (mg/kg bw) No. 0 101 100 75 300 83 1000 78 Day 4 survival index: Dose (mg/kg bw): 99.0 0 98.7 100 300 96.5 1000 98.7 Sex ratio day 4 Dose (mg/kg bw): 0 44.7 100 60.5 300 53.5 1000 41.7 No of pups dead or cannibalised up to day 4 Dose (mg/kg bw): 0 2 100 1 300 3 1000 6 Observations and necropsy findings on pups: No treatment related effects were observed. STATISTICAL RESULTS:

Fertility indices for males and females were not statistically different from controls in all dose groups. In the low dose group post implantation loss and consequently the percentage of live pubs born was significantly reduced compared to controls (P <= 0.05). These changes were considered incidental and not treatment related as the effects were not observed at the higher dose groups. No statisitcal significant differences from controls were observed for the number of pregnancies, number littered, number of live litters, mean litter size, mean viable litter size, sex ratio at birth, number of pups dead at first observation or day 2 to 4, number of live pups on day 0,3 and 4 and the associated survival indices, external abnormalities of life and dead pups at all dose levels. A significantly higher percentage of male rats in the low dose group on day 4 was considered incidental and not treatment related as a similar change was not found in the higher dose groups. The mean number and the mean weight of male and female (and both sexes combined) pups during different intervals of the lactation period were not statisitcally significantly different from controls except from a significantly lower (P <= 0.05) mean number of female pups on lactation day 4 in the low dose group which was considered incidental and not related to treatment. TEST ORGANISMS Test condition: - HSDCpb-WU rats - Age at start of treatment: 11-12 weeks - Weight at study initiation: males: 377-379 g, females: 210-219 g - Number of animals: Main group: 10 m, 10 f, recovery groups: 5 m, 5 f ADMINISTRATION / EXPOSURE - Duration of test/exposure: Males: Test groups: 39 days, male recovery group: 39 exposure days, 45 test days. Females: Treatment groups: 51 +- 7 days, recovery group: 39 exposure days, 45 test days. - Type of exposure: Oral gavage - Post exposure period: 14 days - Vehicle: Double distilled water - Concentration in vehicle: 10 mg/ml, 30 mg/ml, 100 mg/ml - Total volume applied: 10 ml/kg bw - Doses: 100, 300, 1000 mg/kg bw Treatment: Male rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period and approximately 2 weeks post mating. Female rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period, pregnancy and up to lactation day 4. For the high dose recovery group animals (males and females) the test item was administered once daily, 7 days per week by gavage throughout the treatment period. MATING PROCEDURES: Male/female ratio: 1:1 per cage. Cohabitation period until evidence of pregnancy (sperm in vaginal smear) was observed. CLINICAL OBSERVATIONS AND FREQUENCY: - Daily observations for appearance, behaviour, clinical signs and preterminal deaths. Females were observed for signs of

d - 1 s e r p	ifficult and pronlonged parturition. Twice daily: morbidity and mortality. Detailed clinical observations: once before exposure and at east once per week thereafter. Signs included were changes in kin, fur, eyes, mucous membranes, occurrence of secretions or xcretions and autonomic activity, changes in gait, posture, esponse to handling, behavioural changes, difficult or rolonged parturition.
F P P h n (unctional observation battery (FOB): Examinations were erformed in randomly selected 5 animals of each group at the nd of the dosing period for males and during the lactation eriod for females and included homecage observations, andling observations, open field tests, sensory observations, euromuscular observations and physiological observations body temperature).
B l w a F T	ody weights were recorded at the beginning of the study, at east weekly thereafter and at termination. All dams were eighed on gestation days 0, 7, 14 and 20 and lactation days 0 nd 4. ood consumption was recorded weekly. he fertility index for males and females was determined.
L e d p d	ITTER DATA: All pubs from each litter were examined for any xternal deformities, litter size and sex distribution was ertermined. Pup weights were recorded on day 0 and 4. All ups were examined for malformations and subject to gross athological examination. Pup survival index up to lactation ay 4 was determined.
H. c t	AEMATOLOGY/CLINICAL CHEMISTRY: Standard haematological and linical chemistry parameters were determined at the end of he pre-mating period and the recovery period in 5 randomly elected males and females of each group.
0. t f a	RGAN WEIGHTS: Organ weights of liver, adrenals, kidneys, hymus spleen, brain and heart were determined of 5 males and emales of each group. Testes and epididymis weights of all dult males of each group were also determined.
G A a.	ROSS PATHOLOGY. ll adult animals and pups were examined for any structural bnormalities and pathological changes.
H T g l t (c n m i d m l	ISTOPATHOLOGY: he following tissues of 5 males and females of the control nd high dose group as well as all animals of the recovery and ecovery control groups were examined microscopically: all ross lesions, brain, spinal cord, gastrointestinal tract, iver, kidney, adrenals, spleen, heart, thymus, thyroid, rachea, lungs, testes (fixed in Bouins fluid), epididymes fixed in Bouins fluid), ovaries, uterus, seminal vesicles, oagulating glands, prostate, urinary bladder, axillary lymph odes, mesenteric lymph nodes, sciatic nerve, femur with arrow, bone marrow smear. Stages of spermatogenesis and nterstitial testicular structure in male gonads were etermined additionally. Livers of 5 males and females in the id and low dose groups and testes of 5 males of the mid and ow dose groups were also examined.

OECD SIDS	MALONIC ACID DIESTERS
6. REFERENCES	ID: 108-59-8
	DATE: 21.01.2005

STATISTICAL ANALYSIS: Dunnett's t-Test: body weight, body weight change, food intake, haematology, clinical chemistry, organ weight, FOB, gestation length, litter size, No. corpora lutea, No. implantation. Z-Test/Student's t-Test: Mating performance, conception rate, fertility index, gestation index, live birth index, viability index, sex ratio, pup survival data, No. littered, No. dead pups, No. live pups, Pup survival data, Pre- and Post-implantation loss. Histopathological data. t-Test/ANOVA: dose correlation Test substance: Dimethyl malonate, purity: 99.8%. Reliability: (1) valid without restriction Flag: Material Safety Dataset, Critical study for SIDS endpoint 11-AUG-2004 (13)

5.8.2 Developmental Toxicity/Teratogenicity

Species: Strain:		rat Wistar			Sex: male/female
Route of administ	ration:	gavage			
Exposure period:		39 to 51 day lactation)	s (from 1	4 days before	e mating to day 3 of
Frequency of trea	tment:	daily, 7 day	s per wee	k	
Duration of test:		Males: 39 da	ys, femal	es 51 +- 7 da	ays, recovery
		groups: 39 d	ays		
Doses:		100, 300, 10	00 mg/kg	bw	
Control Group:		yes, concurr	ent vehic	le	
NOAEL Maternal To	xity:	= 300 mg/kg	bw		
NOAEL Teratogenic	ity:	>= 1000 mg/k	g bw		
Method:	OECD Com	nined Repeate	d Dose an	d Reproducti	on/Developmental
	Screening	n Test.	a 2000 an		en, severepmenear
Result:	For effec	cts on parent	animals:	See section	5.4, repeated dose
	toxicity				, 1
	Reproduct	tive results			
	- Fertili	ity index:			
	Males, al	ll dose group	s: 100%		
	Females,	all dose gro	ups: 100%		
	- Duratio	on of gestati	on:		
	Dose (mg)	/kg bw)	Duration	(days) +- SD	
	0	2		22 +- 0.1	3
	100			23 +- 0.	5
	300			23 +- 0.	5
	1000			22 +- 0.	4
	- Gestat	ion index:			
	100 % in	all dose gro	ups.		
	- Partur	ition: 100 8	in all do	se groups	
	- Effects	s on sperm: N	o treatme	nt related es	ffects
	- Number	of implantat	ions:		
	Dose (mg)	/kg bw)	No.	Percent	
	0	=	12.3	88.1	
	100		11.8	84.7	
	300		12.0	88.9	
	1000		11.6	88.6	
	- Number	of corpora l	utea:		

Dose O	(mg/kg	bw)	No. 14.	0				
100 300 1000			13. 13. 13.	9 5 1				
Perce	entage j	pre-impl	lantati	on los	ss			
Dose	(mg/kg	bw)	Perc	ent				
U 1 0 0			11.9 15 3	1				
300			11 1					
1000			11.4					
Perce	entaga j	post-imp	plantat	ion la	oss			
Dose	(mg/kg	bw)	Perc	ent				
0			8.1					
100			19.1					
300			10.4 15 1					
Litte	r resu	lts·	10.1					
- Num	ber of	od squa	orn					
Dose	(mg/kg	bw)	No.					
0			103					
100			76					
300			86					
IUUU No of		littore	84					
Dose	(ma/ka	hw)	No					
0	(1119) 119	2011)	9					
100			8					
300			8					
1000			8					
Mean	litter	size in	ndex					
Dose	(mg/kg	DW):	1					
100		· · · ·	т 5					
300		10.8	8					
1000		10.5	5					
Mean	viable	litter	size:					
Dose	(mg/kg	bw):	-					
0		11.	3 5					
300		9. 10 s	5					
1000		9.9	9					
No. c	of pups	alive d	on day	0				
Dose	(mg/kg	bw) 1	No.					
0		-	102					
100			76					
300			86 79					
Live	birth	index·	19					
Dose	(ma/ka	bw)						
0		99						
100		100						
300		100						
1000		94	,					
Sex r	atio a	t birth	(no of	males	s/total	number	born	x 100)
0	(mg/kg	ر wu ۵۴ ۴						
100		60.5						
300		54.7						

6. REFERENCES

ID: 108-59-8 DATE: 21.01.2005

1000 46.4 24 hour survival: 100% all dose groups. No of pups alive on day 4 of lactation Dose (mg/kg bw) No. Ω 101 100 75 300 83 1000 78 Day 4 survival index: Dose (mg/kg bw): 99.0 0 100 98.7 300 96.5 1000 98.7 Sex ratio day 4 Dose (mg/kg bw): 0 44.7 100 60.5 300 53.5 1000 41.7 No of pups dead or cannibalised up to day 4 Dose (mg/kg bw): 0 2 100 1 3 300 1000 6 Observations and necropsy findings on pups: No treatment related effects were observed. STATISTICAL RESULTS: Fertility indices for males and females were not statistically different from controls in all dose groups. In the low dose group post implantation loss and consequently the percentage of live pups born was significantly reduced compared to controls (P <= 0.05). These changes were considered incidental and not treatment related as the effects were not observed at the higher dose groups. No statisitcal significant differences from controls were observed for the number of pregnancies, number littered, number of live litters, mean litter size, mean viable litter size, sex ratio at birth, number of pups dead at first observation or day 2 to 4, number of live pups on day 0,3 and 4 and the associated survival indices, external abnormalities of life and dead pups at all dose levels. A significantly higher percentage of male rats in the low dose group on day 4 was considered incidental and not treatment related as a similar change was not found in the higher dose groups. The mean number and the mean weight of male and female (and both sexes combined) pups during different intervals of the lactation period were not statisitcally significantly different from controls except from a significantly lower (P <= 0.05) mean number of female pups on lactation day 4 in the low dose group which was considered incidental and not related to treatment. Test condition: TEST ORGANISMS - HSDCpb-WU rats - Age at start of treatment: 11-12 weeks - Weight at study initiation: males: 377-379 g, females:

210-219 g - Number of animals: Main group: 10 m, 10 f, recovery groups: 5 m, 5 f ADMINISTRATION / EXPOSURE - Duration of test/exposure: Males: Test groups: 39 days, male recovery group: 39 exposure days, 45 test days. Females: Treatment groups: 51 +- 7 days, recovery group: 39 exposure days, 45 test days. - Type of exposure: Oral gavage - Post exposure period: 14 days - Vehicle: Double distilled water - Concentration in vehicle: 10 mg/ml, 30 mg/ml, 100 mg/ml - Total volume applied: 10 ml/kg bw - Doses: 100, 300, 1000 mg/kg bw Treatment: Male rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period and approximately 2 weeks post mating. Female rats: The test item was administered once daily, 7 days per week by gavage for 2 weeks prior to mating, during the mating period, pregnancy and up to lactation day 4. For the high dose recovery group animals (males and females) the test item was administered once daily, 7 days per week by gavage throughout the treatment period. MATING PROCEDURES: Male/female ratio: 1:1 per cage. Cohabitation period until evidence of pregnancy (sperm in vaginal smear) was observed. CLINICAL OBSERVATIONS AND FREQUENCY: - Daily observations for appearance, behaviour, clinical signs and preteerminal deaths. Females were observed for signs of difficult and pronlonged parturition. - Twice daily: morbidity and mortality. - Detailed clinical observations: once before exposure and at least once per week thereafter. Signs included were changes in skin, fur, eyes, mucous membranes, occurrence of secretions or excretions and autonomic activity, changes in gait, posture, response to handling, behavioural changes, difficult or prolonged parturition. Functional observation battery (FOB): Examinations were performed in randomly selected 5 animals of each group at the end of the dosing period for males and during the lactation period for females and included homecage observations, handling observations, open field tests, sensory observations, neuromuscular observations and physiological observations (body temperature). Body weights were recorded at the beginning of the study, at least weekly thereafter and at termination. All dams were weighed on gestation days 0, 7, 14 and 20 and lactation days 0 and 4. Food consumption was recorded weekly. The fertility index for males and females was determined. LITTER DATA: All pups from each litter were examined for any

external deformities, litter size and sex distribution was determined. Pup weights were recorded on day 0 and 4. All pups were examined for malformations and subject to gross

pathological examination. Pup survival index up to lactation day 4 was determined.

HAEMATOLOGY/CLINICAL CHEMISTRY: Standard haematological and

clinical chemistry parameters were determined at the end of the pre-mating period and the recovery period in 5 randomly selected males and females of each group. ORGAN WEIGHTS: Organ weights of liver, adrenals, kidneys, thymus spleen, brain and heart were determined of 5 males and females of each group. Testes and epididymis weights of all adult males of each group were also determined. GROSS PATHOLOGY. All adult animals and pups were examined for any structural abnormalities and pathological changes. HISTOPATHOLOGY: The following tissues of 5 males and females of the control and high dose group as well as all animals of the recovery and recovery control groups were examined microscopically: all gross lesions, brain, spinal cord, gastrointestinal tract, liver, kidney, adrenals, spleen, heart, thymus, thyroid, trachea, lungs, testes (fixed in Bouins fluid), epididymes (fixed in Bouins fluid), ovaries, uterus, seminal vesicles, coagulating glands, prostate, urinary bladder, axillary lymph nodes, mesenteric lymph nodes, sciatic nerve, femur with marrow, bone marrow smear. Stages of spermatogenesis and interstitial testicular structure in male gonads were determined additionally. Livers of 5 males and females in the mid and low dose groups and testes of 5 males of the mid and low dose groups were also examined. STATISTICAL ANALYSIS: Dunnett's t-Test: body weight, body weight change, food intake, haematology, clinical chemistry, organ weight, FOB, gestation length, litter size, No. corpora lutea, No. implantation. Z-Test/Student's t-Test: Mating performance, conception rate, fertility index, gestation index, live birth index, viability index, sex ratio, pup survival data, No. littered, No. dead pups, No. live pups, Pup survival data, Pre- and Post-implantation loss. Histopathological data. t-Test/ANOVA: dose correlation Dimethyl malonate, purity: 99.8%. Test substance: Reliability: (1) valid without restriction Material Safety Dataset, Critical study for SIDS endpoint Flag:

```
11-AUG-2004
```

(13)

5.8.3 Toxicity to Reproduction, Other Studies

5.9 Specific Investigations

5.10 Exposure Experience

5.11 Additional Remarks

OECD SIDS 6. REFERENCES

- (1) Arnett EM and Harrelson JA Jr. (1987). Ion-Pairing and Reactivity of Enolate Anions. VIII (*) Enolization, Homohydrogen-Bonding and the Correlation of pKa's with Rates of Alkylation and Redox Potentials for some B-Di- and Tri-Carbonyl Compounds in Dimethyl Sulphoxide (**) (***) Gazz. Chim. Ital. 117, 237-243.
- (2) Arnett EM et al. (1984). Ion Pairing and Reactivity of Enolate Anions. 5. Thermodynamics of Ionization of B-Di- and Tricarbonyl Compounds in Dimethyl Sulfoxide Solution and Ion Pairing of Their Alkali Salts. J. Am. Chem. Soc. 106, 6759 -6767.
- (3) Askonas CF and Daubert TE (1988). J.Chem.Eng.Data. 33 (3) 225-229.
- (4) Basak SC et al. (1984). A Quantitative Correlation of the LC50 Values of Esters in Pimephales Promelas using Physicochemical and Topological Parameters. Environ. Toxicol. Chem. 3, 191 - 199.
- (5) Beck AB, Macbeth AK, Pennycuick SW (1932). Surface tension Determinations of Malonic Esters, and the Constitutive Nature of the Parachor. J.Chem.Soc. 2258-2264.
- (6) Berger RG et al. (1986). Geruchsaktive Spurenkomponenten des Bananenaromas. Chem. Mikrobiol. Technol. Lebensmittel 10, 120 - 124.
- (7) BIA, Berufsgenossenschaftliches Institut f
 ür Arbeitssicherheit, GESTIS-Database (2nd Edition), Hauptverband der gewerblichen Berufsgenossenschaften (HVBG) (Editor), Sankt Augustin, 04.01.2002
- (8) Brühl JW (1894). Studien über Tautomerie. Journal fuer Praktische Chemie/Chemiker-Zeitung 2, 119-221.
- (9) Creveling RK et al. (1968). Volatile Components of Pineapple. J. Food Sci. 33, 284 - 287.
- (10) Cronin MTD et al. (1991). QSAR studies of comparative toxicity in aquatic organisms. Sci. Total. Environ. 109/110, 431 - 439.
- (11) D'Ans-Lax Taschenbuch fuer Chemiker und Physiker, Band I: Makroskopische physikalisch-chemische Eigenschaften, 3. Aufl., S. 1/922, Springer-Verlag, Berlin 1967
- (12) Degussa (2004). Degussa AG personal communication, 4.10.2004
 production process and use of dimethyl malonate.
- (13) Degussa AG (2003), unpublished Report. Combined Repeated Dose Toxicity study with Reproduction/Developmental Screening Test by Gavage with Dimethyl malonate in Wistar Rats. Degussa AG REG. No. 2003-0146-DGT.
- (14) Degussa AG (2003), unpublished report. Estimation of the Henry's Law Constant of Dimethyl malonate CAS-No.: 108-59-8 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0414-DKB.

- 6. REFERENCES
 - (15) Degussa AG (2003), unpublished report. Estimation of the Photodegradation of Dimethyl malonate CAS-No.: 108-59-8 by Quantitative Structure Activity Relationship (QSAR-Method = Calculation) Degussa AG-Reg-No. 2003-0446-DKB.
 - (16) Degussa AG (2003), unpublished Report. In vitro assessment of the clastogenic activity of Dimethyl malonate in cultured human peripheral lymphocytes. Degussa AG REG. No. 2003-0150-DGM.
 - (17) Degussa AG (2004), unpublished report. Determination of the abiotic degradation (hydrolysis as a function of pH) of Dimethyl malonate (DMM) in accordance with EEC-Guideline C.7

Degussa AG-Reg-Nr.: 2003-0346-DGO.

- (18) Degussa AG (2004), unpublished report. Estimation of the Equilibrium Partitioning Characteristics in the Environment of Dimethyl malonate CAS-No.: 108-59-8 by Mackay Calculation (Level I) (V2.11 Model)
- (19) Degussa AG (2004), unpublished report. Estimation of the Equilibrium Partitioning Characteristics in the Environment of Dimethyl malonate CAS-No.: 108-59-8 by Mackay Calculation (Level I) (V2.11 Model) Degussa AG-Reg-No. 2004-0174-DKB.
- (20) Degussa AG (2004), unpublished report. Estimation of the Equilibrium Partitioning Characteristics in the Environment of Dimethyl malonate, CAS: 108-59-8 by Mackay Calculation (Level III) Degussa AG-Reg-No. 2004-0176-DKB.
- (21) Degussa AG (2004). Safety data sheet. "Dimethylmalonat (DMM)", Version 4.6, Revision date 08.07.2004, Printing date 24.07.2004.
- (22) Degussa AG (2005). Personal communication of July 27, 2005.
- (23) Eldred DV, Weikel CL, Jurs PC, Kaiser KLE (1999). Prediction of Fathead Minnow Acute Toxicity of Organic Compounds from Molecular Structure. Chemical Research in Toxicology 12 (7), 670-678.
- (24) Georgilopoulos DN and Gallois AN (1987). Aroma compounds of fresh blackberries (Rubus laciniata L.) Z. Lebensmittel-Unters. Forsch. 184, 374 - 380.
- (25) Hansch C, Leo A, Hoekman D (1995). Exploring QSAR Hydrophobic, Electronic and Steric Constants 14, 201. In Heller S ed. ACS Professional Reference Book, American Chemical Society, Washington DC.
- (26) Hawley GG (1981). The condensed chemical dictionary, 10th ed., Van Nostrand Reinhold Company, New York, Cincinnati, Atlanta, Dallas, San Francisco, London, Toronto, Melbourne, 370
- (27) Huels AG (1992), unpublished report No. AA-92/0070. Prüfung auf akute Augen- und Schleimhautreizung von Dimethylmalonat am Kaninchen, Degussa AG-Reg-Nr.: 92-0348-DGT

OECD SIDS

6. REFERENCES

- (28) Huels AG (1992), unpublished report No. AD-92/0070. Prüfung der akuten dermalen Toxizität von Dimethylmalonat an der Ratte. Degussa AG-Reg-Nr.: 92-0340-DGT
- (29) Huels AG (1992), unpublished report No. AH-92/0070. Prüfung auf akute Hautreizwirkung von Dimethylmalonat am Kaninchen. Degussa AG-Reg-Nr.: 92-0344-DGT
- (30) Huels AG (1992), unpublished report No. AM-92/26. Bestimmung der Mutagenität von Dimethylmalonat im Salmonella / Säuger-Mikrosomen-Mutagenitätstest nach Ames Mutagenitätstest nach der Richtlinie 84/449/EWG B. 14. Degussa AG-Reg-Nr.: 92-0410-DGM
- (31) Huels AG (1992), unpublished report No. AO-92/0070. Prüfung der akuten oralen Toxizität von Dimethylmalonat an der Ratte Degussa AG-Reg-Nr.: 92-0342-DGT
- (32) Huels AG (1992), unpublished report No. DDA-11. Bestimmung der biologischen Abbaubarkeit von Dimethylmalonat im DOC-Die Away Test. Degussa AG-Reg-Nr.: 92-0414-DGO
- (33) Huels AG (1992), unpublished report No. DK-528. Bestimmung der Auswirkungen von Dimethylmalonat auf das Schwimmverhalten von Daphnia magna (nach EG 84/449, Nov. 1989). Degussa AG-Reg-Nr.: 92-0412-DGO
- (34) Huels AG (1992), unpublished report No. HS-92/0070. Prüfung auf akute Sensibilisierung der Haut von Dimethylmalonat am Meerschweinchen (Methode nach Bühler). Degussa AG-Reg-Nr.: 92-0346-DGT
- (35) Huels AG (1993), unpublished report No. FK 1235. Bestimmung der akuten Wirkungen von Dimethylmalonat gegenüber Fischen (Nach EG 84/449 C 1). Degussa AG-Reg-Nr.: 93-0328-DGO
- (36) Huels AG (1993), unpublished report PZ 93/02. Bestimmung der Bakterientoxizität von Dimethylmalonat im Pseudomonas-Zellvermehrungs-Hemmtest (DIN 38412 Teil 8). Degussa AG-Reg-Nr.: 93-0326-DGO.
- (37) Huels AG, (1993), unpublished report No. AW-276. Bestimmung der Auswirkungen von Dimethylmalonat auf das Wachstum von Scenedesmus subspicatus 86.81. SAG (Algenwachstumshemmtest nach Richtlinie 88/302/EWG), Degussa AG-Reg-Nr.: 93-0330-DGO
- (38) Hughes DW (1981): Malonic acid and derivatives in: Kirk-Othmer, Encyclopedia of chemical technology, 3rd ed., vol. 14: Laminated woood-based composites to mass transfer, 796 - 810
- (39) Jacobi S, Hoffmann H (1989). Hydrolytic stability of Alkyl 1H-Benzotriazolcarboxylates. Arch. Pharm. (Weinheim) 322, 89-93.
- (40) Jaworska JS, Hunter RS, Gobble JR, Schultz TW (1997) Structure-activity relationships for diesters: aquatic toxicity to Tetrahymena, in Environmental Sciences-VII,
Proceedings of QSAR.96, Elsinore, Den. 277-283.

- (41) Karvonen (1918). Ann.Acad.Sci.Fenn.Ser.A. 10 (5) 11. as quoted in Beilstein BRN 774261 malonic acid methyl ester, Update date 2003/01/18, Printing date 27.02.2003.
- (42) Katrib Y, Deiber G, George C, Mirabel P, LeCalve S (2001). Uptake Measurements of Dibasic Esters by the Aqueous Phase. In Midgley PM, Reuther M, Williams W (Eds), Proceedings from the EUROTRAC-2 Symposium 200, 1-5.
- (43) Kendall J, Booge JE (1916). Studies on Catalysis. I. The Addition Compounds of Esters with Organic Acids. J Amer Chem Soc 38, 1712-1736.
- (44) Kligman AM (1966). The Identification of Contact Allergens by Human Assay. J. Invest. Derm. 47, 393 - 409. (Method)
- (45) Kligman AM (1976). Report to RIFM, 11th May, cited in: Opdyke DLJ (1979): Food Cosmet. Toxicol. 17, 363.
- (46) Kligman AM and Epstein W (1975). Updating the maximization test for identifying contact allergens. Contact Dermatitis 1, 231 - 239. (Method)
- (47) Koeppen AH, Mitzen EJ, Papandrea JD (1978). Metabolism of Malonic acid in Rat Brain after Intracerebral Injection. Journal of Neurochemistry 31 (3), 739-745.
- (48) Lecat (1928). Nouveaux Azeotropes Binaires. Ann.Soc.scient.Bruxelles. 48 I, 113-126.
- (49) Levenstein I (1976): Report to RIFM, 18th May, cited in: Opdyke DLJ (1979). Food Cosmet. Toxicol. 17, 363.
- (50) Lide DR (2003). CRC Handbook of Chemistry and Physics. 84th Edition. CRC Press Boca Raton, London, New York, Washington, 2003-2004.
- (51) Merck AG (2002). Safety Data Sheet accord. EU-Guideline 91/155/EWG, "Dimethylmalonat zur Synthese", Revision date 22.10.2002, Printing date 01.09.2003
- (52) Meylan WM and Howard PH (1993) as quoted in: SRC PhysProp Database, 17.06.2003
- (53) Meylan WM et. al. (1996) as quoted in: SRC PhysProp Database, 17.06.2003
- (54) MITI (1992): Biodegradation and Bioaccumulation data of existing chemicals based on the CSCL Japan
- (55) Miyazawa M and Kameoka H (1987). Volatile Flavor Components of ASTRAGALI RADIX (Astragalus membranaceus Bunge). Agric. Biol. Chem. 51 (11), 3153 - 5154.
- (56) Morgan JLR, Chazal PM (1913). The Weight of Falling Drop and the Laws of Tate, XV. The Drop Weights of Certain Organic Liquids and the Surface Tensions and Capillary Constants Calculated from them. J.Amer.Chem.Soc. 35, 1821-1834.

OECD SIDS 6. REFERENCES

- (57) Neely WB and Blau GE (1985) as quoted in: SRC PhysProp Database, 17.06.2003
- (58) OECD (2004a). ICCA HPV dossier on methanol (CAS No. 67-56-1). OECD Agreed Conclusions and Recommendations. Available from http://cs3-hq.oecd.org/scripts/hpv
- (59) OECD (2004b). ICCA HPV dossier on ethanol (CAS No. 64-17-5). Final Draft. Available from http://cs3-hq.oecd.org/scripts/hpv .
- (60) Opdyke DLJ (1979). Dimethyl malonate. Food Cosmet. Toxicol. 17, 363.
- (61) O`Neil MJ, Smith A, Heckelman PE, Budavari S, (Editors) (2001). The Merck Index (13th Edition), Merck & Co., Inc. Whitehouse Station, NJ.
- (62) Palomaa MH, Mikkilä I (1942). Studien über ätherartige Verbindungen, XXVII. Mitteil.*): Trübe Phase bei Verbindungen mit Reaktionsminimum. Chemische Berichte 75, 1659-1667.
- (63) Pollak P (1978). Malonsaeure und Malonsaeure-Derivate,
 in: Ullmanns Encyklopaedie der technischen Chemie, 4. Aufl.,
 Bd. 16: Lagerwerkstoffe bis Milch, 415-418, 422-423.
- (64) RTECS (1993): Registry of Toxic Effects of Chemical Substances, 000950000
- (65) SPIN database (2004). Online search in the SPIN database on 23.11.2004.
- (66) STN Database, Karlsruhe, Germany, ACS on STN, 2004
- (67) Swedish Product Register (2004). Personal communication to the BUA of November 22, 2004.
- (68) Swiss Product Register (2004). Personal communication to the BUA-office Munich of August 20, 2004.
- (69) Takeoka G et al. (1989). Volatile Constituents of Pineapple (Ananas Comosus [L.] Merr.). ACS Symp. Ser. (Flavor Chem.) 388, 223 - 237.
- (70) Umano K et al. (1992). Volatile Constituents of Green and Ripened Pineapple (Ananas comosus [L.] Merr.). J. Agric. Food Chem. 40, 599 - 603.
- (71) Vogel AI (1934). Physical Properties and Chemical Constitution. Part I. Esters of Normal Dibasic Acids and of Substituted Malonic Acids. J.Chem.Soc. 333-341.
- (72) WHO (2000). Safety evaluation of certain food additives and contaminants, WHO Food Additive Series 44.
- (73) Wiens A (1889). Untersuchungen über die physikalischen Eigenschaften flüssiger Verbindungen. Justus Liebigs Annalen der Chemie 253, 289-318.