FOREWORD

INTRODUCTION

Benzene, 1-chloro-2-(chloromethyl)-

CAS N°: 611-19-8

SIDS Initial Assessment Report

For

SIAM 17

Arona, Italy, 11-14th November 2003

1.	Chemical Name:	Benzene, 1-chloro-2-(chloromethyl)-		
2.	CAS Number:	611-19-8		
3.4.	Sponsor Country: Shared Partnership with:	Japan Contact Point: Mr. Yasuhisa Kawamura Director Second International Organizations Division Ministry of Foreign Affairs, Japan 2-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8919 Ihara Chemical Industry Co., Ltd. (sponsor) Clariant GmbH (consortia) Tessenderlo Chemie N.V (consortia)		
5.	Roles/Responsibilities of the Partners:			
•	Name of industry sponsor /consortium	Ihara Chemical Industry Co., Ltd. 4-26, Ikenohata, 1-Chome, Taito-ku, Tokyo, Japan Phone: +81 3 3822 5253, Telefax: +81 3 3822 2497		
		Clariant GmbH Stroofstraße 27, 65933 Frankfurt am Main, Germany Phone: +49 (0) 69 3800 2721, Telefax: +49 (0) 69 3800 2707		
		Tessenderlo Chemie N.V. Rue du Trône n° 130, B-1050 Brussels, Belgium Phone: +32 2 639 18 11, Telefax: +32 2 639 19 99		
•	Process used	The industry consortium collected new data, prepared the updated IUCLID and drafted versions of the SIAR and SIAP		
6.	Sponsorship History	y		
•	How was the chemical or category brought into the OECD HPV Chemicals Programme ?	This substance is sponsored by Japan under the ICCA Initiative and is submitted for first discussion at SIAM 17.		
7.	Review Process Prior to the SIAM:	Japanese government peer-reviewed the documents, audited selected studies.		

8.	Quality check process:	Japanese government peer-review committee performed spot checks on randomly selected endpoints and compared original studies with data in the SIDS dossier.
9.	Date of Submission:	30 January 2004
10.	Date of last Update:	
11.	Comments:	The SIDS Initial Assessment Documents were prepared by Chemicals Evaluation and Research Institute (CERI), Japan.

SIDS INITIAL ASSESSMENT PROFILE

CAS No.	611-19-8	
Chemical Name	Benzene, 1-chloro-2-(chloromethyl)-	
Structural Formula	Cl CH ₂ Cl	

SUMMARY CONCLUSIONS OF THE SIAR

Human Health

No data are available regarding toxicokinetics, metabolism and distribution of 1-chloro-2-(chloromethyl)benzene (o-chlorobenzyl chloride; OCBC).

The acute inhalation LC_{50} value in male/female rats was 2.8 mg/l [OECD TG 403]. The acute dermal LD_{50} values were 1,700 (male) and 2,200 mg/kg bw (female) in rabbits and higher than 2,000 mg/kg bw in rats of both sexes. The oral LD_{50} values in rats were in the range of 350 and 951 mg/kg bw. OCBC primarily caused irritation-related histological damage to a tissue where the substance was administered; lung by inhalation, skin by dermal application and stomach by oral administration.

OCBC is irritating but not corrosive to the skin of rabbits [OECD TG 404]. The substance is also irritating to the eyes of rabbits [OECD TG 405]. Respiratory irritation was noted for OCBC with the RD_{50} value of 32.9 mg/m³ for male mice. There are no reliable data available for sensitisation of OCBC.

In an inhalation repeated dose toxicity study [OECD TG 412], rats were exposed to OCBC vapour for 6 hours a day for 4 weeks (5 days/week) at concentrations of 0, 0.01, 0.03 and 0.10 mg/l. At 0.10 mg/l, signs indicative of irritation to the respiratory tract such as enlarged tracheobronchial lymph nodes, increased lung weights, damage to the nasal mucosa, tracheas and bronchi, and lymphoid hyperplasia in the tracheobronchial lymph nodes were observed. There was no treatment-related change in rats exposed at 0.01 and 0.03 mg/l. The NOAEL for inhalation repeated dose toxicity was determined to be 0.03 mg/l in rats of both sexes.

In an oral repeated dose toxicity study performed as a combined repeat dose and reproductive/developmental toxicity screening test [OECD TG 422], OCBC was administered by gavage to rats at doses of 0, 2, 10 and 50 mg/kg bw/day. The administration periods were 45 days for males and 41-48 days for females including all the periods between premating and post-delivery. Thickening of the forestomach wall, and squamous epithelium hyperplasia, erosion and ulceration in the forestomach were observed in males at 10 and 50 mg/kg bw/day and in females at 50 mg/kg bw/day. Histological changes in the kidney, such as increases in the numbers of hyaline droplets in the proximal tubular epithelium, eosinophilic bodies, granular casts and basophilic tubules, were also observed in males at 50 mg/kg bw/day. The NOAEL for oral repeated dose toxicity was considered to be 2 mg/kg bw/day in male rats and 10 mg/kg bw/day in female rats.

One bacterial mutation study revealed that OCBC was negative with or without exogenous metabolic activation. Another bacterial mutation study showed weakly positive response without metabolic activation but negative with metabolic activation [OECD TG 471]. An *in vitro* chromosome aberration test using CHL/IU cells was positive in the presence or absence of an exogenous metabolic activation system only at cytotoxic concentrations [OECD TG 473]. The micronucleus assay using male and female rats was negative tested up to the maximum tolerated dose [OECD TG 474]. Based on the weight of evidence, OCBC is not anticipated to be genotoxic *in vivo*.

There is no data available for carcinogenicity of OCBC.

As for reproductive/developmental toxicity, no effect of OCBC was observed on any reproductive and developmental parameters in the above-mentioned combined repeat dose toxicity study at doses up to 50 mg/kg bw/day [OECD TG 422]. Thus the NOAEL for reproductive/developmental toxicity was considered to be 50 mg/kg bw/day in rats.

Environment

OCBC has a water solubility of 100 mg/l at 25°C, a vapour pressure of 0.2 hPa at 25°C and a Log K_{OW} of 3.32. The K_{OC} of 856 indicates a moderate potential of the substance for adsorption to soil and sediment. The half life of OCBC by reaction with OH radicals in air was calculated to be 103 hr. A bioconcentration factor of 71.85 was calculated for OCBC, indicating that the bioaccumulation potential of the substance is low. In the biodegradation test [OECD TG 301C], OCBC is not readily biodegradable (BOD 0% after 28 days). OCBC is hydrolyzed in water via an abiotic process to generate *o*-chlorobenzyl alcohol, which is then slowly biotransformed by oxidation to *o*-chlorobenzoic acid via *o*-chlorobenzaldehyde. An inherent biodegradability test [OECD TG 302B] showed that OCBC is inherently biodegradable with adapted industrial sludge.

The distribution of OCBC released into a particular environmental compartment was estimated with a fugacitybased model, Mackay level III. The model predicted that OCBC released into water is distributed to water (73.5 %), air (12.2%), sediment (7.7%) and soil (6.6%) while the substance released into air is distributed mainly to air (64.1%) and soil (34.6%). Almost all of the substance (99.8%) released into soil, on the other hand, was predicted to remain in its original compartment.

Acute toxicity studies with algae, invertebrates and fish have been reported. The results obtained from these studies are the 72-hr EC_{50} of 0.78 mg/l (biomass) and 1.2 mg/l (growth rate) for *Selenastrum capricornutum* [OECD TG 201], the 48-hr EC_{50} of 0.38 mg/l for *Daphnia magna* [OECD TG 202], and the 96-hr LC_{50} of 0.27 mg/l for *Oryzias latipes* [OECD TG 203].

A chronic toxicity test was performed with *Daphnia magna* [OECD TG 211]. The 21-day NOEC for its reproduction was 0.020 mg/l. The 72-hr NOEC for the growth of *Selenastrum capricornutum* based on the biomass and growth rate were 0.045 and 0.18 mg/l, respectively [OECD TG 201]. No chronic toxicity results with fish are available.

Based on the stability of OCBC in water (half-life, 33.1 hours at pH7), considerable hydrolysis of OCBC to *o*chlorobenzyl alcohol is anticipated. Thus the aquatic effect of *o*-chlorobenzyl alcohol was taken into consideration. Although no toxicity data is available for this substance, the analysis by ECOSAR (ECOWIN v0.99g) showed 96-hr LC_{50} of 15.7-189.7 mg/l for fish and 48-hr LC_{50} of 0.3-0.6 mg/l for Daphnia, suggesting that *o*-chlorobenzyl alcohol is not more toxic to aquatic organisms than OCBC. Consistent with this prediction, the 96 hr LC_{50} values (nominal) of OCBC for fish obtained in a static system (0.5-0.71 mg/l for *Danio rerio* and 0.71-0.96 mg/l for *Pimephales promelas*) were higher than that obtained in a flow-through system (0.27 mg/l for *Oryzias latipes*).

Exposure

In 2002 the chemical was produced in Germany, Japan and Belgium. The total production volume was about 1,000 tonnes per year for the last five years. In each country, only one company, which has one production site, currently operates the production of the substance.

OCBC is produced by chlorination of *o*-chlorotoluene in a closed system. There is no process that generates waste water in the production of OCBC. The waste residue is incinerated. The off-gas of the reaction is incinerated or treated on active carbon. Therefore there is no release of OCBC to the environment from its manufacturing plants. The use pattern of OCBC is also limited to the use as an intermediate for the production of agrochemicals. In the Sponsor country, only one agrochemical is manufactured from OCBC in a closed system. Because OCBC is reacted away in the process, there is no release of OCBC from the production site of the agrochemical. No contamination of OCBC is detected in the agrochemical (detection limit 0.002%). OCBC is not detected in soil as degradation products of agrochemicals. Based on these facts, it is considered that the impact of OCBC to the environment (aquatic and terrestrial) is negligible.

In Japan, the number of workers engaged in manufacturing and processing of the substance at the production site is limited to less than twenty, and the operation period at the plant is also limited (approx. 2-6 weeks/year in 1999-2003). The monitoring data revealed that the OCBC concentrations in the air of workplace atmospheres at the production site were minimal. Furthermore, workers are obliged to use personal protection equipments such as mask, safety glasses and gloves during the operation. At the user site in the sponsor country, the number of workers and the operation period is also limited, and OCBC is treated in a similar way than at the production sites. Therefore, occupational exposure to OCBC is considered to be minimal.

Consumer exposure is also considered negligible because no contamination of OCBC is detected in the product manufactured from OCBC in the sponsor country.

RECOMMENDATION

The chemical is currently of low priority for further work.

RATIONALE FOR THE RECOMMENDATION AND NATURE OF FURTHER WORK RECOMMENDED

The chemical possesses properties indicating a hazard for human health (repeated dose toxicity) and the environment. Based on data presented by the Sponsor country, exposure to humans and the environment is anticipated to be low, and therefore this chemical is currently of low priority for further work. Countries may desire to investigate any exposure scenarios that were not presented by the Sponsor country.

SIDS Initial Assessment Report

1 IDENTITY

1.1 Identification of the Substance

CAS Number:611-19-8IUPAC Name:1-Chloro-2-(chloromethyl)benzeneMolecular Formula:C7H6Cl2Structural Formula:

Molecular Weight: Synonyms:	161.03 <i>o</i> -Chlorobenzyl chloride (OCBC)		
	Benzene, 1-chloro-2-(chloromethyl)-		
	alpha, 2-Dichlorotoluene		
	alpha, o-Dichlorotoluene		
	1-Chloro-2-(chloromethyl)benzene		
	2-Chlorobenzyl chloride		
	o, alpha-Dichlorotoluene		
	Toluene, o, alpha-dichloro-		
	alpha, 2-Dichlortoluol		
	alpha-2-diclorotolueno		

1.2 Purity/Impurities/Additives

Purity

>99%

Impurities

2-Chlorobenzaldehyde	0.01 %
alpha, 4-Dichlorotoluene	0.2 %
1-Chloro-2-(dichloromethyl)benzene	0.06 %

1.3 Physico-Chemical properties

Property	Value	Protocols (Reference) or comments
Physical state	Liquid	
Melting point	-17°C	Unknown (CRC Handbook 2nd ed.)
Boiling point	217°C (1013 hPa)	Unknown (CRC Handbook 2nd ed.)
Relative density	1.274	Density: 1.2743 g/cm ³ at 20°C (Hammond, 1949)
Vapour pressure	0.2 hPa (25°C)	Calculated (MPVPWIN V1.40, 2003)
Water solubility	100 mg/l (25°C)	OECD TG 105 (CERI, 1999a)
Partition coefficient n-octanol/water (log value)	3.32	OECD TG 107 (CERI, 1999b)
Henry's law constant	157 Pa m ³ /mol (25°C)	Calculated (HENRYWIN ver.3.10, 2003)

 Table 1
 Summary of physico-chemical properties

1-Chloro-2-(chloromethyl)benzene (o-Chlorobenzyl chloride; OCBC) is a clear and colorless liquid with a pungent odor.

2 GENERAL INFORMATION ON EXPOSURE

2.1 Production Volumes and Use Pattern

Production Volumes

The annual production of *o*-chlorobenzyl chloride (OCBC) in Germany, Japan and Belgium is summarized in Table 2-1 (Ihara Chem. Ind., 2003; Clariant GmbH, 2003a, Tessenderlo Chemie N. V., 2003). In these countries, only one company, which has one production site, currently operates the production of OCBC. The total production volume was about 1,000 tonnes per year for the last five years. Although the chemical may be produced in China, no data is available for the country's production quantity.

Voor	Production volume (tonnes)				
icai	Germany	Japan	Belgium		
1999	140	156	0		
2000	700	390	0		
2001	350	431	653		
2002	180	330	552		
2003	No data available	149	No data available		

Table 2-1Annual production of OCBC.

OCBC is produced by chlorination of *o*-chlorotoluene in a closed system (Ihara Chem. Ind., 2003; Clariant GmbH, 2003a; Tessenderlo Chemie N. V., 2003).

Use Pattern

OCBC is used only as an intermediate for the production of agrochemicals (Ihara Chem. Ind., 2003; Clariant GmbH, 2003a; Tessenderlo Chemie N. V., 2003). The agrochemicals manufactured from

OCBC are only two herbicides in OECD countries. The total amount of OCBC produced is used for the production of these herbicides.

2.2 Environmental Exposure and Fate

2.2.1 Sources of Environmental Exposure

There is no process that generates waste water in the production of OCBC. The waste residue is incinerated. The off-gas of the reaction is incinerated or treated with active carbon. Therefore there is no release of OCBC to the environment from its manufacturing plants (Ihara Chem. Ind., 2003; Clariant GmbH, 2003a; Tessenderlo Chemie N.V., 2003).

In the sponsor country, there is only one user site, which is located near the production site. At this site, only one agrochemical is manufactured from OCBC in a closed system. As OCBC is reacted away in the process, there is no release of OCBC to the environment from the production site of the agrochemical (Ihara Chem. Ind., 2003).

The use of agrochemicals manufactured from OCBC might be the source of environmental exposure of OCBC. This exposure scenario is not expected in the sponsor country, however, because no contamination of OCBC is detected in the final product (detection limit 0.002%) and OCBC is not detected as a degradation product of agrochemicals in soil (Ihara Chem. Ind., 2003; Ikeda et al., 1986; FMC, 2003).

2.2.2 Photodegradation

The half-life of OCBC by reaction with OH radicals in air was calculated to be 103 hr (assuming a 12hr day and an OH concentration of 1.5×10^6 molecule/cm³). The reaction rate constant was estimated to be 1.2454×10^{-12} cm³/molecule/sec (AOPWIN ver.1.90, 2003).

2.2.3 Stability in Water

The stability of OCBC in water was examined according to OECD TG 111. OCBC was hydrolyzed to *o*-chlorobenzyl alcohol at 25°C with half-lives of 34.9, 33.1 and 36.4 hours at pH 4.0, 7.0 and 9.0, respectively (CERI, 1999a, 1998).

2.2.4 Transport between Environmental Compartments

Taking the following physico-chemical properties of OCBC into consideration, it is suggested that OCBC released into the environment is distributed into all the environmental compartments; air, water, soil and sediment. The physico-chemical property values used for the modelling are: water solubility = 100 mg/l (measured; CERI, 1999a), vapour pressure = 0.2 hPa (calculated; CERI, 2003), Partition Coefficient (LogP_{OW}) = 3.32 (measured; CERI, 1999b), Henry's law constant = 157 Pa m³/mol (calculated; CERI, 2003) and soil adsorption coefficient (K_{OC}) = 856 (calculated; CERI, 2003). This adsorption coefficient indicates a moderate potential of the substance for adsorption to soil and sediment.

The distribution of OCBC released into a particular compartment was estimated with a fugacitybased model, Mackay level III (CERI, 2003). The half-life in the different compartments used in the modelling are 103 hr (estimated), 33 hr (measured), 240,000 hr (default) and 720,000 hr (default) in air, water, soil and sediment, respectively. The results are shown in Table 2-2. The model predicted that OCBC released into water is distributed into water (73.5 %), air (12.2%), sediment (7.7%) and soil (6.6%) while OCBC released into air is distributed mainly into air (64.1%) and soil (34.6%). Almost all of the substance (99.8%) released into soil, on the other hand, was predicted to remain in its original compartment.

Compartment	Release			
Compartment	100% to air	100% to water	100% to soil	
Air	64.1%	12.2%	0.2%	
Water	1.1%	73.5%	0.0%	
Soil	34.6%	6.6%	99.8%	
Sediment	0.1%	7.7%	0.0%	

Table 2-2.	Estimation of environmental distribution of OCBC with a	i generic Fugacity
	model, Mackay level III.	

2.2.5 Biodegradation

The biodegradation of OCBC by an activated sludge in 28 days was tested according to OECD TG 301C. The determination by the BOD and TOC methods showed 0% degradation of OCBC. The analysis by HPLC, however, indicated that all the substance was transformed, generating *o*-chlorobenzyl alcohol (92%), *o*-chlorobenzaldehyde (2%) and *o*-chlorobenzoic acid (3%) (CERI, 1998). The test without the activated sludge also indicated that OCBC was completely converted to *o*-chlorobenzyl alcohol without further transformation. Based on these observations, it is concluded that OCBC is hydrolyzed in water via an abiotic process to generate *o*-chlorobenzyl alcohol, which is then slowly biotransformed by oxidation to *o*-chlorobenzoic acid via *o*-chlorobenzaldehyde. Therefore OCBC and its hydrolysis products are not readily biodegradable.

An inherent biodegradability test was conducted according to OECD TG 302B (Wellens H., 1990). A mixture containing OCBC, mineral nutrients and an industrial activated sludge was agitated with aeration. This test was adapted to the volatility of a test substance by using a respirometric method to determine the biodegradation instead of DOC measurement. Thus the result was not influenced by volatilisation if any. The test showed 99% degradation of OCBC after 9 days. The adaptation period lasted 6 days (less than 10% degradation) and 90% degradation of OCBC was observed in the last 3 days. Thus, OCBC is inherently biodegradable with adapted industrial sludge.

2.2.6 Bioaccumulation

The bioconcentration factor for OCBC was calculated to be 71.85 (BCFWIN v 2.14) with a measured log K_{OW} of 3.32, indicating that accumulation of the substance in aquatic organisms is unlikely.

2.2.7 Other Information on Environmental Fate

No other information on environmental fate is available.

2.3 Human Exposure

2.3.1 Occupational Exposure

There is no Occupational Exposure Limit (OEL) for OCBC in Japan, Germany and Belgium. In each country, only one company, which has one production site, currently produces OCBC. The

number of workers engaged in manufacturing and processing of OCBC is limited to less than twenty in each country (Ihara Chem. Ind., 2003; Clariant GmbH, 2003a; Tessenderlo Chemie N.V., 2003). Furthermore, in Japan and Germany, the number of operation days at the site is also limited (Japan; approx. 2-6weeks/year in 1999-2003, Germany; approx. 3-24 weeks/year) (Ihara Chem. Ind., 2003; Clariant GmbH, 2003a). The production of OCBC is carried out in a closed system. However, there are some possibilities that the workers are exposed to OCBC via the dermal or inhalation route in the processes such as putting stabilizer and raw material into a reaction tank, sampling and preparation for GC-FID analysis, filling a drum with OCBC produced, and handling residuals/wastes from the plant.

Occupational exposure monitoring was conducted at the production site in Japan. The results are summarized in Table 2-3 (Ihara Chem. Ind., 2003). These monitoring data revealed that the OCBC concentrations in the air of various workplace atmospheres ranged from 0.008 ppm to 0.017 ppm. Practically, the production of OCBC is operated in a closed system and workers are obliged to use personal protection equipments such as mask, safety glasses and gloves during operation. Thus, the actual levels of exposure to the chemical via the dermal or inhalation routes are expected to be minimal.

At the user site in the sponsor country, OCBC is used as the intermediate for the production of an agrochemical in a closed system and treated in a way similar to that at the production site. Putting OCBC into a reaction tank is the only process that might cause occupational exposure at the user site because OCBC is reacted away in the production of the agrochemical and no contamination of OCBC is detected in the final product (detection limit 0.002%). This process is just like a reverse process of filling drums with OCBC at the production site. Thus the OCBC concentrations in the air of workplace atmospheres at the user site are anticipated to be at the same level or less than at the production site. Furthermore, workers at the user site are also obliged to use personal protection equipments such as mask, safety glasses and gloves during operation. Based on these facts, the occupational exposure situation at the user site is comparable to the situation at the production site in the sponsor country. Therefore the occupational exposure to OCBC is also considered to be negligible in the sponsor country (Ihara Chem. Ind., 2003).

Work Process	Working time	Mean Conc. (ppm)
Putting stabilizer in a tank	10 sec./3days	ND (<0.013)
Putting raw material in a tank	10 sec./day	ND (<0.017)
Sampling and preparation for GC-FID analysis	20 min./day	0.0153
Filling a drum	6.5 hrs./day 3 min./drum	0.008
Treatment of waste oil (residual)	5 min./day	ND (<0.013)

Table 2-3. Concentration of OCBC in the air of workplace atmosphere

ND: not detected

2.3.2 Consumer Exposure

The use of OCBC is limited to intermediates for producing agrochemicals. The agrochemicals manufactured from OCBC are only two herbicides in OECD countries. In the sponsor country, only one herbicide is produced and used. No contamination of OCBC is detected in this herbicide by GC analysis (detection limit 0.002%). Therefore, consumer exposure is considered negligible in the sponsor country (Ihara Chem. Ind., 2003Clariant GmbH, 2003a; Tessenderlo Chemie N. V., 2003).

3 HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

3.1.1 Toxicokinetics, Metabolism and Distribution

There are no data available for toxicokinetics, metabolism, and distribution of *o*-chlorobenzyl chloride (OCBC).

3.1.2 Acute Toxicity

Available data for acute toxicity of OCBC are summarized in Table 3-1.

Species, strain	Route	Туре	Value	Reference
Rat, Wistar	Inhalation (aerosol)	LC ₅₀	M & F: 2.8 mg/l 4hour	Clariant GmbH, 1987
Rat, Wistar	Inhalation (vapour)	LC ₅₀	M & F: > 1.14 mg/l 60min	Occidental Chem. Corp., 1990a
Rat, SD	Dermal	LD ₅₀	M & F: > 2,000 mg/kg bw	Ihara Chem. Ind., 1993b
Rabbit, N.Z.White	Dermal	LD ₅₀	M: 1,700 mg/kg bw F: 2,200 mg/kg bw	Monsanto Co., 1992
Rat, SD	Oral	LD ₅₀	M: 951 mg/kg bw F: 783 mg/kg bw	MHLW Japan, 1999a
Rat, SD	Oral	LD ₅₀	M: 690 mg/kg bw F: 533 mg/kg bw	Ihara Chem. Ind., 1993a
Rat, SD	Oral	LD ₅₀	M: 880 mg/kg bw F: 350 mg/kg bw	Monsanto Co., 1992
Rat, SD	Oral	LD ₅₀	M & F: 430 mg/kg bw	Occidental Chem. Corp., 1990a

 Table 3-1.
 Summary of acute toxicity studies.

Studies in Animals

Inhalation

There are two reliable studies on acute inhalation toxicity.

A study on acute inhalation toxicity in rats was carried out under OECD TG 403 in compliance with GLP (Clariant GmbH, 1987). Rats (5 animals/sex/group) were exposed (mouth/nose only) continuously for 4 hours to OCBC aerosol at concentrations of 0.587, 1.548, 1.648, 2.716, 5.268 and 5.723 mg/l, and observed for 14 days. Death occurred at 1.548 mg/l and higher. The LC_{50} value was estimated to be 2.8 mg/l in both sexes. Clinical signs observed were gasping respiration, respiratory sounds, uncoordinated, ataxic and stilted gait, cyanosis, stupor, squatting posture, prone position, flanks pinched in, nose and lid margin red-encrusted, corneal opacity, and narrow palpebra fissure.

The other study on acute inhalation toxicity in rats was conducted by a method basically equivalent to OECD TG 403 in compliance with GLP (Occidental Chem. Corp., 1990a). Rats (10 animals/sex/group) were exposed systemically for 1 hour to OCBC vapour at a concentration of

1.140 mg/l and observed for 14 days. No animal death occurred during the observation period, indicating that the LC_{50} value is over 1.140 mg/l. Clinical signs as described above were also observed in the OCBC-treated animals. All the rats recovered to normal in 5 days after the exposure. There was no macroscopic and histopathological change observed in the animals.

Dermal

There are two reliable studies on acute dermal toxicity. Both studies were conducted according to national guideline in compliance with GLP.

In a study, OCBC was applied to shaven skin of rats (5 animals/sex) at a dose of 2,000 mg/kg bw by semi-occlusive dressing for 24 hours and the animals were observed for 14 days (Ihara Chem. Ind., 1993b). No death occurred during the observation period, indicating that the LD_{50} value is over 2,000 mg/kg bw in both sexes. Clinical signs observed were clear ocular discharge, reddened extremities, urogenital staining, soft stool and hypoactivity. The signs disappeared by day 3 or earlier. The substance also induced irritation to skin, consisting of erythema, edema, desquamation, eschar and exfoliation.

In the other study, OCBC was applied to clipped skin of rabbits (15 animals/sex/group) at doses of 1,000, 2,000, and 4,000 mg/kg bw by occlusive dressing and the animals were observed for 14 days (Monsanto Co., 1992). The LD₅₀ values were estimated to be 1,700 and 2,200 mg/kg bw in male and female rabbits, respectively. Clinical signs observed were reduction of food consumption, ataxia, tremors, hypopnea, hypothermia, nasal discharge, unthrify coats and urinary/fecal staining. In addition, severe dermal lesion at the application site was also noted.

Oral

There are four reliable studies on acute oral toxicity in rats. LD_{50} values in these studies were determined on the basis of 14-day observation.

A study was conducted according to OECD TG 401 in compliance with GLP (MHLW Japan, 1999a). OCBC diluted in 0.1% Tween 80 was administered by gavage to rats (5 animals/sex/group) at doses of 350, 500, 700, 1,000 and 1,400 mg/kg bw. Animal death occurred at the doses of 500 mg/kg bw and higher. The LD₅₀ values were estimated to be 951 and 783 mg/kg bw in male and female rats, respectively. Clinical signs observed were salivation, lacrimation, flushing, decrease in locomotor activity, loose stool and abnormal gait. Autopsy and histopathological examination of dead animals showed erosion/ulceration of the glandular stomach and submucosal edema of the forestomach. Autopsy of surviving animals revealed thickening of the forestomach wall, erosion/ulceration of the surviving animals also showed ulceration, squamous epithelium hyperplasia, inflammatory cellular infiltration and granulation tissue in the forestomach, and peritonitis in the serous membrane.

The other studies in rats were conducted according to national guidelines or according to a method equivalent to OECD TG 401. The LD_{50} values determined by the studies were as follows: 690 (male) and 533 mg/kg bw (female) (Ihara Chem. Ind., 1993a); 880 (male) and 350 mg/kg bw (female) (Monsanto Co., 1992); 430 mg/kg bw (male/female) (Occidental Chem. Corp., 1990a). In these studies, clinical signs quite similar to those observed in the MHLW study were observed. Abnormalities indicative of irritation to gastrointestinal tract as described above were also noted in the OCBC-treated animals.

Conclusion

The inhalation LC_{50} value in male and female rats was 2.8 mg/l. The dermal LD_{50} values were 1,700 mg/kg bw (male) and 2,200 mg/kg bw (female) in rabbits and higher than 2,000 mg/kg bw in

rats of both sexes. The oral LD_{50} values in rats were in the range of 350 to 951 mg/kg bw. OCBC primarily caused irritation-related histological damage to a tissue where the substance was administered; lung by inhalation, skin by dermal application and stomach by oral administration.

3.1.3 Irritation

Skin Irritation

Studies in Animals

Four reliable studies were available for skin irritation of OCBC. Two studies were conducted according to OECD TG 404 (Ihara Chem. Ind., 1992; Clariant GmbH, 1985a) and the other two studies under the method equivalent to the OECD TG (Monsanto Co., 1992; Occidental Chem. Corp., 1990a). All the studies were performed in compliance with GLP.

In the study by Ihara Chem. Ind., 0.5 ml of OCBC was applied to skin of rabbits for 3 min, 60 min or 4 hours by semi-occlusive covering (Ihara Chem. Ind., 1992). Very slight to well-defined erythema was observed in all application sites. This reaction disappeared within 7 or 10 days. Very slight to slight edema was observed only in the 4-hour application sites from 24 to 48 hours after application. No necrosis was observed in any application sites. Based on these observations, OCBC was considered to have a mild dermal irritation potential on the rabbit skin.

In the other studies, OCBC was applied to skin of rabbits for 4 hours (Clariant GmbH, 1985a; Monsanto Co., 1992; Occidental Chem. Corp., 1990a) and also for 24 hours (Monsanto Co., 1992). The 4-hour application caused mild/moderate irritation to the rabbit skin with erythema and edema. No necrosis was observed, however. The 24-hour application, on the other hand, exhibited severer irritation accompanied with blanching of the skin in addition to moderate to severe edema. The primary irritation index for the 24-hour application was 3.9.

Eye Irritation

Studies in Animals

There are three reliable studies on eye irritation of OCBC.

The study by Clariant GmbH (Clariant GmbH, 1985b) was well conducted according to OECD TG 405 in compliance with GLP. OCBC (0.1 ml) was applied to eyes of three rabbits and the eyes were rinsed 24 hours later. The animals were observed for 14 days after the application. All animals exposed to this substance showed a positive response with mild/moderate irritation to conjunctivae, iris and cornea. All the symptoms observed disappeared completely within the observation period, concluding that OCBC is mildly irritating to the eyes of rabbits.

In the other studies, 0.1 ml of OCBC was applied to eyes of rabbits with or without rinsing thereafter, and the animals were then observed for 21 days (Monsanto Co., 1992; Occidental Chem. Corp., 1990a). In either case, OCBC exhibited mild to moderate ocular irritation, which was reversible during the observation period.

Respiratory Tract Irritation

Studies in Animals

There are two reliable studies on respiratory irritation of OCBC in mice.

Male and female mice were exposed continuously for 30 minutes to OCBC vapour at concentrations of 11.9, 24.2, 82.3 and 179.5 mg/m³ (Vijayaraghavan et al., 1993). Respiratory rates were determined with body plethysmography. Inspiratory and expiratory airflow, and tidal volume

were also measured. The potency for sensory irritation defined as the airborne concentration that caused 50 % decrease in the respiratory rate (RD_{50}) was 85 and 69 mg/m³ for male and female mice, respectively.

In the other study, male mice were exposed continuously for 10 min to OCBC vapour at least 4 doses (concentrations unknown) (Dudek et al., 1992). Sensory irritation was determined with body plethysmography. The RD_{50} value in this study was 32.9 mg/m³.

Conclusion

OCBC is irritating but not corrosive to the skin of rabbits. OCBC is also irritating to the eyes of rabbits. Respiratory irritation was further noted for OCBC with the RD_{50} value of 32.9 mg/m³ for male mice.

3.1.4 Sensitisation

Studies in Animals

Skin

No reliable study on skin sensitisation of OCBC has been reported while there is one study report with low reliability (Landsteiner and Jacobs, 1936). The study was conducted in guinea pigs, suggesting that eight out of thirteen animals tested gave a positive response to OCBC. However, this study was considered invalid because the criteria for positive/negative response were not defined in the report.

Respiratory Tract

There is no study available for respiratory tract sensitisation of OCBC in animals.

Conclusion

There is no reliable data available for sensitisation of OCBC although one study suggested skin sensitisation of OCBC in guinea pigs.

3.1.5 Repeated Dose Toxicity

Studies in Animals

There are two reliable studies on repeated dose toxicity in rats; one inhalation and one oral study. The studies were conducted according to OECD Test Guidelines in compliance with GLP.

Inhalation

The repeated dose inhalation toxicity study in rats was conducted according to OECD TG 412 (Occidental Chem. Corp., 1990b). Rats (5 animals/sex/group) were exposed systemically to OCBC vapour for 4 consecutive weeks (6 hr/day, 5 days/week (Monday to Friday)) at concentrations of 0.01, 0.03 and 0.10 mg/l. No death occurred in any groups. Various toxicological findings were observed in male and female rats at 0.1 mg/l. Clinical signs indicative of irritation to the respiratory tract were observed during the exposure period. These included eyes shut/half-shut, adoption of a prone/hunched posture, rubbing of the chin on the mesh floor of the exposure chamber with licking of the inside of the mouth, red ears, agitated grooming and short periods of head shaking. Rales were noted in one male rat, during the latter half of week 4. Body weight gain, food consumption and water consumption were reduced during the exposure period. Increases in packed cell volume, hemoglobin and red cell count, and a decrease in urinary volume were also observed. The ratio of

myeloid and erythroid cells was increased. Gross autopsy revealed enlarged tracheobronchial lymph nodes and elevated lung weights. Histopathological examination showed damage to the nasal mucosa, trachea and bronchi (epithelial degeneration and hyperplasia of the nasal mucosa and the bronchiolar epitherium, squamous metaplasia of the bronchiolar epitherium), which was consistent with the irritating property of the OCBC vapour. Lymphoid hyperplasia was further observed in the tracheobronchial lymph nodes of some of the rats. There was no treatment-related change in male and female rats exposed at 0.01 and 0.03 mg/l. Based on these observations, NOAEL for inhalation repeated dose toxicity was considered to be 0.03 mg/l in both sexes.

Dermal

There is no study available for repeated dose dermal toxicity of OCBC in animals.

Oral

The repeated dose oral toxicity study in rats was conducted according to OECD TG 422 (combined repeat dose and reproductive/developmental toxicity screening test) (MHLW, Japan, 1999b). Rats (12 animals/sex/group) were given OCBC by gavage at doses of 2, 10 and 50 mg/kg bw/day. Male rats were dosed from 14 days before mating to the day before scheduled sacrifice through the mating period (total 45 days). Female rats were dosed from 14 days before mating to 4 days after delivery through the mating and gestation periods (total 41-48 days). Suppression of body weight gain and a decrease in food consumption were observed in the early period of administration in male and female rats at 50 mg/kg bw/day. Increases in the relative and absolute liver weights were also observed in females at this dose. At scheduled sacrifice, thickening of the forestomach wall was observed in males at 10 mg/kg bw/day and both sexes at 50 mg/kg bw/day. Histopathological examination revealed squamous epithelium hyperplasia, erosion and ulceration in the forestomach in males at 10 mg/kg bw/day and both sexes at 50 mg/kg bw/day. The changes observed in the forestomach were considered due to the irritating property of OCBC. In addition, increases in the numbers of hyaline droplets in the proximal tubular epithelium, eosinophilic bodies, granular casts and basophilic tubules were observed in the kidneys of males at 50 mg/kg bw/day. There was no effect on hematological and clinical examinations and organ weights in male rats in the OCBCtreated groups. Based on these observations, the NOAEL for oral repeated dose toxicity was considered to be 2 mg/kg/day in male rats and 10 mg/kg/day in female rats

Conclusion

In the inhalation toxicity study, clinical signs indicative of irritation to the respiratory tract were observed. The NOAEL for inhalation repeated dose toxicity was determined to be 0.03 mg/l in rats of both sexes. In the oral toxicity study, thickening of the forestomach wall, and squamous epithelium hyperplasia, erosion and ulceration in the forestomach were observed in male rats at 10 and 50 mg/kg bw/day and in female rats at 50 mg/kg bw/day. The NOAEL for oral repeated dose toxicity was considered to be 2 mg/kg/day in male rats and 10 mg/kg/day in female rats.

3.1.6 Mutagenicity

Available mutagenicity data of OCBC are summarized in Table 3-2.

In vivo Studies

There is one reliable study available for *in vivo* mutagenicity of OCBC.

A micronucleus assay in male and female rats was conducted according to OECD TG 474 in compliance with GLP (Clariant GmbH, 2003b). A preliminary experiment showed that no death occurred at doses of 400 and 500 mg/kg bw while death (one out of three males and two out of

three females) was observed at 600 mg/kg bw. Thus OCBC was orally administered twice at an interval of 24 hours to the animals at 50, 150 and 500 mg/kg bw. In the dose group of 500 mg/kg bw, one out of ten animals died and the following clinical signs were observed 2 to 6 hours after the second treatment; diarrhea, stilted gait and cowering posture. All the animals were sacrificed 24 hours after the second treatment and subjected to the erythrocyte micronucleus test. No statistically significant increase in the micronucleated polychromatic erythrocyte frequencies was observed in any dose groups, indicating that OCBC is not clastogenic *in vivo*.

In vitro Studies

Bacterial mutation tests:

There are two reliable studies on bacterial mutation.

A study was conducted according to OECD TG 471 in compliance with GLP (MHLW, Japan, 1999c). The effect of OCBC on reverse mutation was examined in four *Salmonella typhimurium* strains, TA98, TA100, TA1535 and TA1537, and in an *Escherichia coli* strain, WP2 *uvrA*, at concentrations up to 0.5 mg/plate with or without exogenous metabolic activation system. A marginal but dose-related increase was observed in TA100 without metabolic activation. In the presence of metabolic activation system, however, TA100 did not show any positive response. The other strains showed negative response regardless of metabolic activation. Based on these results, OCBC was considered a weak mutagen in the absence of metabolic activation but the mutagenicity was diminished or negated in the presence of the activation system.

The other bacterial mutation assay was performed according to a scientifically acceptable method in compliance with GLP (Clariant GmbH, 1983) up to higher dose levels than the MHLW study. In this study, OCBC did not show any mutagenic activity in any tester strains regardless of metabolic activation.

Chromosome aberration test:

There is one reliable study on *in vitro* chromosome aberration in Chinese hamster lung (CHL/IU) cells.

The study was conducted according to OECD TG 473 in compliance with GLP (MHLW, Japan, 1999d). The CHL/IU cells were continuously treated with OCBC for 24 or 48 hours at concentrations of 0.0013, 0.0025, 0.0050, 0.010 and 0.020 mg/ml without metabolic activation. A significant increase in polyploidy (3.38%) was observed at 0.010 mg/ml for 24 hours continuous treatment, at which concentration cytotoxicity was observed. In another assay, the CHL/IU cells were shortly (6 hours) treated with OCBC in the presence or absence of an exogenous metabolic activation system at concentrations of 0.013, 0.025, 0.050, 0.10 and 0.20 mg/ml. A significant increase in structural chromosomal aberrations (frequency: 13.0%) was observed only in the top concentration, which showed cytotoxicity, and the next lower concentration of OCBC did not induce any chromosomal aberrations.

	Туре	System of testing	Conc./Dose	Result -S9 +S9	Reference
In vitro	Ames test	Salmonella typhimurium TA100, TA1535, TA98,	0.0156 - 0.5 mg/plate	+/ (TA100)	MHLW, Japan, 1999c
		TA1537, Escherichia coli WP2 uvrA	0.09 – 0.24 mg/plate	+/ (TA100)	
		Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA1538, Escherichia coli WP2 uvrA	0.0008 – 1.5 mg/plate		Clariant GmbH, 1983
	chromosomal aberration test	Chinese hamster lung (CHL/IU) cells	0.0013 - 0.02 mg/ml	+ ^{a)} ND (0.01)	MHLW, Japan, 1999d
			0.013 – 0.2 mg/ml	+ ^{a)} (0.1)	
In vivo	Micronucleus assay	SD Rat	50, 150, 500 ^{b)} mg/kg bw	– ND	Clariant GmbH, 2003b

Table 3-2 Available genetic toxicity data

+: positive, +/-: equivocal, -: negative, ND: no data

a): positive at the concentration showed cytotoxicity.

b): In the dose group of 500 mg/kg bw, one out of ten animals died.

Conclusion

One bacterial mutation study revealed that OCBC was negative with or without exogenous metabolic activation. Another bacterial mutation study, on the other hand, showed a weakly positive response without metabolic activation but was negative with metabolic activation. An *in vitro* chromosome aberration test using CHL/IU cells was positive in the presence or absence of an exogenous metabolic activation system only at the cytotoxic concentrations. The micronucleus assay using male and female rats was negative up to the maximum tolerated dose. Based on the weight of evidence, OCBC is not anticipated to be genotoxic *in vivo*.

3.1.7 Carcinogenicity

There are no data available for carcinogenicity of OCBC.

3.1.8 Toxicity for Reproduction

Studies in Animals

There is one reliable study on reproductive/developmental toxicity of OCBC. This study was conducted as a combined repeat dose and reproductive/developmental toxicity screening test according to OECD TG 422 in compliance with GLP (MHLW, Japan, 1999b). OCBC was administrated by gavage to rats (12 animals/sex/group) at doses of 0 (vehicle control, 0.1% Tween 80 solution), 2, 10 and 50 mg/kg bw/day. Males were dosed from 14 days before mating to the day before scheduled sacrifice through the mating period (total 45 days). Females were dosed from 14 days before mating to 4 days after delivery through the mating and gestation periods (total 41-48 days). OCBC showed no effect on the following parental reproductive parameters; mating index, fertility index, numbers of corpora lutea and implantations, implantation index, delivery index,

gestation index, gestation length, and parturition and maternal behavior. Regarding the examination of neonates, there was no effect of OCBC on the numbers of total offspring and live offspring, sex ratio, live birth index, viability index, or body weight. Also, no compound-related abnormality was found in external features, clinical signs, or autopsy findings of offspring. Based on these observations, the NOAEL for reproductive/developmental toxicity was considered to be 50 mg/kg bw/day in rats.

Conclusion

There was no effect of OCBC observed on any reproductive and developmental parameters in rats up to 50 mg/kg bw/day. Thus the NOAEL for reproductive/developmental toxicity was considered to be 50 mg/kg bw/day in rats.

3.2 Initial Assessment for Human Health

No data are available for toxicokinetics, metabolism and distribution of OCBC.

The acute inhalation LC_{50} value in male and female rats was 2.8 mg/l. The acute dermal LD_{50} values were 1,700 (male) and 2,200 mg/kg bw (female) in rabbits and higher than 2,000 mg/kg bw in rats of both sexes. The oral LD_{50} values in rats were in the range of 350 and 951 mg/kg bw. OCBC primarily caused irritation-related histological damage to a tissue where the substance was administered; lung by inhalation, skin by dermal application and stomach by oral administration.

OCBC is irritating but not corrosive to the skin of rabbits. OCBC is also irritating to the eyes of rabbits. Respiratory irritation was noted for OCBC with the RD_{50} value of 32.9 mg/m³ for male mice. There are no reliable data available for sensitisation of OCBC.

In an inhalation repeated dose toxicity study, rats were exposed to OCBC vapour for 6 hours a day for 4 weeks (5 days/week) at concentrations of 0, 0.01, 0.03 and 0.10 mg/l. At 0.10 mg/l, signs indicative of irritation to the respiratory tract such as enlarged tracheobronchial lymph nodes, elevated lung weights, damage to the nasal mucosa, tracheas and bronchi, and lymphoid hyperplasia in the tracheobronchial lymph nodes were observed. There was no treatment-related change in rats exposed at 0.01 and 0.03 mg/l. The NOAEL for inhalation repeated dose toxicity was determined to be 0.03 mg/l in rats of both sexes.

In an oral repeated dose toxicity study performed as a combined repeat dose and reproductive/developmental toxicity screening test, OCBC was administered by gavage to rats at doses of 0, 2, 10 and 50 mg/kg bw/day. The administration periods were 45 days for males and 41-48 days for females including all the periods between pre-mating and post-delivery. Thickening of the forestomach wall, and squamous epithelium hyperplasia, erosion and ulceration in the forestomach were observed in males at 10 and 50 mg/kg bw/day and in females at 50 mg/kg bw/day. Histological changes in kidney, such as increases in the numbers of hyaline droplets in the proximal tubular epithelium, eosinophilic bodies, granular casts and basophilic tubules, were also observed in males at 50 mg/kg bw. The NOAEL for oral repeated dose toxicity was considered to be 2 mg/kg bw/day in male rats and 10 mg/kg bw in female rats.

One bacterial mutation study revealed that OCBC was negative with or without exogenous metabolic activation. Another bacterial mutation study, on the other hand, showed weakly positive response without metabolic activation but negative with metabolic activation. An *in vitro* chromosome aberration test using CHL/IU cells was positive in the presence or absence of an exogenous metabolic activation system only at the cytotoxic concentrations. The micronucleus assay using male and female rats was negative up to the maximum tolerated dose. Based on the weight of evidence, OCBC is not anticipated to be genotoxic *in vivo*.

There are no data available for carcinogenicity of OCBC.

As for the reproductive/developmental toxicity, no effect of OCBC on any reproductive and developmental parameters was observed in the above-mentioned combined repeat dose toxicity study in rats at doses up to 50 mg/kg bw/day. Thus the NOAEL for reproductive/developmental toxicity was considered to be 50 mg/kg bw/day in rats.

4 HAZARDS TO THE ENVIRONMENT

4.1 Aquatic Effects

The aquatic toxicity of *o*-chlorobenzyl chloride (OCBC) is summarized in Table 4. In each study, OCBC in the test solutions was measured except for two studies (Clariant GmbH, 1988, Dupont Chem., 1992). All the studies except one study (Dupont chem., 1992) were conducted according to OECD test guidelines in compliance with GLP. However, these studies were considered reliable with restrictions because solvents and/or dispersants were used in the studies.

Acute Toxicity Test Results

Algae

There is one study with fresh water algae, *Selenastrum capricornutum*, which was conducted in a static system according to OECD TG 201 in compliance with GLP (EA, Japan, 1999a). The 72-hr EC_{50} obtained on the basis of biomass and growth rate were 0.78 and 1.2 mg/l, respectively.

Invertebrates

One acute toxicity study with *Daphnia magna* has been reported (EA, Japan, 1999b). This study was conducted in a flow-through system according to OECD TG 202 in compliance with GLP. The 48-hr EC₅₀ based on immobilization was 0.38 mg/l.

Fish

There are three studies available on acute toxicity to fish. These studies except one study (Dupont chem., 1992) were conducted according to OECD TG 203 in compliance with GLP.

One study was conducted with *Oryzias latipes* in a flow-through system and showed that the 96-hr LC₅₀ was 0.27 mg/l (EA, Japan, 1999d).

The other studies were conducted with *Danio rerio* (Clariant GmbH, 1988) and with *Pimephales* promelas (Dupont Chem., 1992) in a static system and showed that the 96-hr LC₅₀ were 0.5-0.71 mg/l (nominal) and 0.71-0.96 mg/l (nominal), respectively.

Chronic Toxicity Test Results

Algae

A study with fresh water algae, *Selenastrum capricornutum*, was performed in a static system according to OECD TG 201 in compliance with GLP (EA, Japan, 1999a). The 72-hr NOEC based on the biomass and growth rate were 0.045 and 0.18 mg/l, respectively.

Invertebrates

The effect of 21-day exposure on reproduction of *Daphnia magna* was investigated as a chronic study, which was conducted in a semi-static system according to OECD TG 211. This study was

well controlled under GLP regulation (EA, Japan, 1999c). The 21-day NOEC in this study was 0.020 mg/l.

Toxicity of the hydrolysis products

Based on the stability of OCBC in water (half-life, 33.1 hours at pH7), considerable hydrolysis of OCBC to *o*-chlorobenzyl alcohol is anticipated. Thus the aquatic effect of *o*-chlorobenzyl alcohol was taken into consideration. Although no toxicity data is available for this substance, the analysis by ECOSAR (ECOWIN v0.99g) showed 96-hr LC₅₀ of 15.7-189.7 mg/l for fish and 48-hr LC₅₀ of 0.3-0.6 mg/l for Daphnia, suggesting that *o*-chlorobenzyl alcohol is not more toxic to aquatic organisms than OCBC. Consistent with this prediction, the 96 hr LC₅₀ values (nominal) of OCBC for fish obtained in a static system (0.5-0.71 mg/l for *Danio rerio* and 0.71-0.96 mg/l for *Pimephales promelas*) were larger than that obtained in a flow-through system (0.27 mg/l for *Oryzias latipes*).

Toxicity to Microorganisms

No toxicity data on aquatic microorganisms are available.

OECD SIDS

Species	Age/Size	Stat/ Flow	Temp (°C)	Dissolved oxygen (mg/l)	Hardness (mg CaCO ₃ /l)	рН	Solvent/ dispersant	Endpoint	Concentration (mg/l)	Test method	Reference
Algae											
Selenastrum capricornutum ^{a)}	1x10 ⁴ cells/ml (Initial cell number)	Static	23±2			7.9-8.0 (begin ning) 8.0- 10.5 (and)	Polyoxyethyle nesorbitan fatty acid ester, 10 mg/l	72h EC ₅₀ 72h NOEC biomass 24-72h EC ₅₀ 24-72h NOEC crowth rate	0.78 ^{c)} 0.045 ^{c)} 1.2 ^{c)} 0.18 ^{c)}	OECD 201 GLP	EA, Japan, 1999a
Invertebrates						(citu)		growin rate			
Daphnia magna	< 24 h old	Flow- through	20±1	8.6-9	75	7.6-7.8	mixture of DMSO ^{b)} and polyoxyethyle nesorbitan fatty acid ester, 100 ul/l	48h EC ₅₀ immobilization	0.38 °)	OECD 202 GLP	EA, Japan, 1999b
	< 24 h old	Semi- static	20±1	8.4-9.8	87-88	7.8-8.7	Polyoxyethyle nesorbitan fatty acid ester, 0.22 mg/l	21d NOEC 21d LOEC reproduction	0.020 ^{c)} 0.041 ^{c)}	OECD 211 GLP	EA, Japan, 1999c
Fish				•		•		•	•	•	•
Oryzias latipes	2.2 cm 0.16 g	Flow- through	24±2	8.5-9.1	45	7.1-7.4	mixture of DMSO ^{b)} and polyoxyethyle nesorbitan fatty acid ester, 100 ul/l	96 h LC ₅₀ NOEC behaviour	0.27 ° ⁰ 0.18 ° ⁰	OECD 203 GLP	EA, Japan, 1999d
Danio rerio	2.8 cm	Static	21.0- 23.0	6.0-9.6		7.3-8.1	Tween80, 100 ul/l	96 h LC ₅₀	0.5-0.71 ^d	OECD 203 GLP	Clariant GmbH, 1988
Pimephales promelas	2.2 cm, 0.17g	Static	22	8.3-8.4 (beginning) 2.4-7.3 (end)	72	7 (begin ning) 6.2-6.9 (end)	Acetone, 0.2%	96 h LC ₅₀	0.71-0.96 ^d	Other	Dupont chem., 1992

Table 4. Summary of toxicity test results to aquatic organisms.

a) now Pseudokircheneriella subcapitata b) dimethylsulfoxide c) Analytical monitoring was conducted. d) nominal concentration

4.2 Terrestrial Effects

No toxicity data on terrestrial organisms are available.

4.3 Other Environmental Effects

No other environmental effects data are available.

4.4 Initial Assessment for the Environment

OCBC has a water solubility of 100 mg/l at 25°C, a vapour pressure of 0.2 hPa at 25°C and a Log P_{OW} of 3.32. The K_{OC} of 856 indicates a moderate potential of the substance for adsorption to soil and sediment. The half life of OCBC by the reaction with OH radicals in air was calculated to be 103 hr. The bioconcentration factor for OCBC was calculated to be 71.85, indicating that the bioaccumulation potential of the substance is low. In the biodegradation test [OECD TG 301C], OCBC is not readily biodegradable (BOD 0% after 28 days). OCBC is hydrolyzed in water via an abiotic process to generate *o*-chlorobenzyl alcohol, which is then slowly biotransformed by oxidation to *o*-chlorobenzoic acid via *o*-chlorobenzaldehyde. An inherent biodegradability test [OECD TG 302B] showed that OCBC is inherently biodegradable with adapted industrial sludge.

The distribution of OCBC released into a particular environmental compartment was estimated with a fugacity-based model, Mackay level III. The model predicted that OCBC released into water is distributed to water (73.5 %), air (12.2%), sediment (7.7%) and soil (6.6%) while the substance released into air is distributed mainly to air (64.1%) and soil (34.6%). Almost all of the substance (99.8%) released into soil, on the other hand, was predicted to remain in its original compartment.

Acute toxicity studies with algae, invertebrates including Daphnia, and fish have been reported. The results obtained from these studies are the 72-hr EC_{50} of 0.78 mg/l for *Selenastrum capricornutum*, the 48-hr EC_{50} of 0.38 mg/l for *Daphnia magna*, and the 96-hr LC_{50} of 0.27 mg/l for *Oryzias latipes*.

A chronic toxicity test was performed to *Daphnia magna*. The 21-day NOEC for its reproduction was 0.020 mg/l (measured). The 72-hr NOEC (biomass) for the growth of *Selenastrum capricornutum* was 0.045 mg/l. No chronic toxicity data on fish are available.

Based on the stability of OCBC in water (half-life, 33.1 hours at pH7), considerable hydrolysis of OCBC to *o*-chlorobenzyl alcohol is anticipated. Thus the aquatic effect of *o*-chlorobenzyl alcohol was taken into consideration. Although no toxicity data is available for this substance, the analysis by ECOSAR (ECOWIN v0.99g) showed 96-hr LC₅₀ of 15.7-189.7 mg/l for fish and 48-hr LC₅₀ of 0.3-0.6 mg/l for Daphnia, suggesting that *o*-chlorobenzyl alcohol is not more toxic to aquatic organisms than OCBC. Consistent with this prediction, the 96 hr LC₅₀ values (nominal) of OCBC for fish obtained in a static system (0.5-0.71 mg/l for *Danio rerio* and 0.71-0.96 mg/l for *Pimephales promelas*) were larger than that obtained in a flow-through system (0.27 mg/l for *Oryzias latipes*).

OCBC is produced by chlorination of *o*-chlorotoluene in a closed system. There is no process that generates the waste water in the production of OCBC. The waste residue is incinerated. The off-gas of the reaction is incinerated or treated on active carbon. Therefore, there is no release of OCBC to the environment from its manufacturing plants. The use pattern of OCBC is also limited to the intermediates for the production of agrochemicals. In the sponsor country, only one agrochemical is manufactured from OCBC in a closed system. Because OCBC is reacted away in the process, there is no release of OCBC from the production site of the agrochemical. No contamination of OCBC is detected in the agrochemical (detection limit 0.002%). OCBC is not detected in soil as degradation

products of agrochemicals. Based on these facts, it is considered that the impact of OCBC to the environment (aquatic and terrestrial) is negligible.

5 **RECOMMENDATIONS**

The chemical is currently of low priority for further work.

The chemical possesses properties indicating a hazard for human health (repeated dose toxicity) and the environment. Based on data presented by the Sponsor country, exposure to humans and the environment is anticipated to be low, and therefore this chemical is currently of low priority for further work. Countries may desire to investigate any exposure scenarios that were not presented by Sponsor countries.

6 **REFERENCES**

AOPWIN ver.1.90 (2003) Syracuse Research Corporation.

CERI (1998) Chemicals Evaluation and Research Institute (CERI), Japan. Unpublished report

CERI (1999a) Chemicals Evaluation and Research Institute (CERI), Japan. Unpublished report

CERI (1999b) Chemicals Evaluation and Research Institute (CERI), Japan. Unpublished report

CERI (2003) Chemicals Evaluation and Research Institute (CERI), Japan. Unpublished data.

Clariant GmbH, (1983) Unpublished testing report titled "A Mutagenicity Screening of Ortho-Chlorbenzylchlorid D, in Bacteria (Ames Test)", Report No.: 83.0517, 23.09.1983, conducted by HOECHST AG, Pharma Research, Exp. Pathology.

Clariant GmbH, (1985a) Unpublished testing report titled "o-Chlorbenzylchlorid D, Prüfung auf Hautreizung am Kaninchen", Report No.: 85.0677, 14.07.1985, conducted by HOECHST AG, Pharma Forschung Toxikologie.

Clariant GmbH, (1985b) Unpublished testing report titled "o-Chlorbenzylchlorid D, Augenreizung am Kaninchen", Report No.: 85.0678, 15.07.1985, conducted by HOECHST AG, Pharma Forschung Toxikologie.

Clariant GmbH, (1987) Unpublished testing report titled "o-Chlorbenzylchlorid D, Akute Aerosolinhalation an der männlichen und weiblichen SPF-Wistar Ratte, 4 Stunden – LC50", Report No.: 87.1003, 14.09.1987, conducted by HOECHST AG, Pharma Forschung Toxikologie und Pathologie.

Clariant GmbH, (1988) Unpublished testing report titled "o-Chlorbenzylchlorid D, Prüfung der akuten Toxizität am Fisch Zebrabärbling (Brachydanio rerio) über 96 Stunden", Report No.: 88.1592, 7.10.1988, conducted by HOECHST AG, Pharma Forschung Toxikologie.

Clariant GmbH, (2003a) Unpublished data.

Clariant GmbH, (2003b) Unpublished testing report titled "o-Chlorobenzyl chloride Mammalian Erythrocyte Micronucleus Test in Male and Female Sprague Dawley Rats", Report No: PT02-0413, 04-Mar-2003, conducted by Aventis Pharma Deutschland GmbH.

CRC Handbook 2nd ed., The nine volume 2nd edition of the CRC Handbook of Data on Organic Compounds.

Dupont chem. (1992) Initial submission: acute toxicity of benzene, 1-chloro-2-chloromethyl in fathead minnows with cover letter dated 081092, Haskell Laboratory for Toxicology and Industrial Medicine (1979) EPA Doc. ID 88-920009285, NTIS/OTS 0571039.

EA, Japan (1999a) Environmental Agency: Unpublished testing report on toxicity of *o*-chlorobenzyl chloride to *Selenastrum capricornutum*, Test No. 10041, conducted by Japan Food Research Laboratories.

EA, Japan (1999b) Environmental Agency: Unpublished testing report on acute immobilization toxicity of *o*-chlorobenzyl chloride to *Daphnia magna*, Test No.10042, conducted by Japan Food Research Laboratories.

EA, Japan (1999c) Environmental Agency: Unpublished testing report on reproduction toxicity of *o*chlorobenzyl chloride to *Daphnia magna*, Test No. 10043, conducted by Japan Food Research Laboratories. EA, Japan (1999d) Environmental Agency: Unpublished testing report on acute toxicity of *o*-chlorobenzyl chloride to *Oryzias latipes*, Test No.10044, conducted by Japan Food Research Laboratories.

FMC (2003) FMC CORPORATION, Unpublished data.

Hammond, P.D. (1949) Kirk-Othmer Encyclopedia, 3 840.

HENRYWIN v3.10 (2003) Syracuse Research Corporation.

Ihara Chem. Ind. (1992) Ihara Chemical Industry Co., Ltd. Unpublished testing report titled "Dermal corrosion study of 2-chlorobenzyl chloride in rabbits.", Study No. 1L335-E, conducted by Mitsubishi-Kasei Institute of Toxicological and Environmental Sciences.

Ihara Chem. Ind. (1993a) Ihara Chemical Industry Co., Ltd. Unpublished testing report titled "Acute oral toxicity study of *o*-chlorobenzyl chloride in albino rats.", Study No. WIL-211001, conducted by WIL Reserch Laboratories, Inc.

Ihara Chem. Ind. (1993b) Ihara Chemical Industry Co., Ltd. Unpublished testing report titled "Acute dermal toxicity study of *o*-chlorobenzyl chloride in albino rats.", Study No. WIL-211002, conducted by WIL Reserch Laboratories, Inc.

Ihara Chem. Ind. (2003) Unpublished data.

Ikeda, M., Unai, T. and Tomizawa, C. (1986) Degradation of the Herbicide Orbencarb in Soils., J. Pesticide Sci., **11**, 85-96.

Landsteiner, K. and Jacobs, J. (1936) Studies on the sensitization of animals with simple chemical compounds. II. Journal of Experimental Medicine, **64**, 625-639.

Level Version 2.11 (2003) Canadian Environmental Modelling Centre.

MHLW, Japan (1999a) Ministry of Health, Labour and Welfare: Single dose oral toxicity test of 1chloro-2 (chloromethyl)benzene in rats. Japan Toxicity Testing Reports of Environmental Chemicals, 7, 489-491.

MHLW, Japan (1999b) Ministry of Health, Labour and Welfare: Combined repeat dose and reproductive/developmental toxicity screening test of 1-chloro-2 (chloromethyl)benzene in rats. Japan Toxicity Testing Reports of Environmental Chemicals, 7, 492-502.

MHLW, Japan (1999c) Ministry of Health, Labour and Welfare: Reverse mutation test of 1-chloro-2 (chloromethyl)benzene on bacteria. Japan Toxicity Testing Reports of Environmental Chemicals, 7, 503-508.

MHLW, Japan (1999d) Ministry of Health, Labour and Welfare: In vitro chromosomal aberration test of 1-chloro-2 (chloromethyl)benzene on cultured Chinese hamster cells. Japan Toxicity Testing Reports of Environmental Chemicals, 7,509-512.

Monsanto Co. (1992) Monsanto Company Initial submission: letter from Monsanto Co submitting four toxicity studies with o-chlorobenzyl chloride in rats and rabbits, EPA Doc# 88-920007143, NTIS/OTS0545482.

MPBPWIN v1.40. (2003) Syracuse Research Corporation.

Occidental Chem. Corp. (1990a) Occidental Chemical Corporation Letter from Occidental Chem Corp to US EPA submitting studies on orthochlorobenzylchloride with attachments, EPA Doc# 89-900000417, NTIS/OTS0526421-1

Occidental Chem. Corp. (1990b) Orthochlorobenzylchloride 28-day inhalation toxicity study in rats with cover letter, EPA Doc# 88-900000192, NTIS/OTS0526421

Tessenderlo Chemie N. V. (2003) Unpublished data.

Vijayaraghavan, R., Schaper, M., Thompson, R., Stock, M. F. and Alarie, Y. (1993) Characteristic modifications of the breathing pattern of mice to evaluate the effects of airborne chemicals on the respiratory tract, Arch. Toxicol., **67** (7), 478-490.

Wellens H. (1990) Z.Wasser-Abwasser-Forsch., 23, 85-98.

I U C L I D

Data Set

Existing Chemical CAS No. EINECS Name EC No. Molecular Formula	ID: 611-19-8 611-19-8 alpha,2-dichlorotoluene 210-258-8 C7H6C12
Producer Related Part Company: Creation date:	IHARA CHEMICAL INDUSTRY CO., LTD 16-JUL-2002
Substance Related Part Company: Creation date:	IHARA CHEMICAL INDUSTRY CO., LTD 16-JUL-2002
Memo:	OECD HPV Chemicals Programme, SIDS Dossier, approved at SIAM 17 (11-14 November 2003)
Printing date: Revision date: Date of last Update:	25-NOV-2004 25-NOV-2004
Number of Pages:	102
Chapter (profile): Reliability (profile): Flags (profile):	Chapter: 1, 2, 3, 4, 5, 6, 7, 8, 10 Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
1. GENERAL INFORMATION	ID: 611-19-8
	DATE: 25.11.2004

1.0.1 Applicant and Company Information

Type: Name: Street: Town: Country: Phone: Telefax: 22-JAN-2004	<pre>lead organisation IHARA CHEMICAL INDUSTRY CO., LTD 1-4-26, Ikenohata 110-0008 1-Chome, Taito-ku, Tokyo Japan +81 3 3822 5235 +81 3 3822 2497</pre>
Type: Name: Street: Town: Country: Phone: Telefax: 22-JAN-2004	cooperating company Clariant GmbH Stroofstrase 27 65933 Frankfurt am Main Germany +49 (0) 69 3800 2721 +49 (0) 69 3800 2707
Type: Name: Street: Town: Country: Phone: Telefax: Telex:	cooperating company Tessenderlo Chemie N.V. Rue du Trone n 130 3980 B-1050 Brussels Belgium +32 2 639 18 11 +32 2 639 19 99 23619 prolimb
28-JAN-2004	
1.0.2 Location of -	Production Site, Importer or Formulator
1.0.3 Identity of -	Recipients
1.0.4 Details on (-	Category/Template
1.1.0 Substance Id -	dentification
1.1.1 General Subs	stance Information
Substance type: Physical status: Purity:	organic liquid > 99 - % w/w

22-JAN-2004

OECD SIDSBENZENE, 1-CHLORO-2-(CHLOROMETHYL)-1. GENERAL INFORMATIONID: 611-19-8DATE: 25.11.2004

```
1.1.2 Spectra
1.2 Synonyms and Tradenames
o-Chlorobenzyl chloride
22-JAN-2004
alpha, 2-Dichlorotoluene
22-JAN-2004
alpha, o-Dichlorotoluene
22-JAN-2004
1-Chloro-2-(chloromethyl)benzene
22-JAN-2004
2-Chlorobenzyl chloride
22-JAN-2004
o, alpha-Dichlorotoluene
22-JAN-2004
Benzene, 1-chloro-2-(chloromethyl)-
22-JAN-2004
Toluene, o, alpha-dichloro-
22-JAN-2004
alpha, 2-Dichlortoluol
22-JAN-2004
alpha-2-diclorotolueno
22-JAN-2004
1.3 Impurities
              89-98-5
201-956-3
CAS-No:
EC-No:
EINECS-Name: 2-chlorobenzaldehyde
                = .014 - % w/w
Contents:
Remark:
                0.01-0.02% w/w
22-JAN-2004
                 104-83-6
CAS-No:
```

203-242-7

EC-No:

OECD SIDS BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-ID: 611-19-8 1. GENERAL INFORMATION DATE: 25.11.2004 EINECS-Name: alpha, 4-dichlorotoluene Contents: = .229 - % w/w 0.18-0.26% w/w Remark: 22-JAN-2004 CAS-No: 88-66-4 EC-No: 201-849-1 EINECS-Name: 1-chloro-2-(dichloromethyl)benzene Contents: = .063 - % w/w 0.04-0.08% w/w Remark: 22-JAN-2004 1.4 Additives 1.5 Total Quantity The production quantity of o-chlorobenzyl chloride (OCBC) in Remark: Germany, Japan and Belgium is reported as follows Annual production (tonnes) _____ Year Germany Japan Belgium _____ 1999140156020007003900200135043165320021803305522003-149-330 149 2003 -_____ -: No data available In these countries, only one company, which has one production site, currently operates the production of OCBC.

30-JUL-2004

(11) (25) (35)

1.6.1 Labelling

Labelling:	provisionally by manufacturer/importer				
Symbols: (Xn) harmful					
	(N) dangerous for the environment				
R-Phrases:	(20/21/22) Harmful by inhalation, in contact with skin and if				
	Swallowed				
	(36/37/38) Irritating to eyes, respiratory system and skin				
	(50/53) Very toxic to aquatic organisms, may cause long-term				
	adverse effects in the aquatic environment				

29-JAN-2004

1.6.2 Classification

Classified: provisionally by manufacturer/importer

OECD SIDS		BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-				
1. GENERAL INFORMATION		ID: 611-19-8				
		DATE: 25.11.2004				
Class of danger.	h a rm ful					
Class of danger:	narmiut					
Remark:	Classification manufacturer	:EC-classification, provisionally by				
	Class of danger environment	:Harmful, Irritant, Dangerous for				
	R-Phrases: R20/21/22 Harmful by inhalation, in contact with skin and if swallowed.					
	Irritating to eye	s, respiratory system and skin.				
	Very toxic to aqu	atic organisms, may cause long-term n the aquatic environment.				
30-JUL-2004						
1.6.3 Packaging -						
1.7 Use Pattern						
Type: Category:	industrial other					
Remark: 22-JAN-2004	intermediate for	the production of agrochemicals				
1.7.1 Detailed Us	se Pattern					
1.7.2 Methods of	Manufacture					
1.8 Regulatory Me -	asures					
1.8.1 Occupationa	al Exposure Limit V	alues				
Remark: 16-JUL-2002	No data available					
1.8.2 Acceptable -	Residues Levels					
1.8.3 Water Pollu	ution					
Remark:	Classified by Classification of	:Germany: Federal Water Act on the Water-Endangering Substances in				

OECD SIDS			BENZENE, 1-CH	ILORO-2-(CHLOROMETHYL)-
1. GENERAL INFO	RMATION			ID: 611-19-8 DATE: 25 11 2004
				DATE: 25.11.2004
	Water-Endan	gering Clas	ses (WGK)	
	Class of da Remark	nger :3 (:Cla WGK I	severely water ssification ac	-endangering) cording to VwVwS, Annex 3 Number:4459
30-JUL-2004		Wolt 1		
1.8.4 Major Accid	lent Hazards			
1.8.5 Air Polluti	.on			
1.8.6 Listings e.	g. Chemical	Inventories		
1.9.1 Degradation	/Transformat	ion Product	S	
1.9.2 Components				
1.10 Source of Ex	posure			
Remark:	Occupatio productio	nal exposur n site in J	e monitoring w	as conducted at the
	-Date: 20 the mouth rates of carbon di	03/01/14-Me of workers 0.2 l/min f sulfide, an	thod:Air of wo) was aspirate or 2-21 minute d analyzed by	rkplace atmosphere (around d by suction pump at flow s, and extracted with GC-FID.
	-Result Table 1.C the air o	oncentratio f workplace	n of o-chlorob atmosphere	enzyl chloride (OCBC) in
	Work Process*	Number of samples	Working time	Mean Concentration (ppm) (Min-Max)
	(1) (2) (3) (4)	2 4 8 2	10 sec./3days 10 sec./day 20 min./day 6.5 hrs./day	ND (< 0.013) ND (<0.017) 0.0153 (<0.005-<0.025) 0.008 (0.004-0.012)
	(5)	2	3 min./drum 5 min./day	ND (<0.013)
	*: Work P (1) Putti (2) Putti (3) Sampl (4) Filli (5) Treat	rocess ng stabiliz ng raw mate ing and pre ng a drum ment of was	er in a tank rial in a tank paration for G	C-FID analysis

OECD SIDS	BENZENE, 1-CHLORO-2-(BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-			
1. GENERAL INF	ORMATION	ID: 611-19-8			
		DATE: 25.11.2004			
30_ TIT _2004	Production site	(25)			
30 001 2004		(23)			
Remark:	Production site The number of operation days at the product	ion site is			
	follows;	ION SICC IS			
	In Japan: 2-6 weeks/year in 1999-2003				
28 - TAN-2004	In Germany: 3-24 weeks/year	(11) (25)			
20-0AN-2004		(11) (23)			
- 1					
Remark:	in Japan, Germany and Belgium, the number of	t workers engaged			
	twenty.				
	Production site				
22-JAN-2004		(11) (25) (35)			
Remark:	At the user site in the sponsor country, OCI intermediate for the production of the agro	BC is used as the chemical in a			
29-JAN-2004	production site. Putting OCBC into a reaction only process that might cause occupational user site because OCBC is reacted away in the the agrochemical and no contamination of OC the final product (detection limit 0.002%). just like a reverse process of filling drum production site. Thus the OCBC concentration workplace atmospheres at the user site are a at the same level or less at the production Furthermore, workers at the user site are a use personal protection equipments such as a glasses and gloves during operation. Based occupational exposure situation at the user less compared to the situation at the production is also considered to be negligible in the su	to that at the on tank is the exposure at the he production of BC is detected in This process is with OCBC at the ns in the air of anticipated to be site. lso obliged to mask, safety on these facts, site is equal or ction site in the exposure to OCBC sponsor country. (25)			
29-JAN-2004		(25)			
Remark:	OCBC is produced by chlorination of o-chlor closed system. There is no process that gene water in the production of OCBC. The waster incinerated. The off-gas of the reaction is treated on active carbon. Therefore there is OCBC to the environment from its manufactur.	otoluene in a erates the waste residue is incinerated or s no release of ing plants.			
	In the sponsor country, there is only one us is located near the production site. At this agrochemical is manufactured from OCBC in a Because OCBC is reacted away in the process release of OCBC to the environment from the of the agrochemical.	ser site, which s site, only one closed system. , there is no production site			
	The use of agrochemicals manufactured from a source of environmental exposure of OCBC. The scenario is not expected in the sponsor cour	OCBC might be the his exposure ntry, however,			

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
1. GENERAL INFO	DRMATION ID: 611-19-8 DATE: 25.11.2004 DATE: 25.11.2004
28-JAN-2004	because no contamination of OCBC is detected in the final products (detection limit 0.002%) and OCBC is not detected as degradation products of agrochemicals in soil. Source of environmental exposure (11) (19) (25) (35)
Remark:	Source of consumer exposure The use of OCBC is limited to intermediates for producing agrochemicals. The agrochemicals manufactured from OCBC are only two herbicides in OECD countries. In the sponsor country, only one herbicide is produced and used. No contamination of OCBC is detected in this herbicide by GC analysis (detection limit 0.002%). Therefore, consumer exposure is considered negligible in the sponsor country. (11) (25) (35)
20-0AN-2004	
1.11 Additional H -	Remarks
1.12 Last Litera	ture Search
Date of Search:	17-JUL-2003
Remark:	ACGIH Aquire ChemFinder CHRIS DIALO GECDIN HSDB IARC IRIS IUCLID MSDS NCI NIO OHMTADS RTE STN (CA, Registry, BEIL, GMELIN, HODOC, MEDLINE, NIOSHTIC, PROMT, RTECS, SPECINFO, TOXLINE, TOXLIT) SRC PhysPro Database TOXLINE TSCATS
28-JAN-2004	TSCATS
1.13 Reviews	

_ _ _

OECD SIDS	BENZENE, 1-CHLORO-2-(0	CHLOROMETHYL)-						
2. PHYSICO-CHEM	ICAL DATA	ID: 611-19-8 DATE: 25.11.2004						
2.1 Melting Point								
Value:	= -17 degree C							
Reliability: Flag: 28-JAN-2004	(2) valid with restrictions Data from peer reviewed secondary source Critical study for SIDS endpoint	(36)						
Value:	<= 50 degree C							
Method: Year: GLP:	OECD Guide-line 102 "Melting Point/Melting Ra 1999 no	nge"						
Test substance:	-Source: Wako Pure Chemical Industries, Ltd. -Lot No.LEM4431							
Reliability:	-Purity: 99.6% (2) valid with restrictions							
28-JAN-2004	OECD Guideline study	(3)						
2.2 Boiling Point								
Value:	= 217 degree C at 1013 hPa							
Reliability: Flag: 28-JAN-2004	(2) valid with restrictions Data from peer reviewed secondary source Critical study for SIDS endpoint	(36)						
Value:	= 94 - 95 degree C at 13.3 hPa							
Reliability: 28-JAN-2004	(2) valid with restrictions Data from peer reviewed secondary source	(36)						
Value:	= 96.6 degree C at 20 hPa							
Reliability: 28-JAN-2004	(2) valid with restrictions Data from peer reviewed secondary source	(20)						
2.3 Density								
Type: Value:	density = 1.2743 g/cm³ at 20 degree C							
Reliability: Flag: 22-JAN-2004	(2) valid with restrictions Data from peer reviewed secondary source Critical study for SIDS endpoint	(20)						
OECD SIDS			BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-					
---	---	---	---	---	--	---	--	----------
2. PHYSICO-CHI	EMICAL DATA						ID: 611	-19-8
						DAI	<u>E: 23.11</u>	.2004
Type: Value:	relative d = 1.2699 a	ensity t 0 degree	С					
Reliability: Flag: 28-JAN-2004	(2) valid Data from Critical s	with restr peer review tudy for SI	ictions ed seconda: DS endpoin	ry source t				(36)
2.3.1 Granulome -	etry							
2.4 Vapour Pres	ssure							
Value:	= .2 hPa a	t 25 degree	С					
Method: Year:	other (cal 2002	culated)						
Method: Reliability: Flag: 28-JAN-2004	MPBPWIN V1 (2) valid Critical s	.40 with restr tudy for SI	ictions DS endpoin [.]	t				(5)
2.5 Partition (Coefficient							
log Pow:	= 3.32 at	25 degree C						
Method: Year: GLP:	OECD Guide Flask-shak 1999 yes	-line 107 ing Method"	"Partition	Coeffici	ent ((n-octa	nol/wat	er),
Method:	Three diff ratio of n are as fol	erent solve -octanol to lows:	nt ratios water and	were inve a quanti	stiga ty of	ated. A test	volume substar	; ice
	Test condi	tion No.			(1)	(2)	(3)	-
	n-Octanol Water phas Test subst	phase satur e saturated ance(mg)	ated with with n-oc	water(ml) tanol(ml)	5 30 5.05	10 25 5.05	20 15 5.05	-
Result:	All tests equilibriu n-octanol concentrat determined And a pH c Partition under thre	were perfor m of test s and water p ions of tes by HPLC (h f water pha Coefficient e condition	med in dup ubstance wa hases at th t substance igh perform ses was mea of o-chlo s at 25 dee	licate. A as establ hree volu e in both mance liq asured. robenzyl gC (g/L):	fter ished me ra phas uid c chlor	the pa l betwe atios, ses wer chromat	ertition the re cography DCBC)	1
	Test	Pow	Log Pow					
	Condition No.	(Cn-octano	l/Cwater)	Mean	(wat	er pha	ise)	

OECD SIDS				BENZE	NE, 1-CHLO	<u> </u>	<u>OROMETHYL)-</u>
2. PHYSICO-CHEM	1ICA	L DAT	Ϋ́A			D۸	ID: 611-19-8 TE: 25 11 2004
							<u>112. 23.11.2004</u>
	1	a b	2.07E+3 2.14E+3	3.32 3.33	3.32	6.4	
	2	a b	2.08E+3 2.12E+3	3.32 3.33	3.32	6.4	
	3	a b	1.96E+3 2.07E+3	3.29 3.32	3.30	6.4	
	Mea	an	2.07E+3	3.32		6.4	
Test substance: Reliability:	So -Lo -Pu (1)	ource: ot No. urity: val	Wako Pure C LEM4431 99.6 % (but id without r	treated estrictio	Industries, as 100 %) on	, Ltd.	
Flag: 29-JAN-2004	Cr:	itical	study for S	IDS endpo	oint		(4)
log Pow:	= (3.44					
Method:	otł	ner (c	alculated)				
Method: Reliability: 28-JAN-2004	кот (2)	WWIN V) val	1.66 id with rest	rictions			(5)
2.6.1 Solubility	in d	differ	ent media				
Solubility in: Value:	Wa1 = 2	ter 100 mg	/l at 25 deg	ree C			
Method: Year: Test substance:	OE 199 oth	CD Gui 99 ner TS	de-line 105				
Method: Result:	Aft C, cor pha Cor 25	ter sh these ncentr ase we ncentr deg C	aking vessel were shaken ations of th re determine ation of o-c (mg/L):	s for 24, for 24 h e test su d by HPLC hlorobenz	, 48 and 72 hours at 25 ubstance in C analysis zyl chloric	2 hours at 3 5+/-1 deg C. h the clear de (OCBC) me	80+/-1 deg The aqueous easured at
	Sha tir	aking me(hr)	Concentr of subst	ation ance	Mean Mea	an	
	24		110 110	110			
	48		110 100	100	100 (C.V.4.5 ^s	 })	
	72		100 100	100			
Test substance:	=== C.V -So -Lo	J.: co Durce: Dt No.	============ efficient of Wako Pure C LEM4431	variatic	=========== on Industries,	. Ltd.	

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
2. PHYSICO-CHEMICAL DATA	ID: 611-19-8
	DATE: 25.11.2004

Reliability: Flag: 25-NOV-2004	-Purity: 99.6 % (2) valid with restrictions OECD Guideline study Critical study for SIDS endpoint	(3)
2.6.2 Surface Ten	nsion	
2.7 Flash Point		
Value: Type:	= 114 degree C open cup	
Reliability: 28-JAN-2004	(2) valid with restrictions	(25)
2.8 Auto Flammabi	lity	
Value:	= 634 degree C	
Reliability: 28-JAN-2004	(2) valid with restrictions	(25)
2.9 Flammability		
2.10 Explosive Pr	coperties	
Result:	other	
Remark: Result: Reliability: 28-JAN-2004	Range of explosion is 2.0 - 8.6 %. o-Chlorobenzyl chloride has explosive nature. (4) not assignable	(25)
2.11 Oxidizing Pr -	roperties	
2.12 Dissociation -	Constant	
2.13 Viscosity -		
2.14 Additional F	Remarks	
Remark:	o-Chlorobenzyl chloride (OCBC) is a clear, colorless,	liquid
29-JAN-2004	and has pungent odor.	

OECD SIDS	BENZENE, 1-CHLORO-2-	(CHLOROMETHYL)-
3. ENVIRONMENTAL FATE AND PATHWAY	YS	ID: 611-19-8
		DATE: 25.11.2004

3.1.1 Photodegradation

Type: air INDIRECT PHOTOLYSIS Sensitizer: OH Conc. of sens.: 1500000 molecule/cm³ Rate constant: = $.00000000012454 \text{ cm}^3/(\text{molecule } \star \text{ sec})$ = 50 % after 103 hour(s) Degradation: Method: other (calculated) Year: 2002 AOPWIN Ver.1.90 Method: Remark: The length of the day: 12hr/day Reliability: (2) valid with restrictions Flag: Critical study for SIDS endpoint 28-JAN-2004 (5) 3.1.2 Stability in Water Type: abiotic t1/2 pH4: = 34.9 hour(s) at 25 degree C t1/2 pH7: = 33.1 hour(s) at 25 degree C t1/2 pH9: = 36.4 hour(s) at 25 degree C OECD Guide-line 111 "Hydrolysis as a Function of pH" Method: 1999 Year: Test substance: other TS Method: Test were conducted at three (4, 7, 9) pHs at two (30+/-1)deg C, 40+/-1 deg C) temperatures. All tests were performed in duplicate. In each pHs and each temperatures, the logarithm of concentration (logC) were plotted against time (t), and a slope(a) and an intercept(b) were derived from following regression equation. logC = at + bA rate constant (k) and a half-life time (t1/2) were derived from following equation. k = -2.303 X at1/2 =0.693/k Then, in each pHs, the logarithm of a rate constant (logk) were plotted against the reciprocal absolute temperature (1/T), and regression equation was derived by least-squares method. The rate constant and half-life time at 25 deg C were derived by extrapolation method. Result: Half-life times of OCBC at 25 deg C: _____ рΗ Half-life time Temperature Rate constant in hours (t1/2) in deg C in hours-1 _____ 25 pH4 34.9 1.99E-2 рН7 33.1 25 2.1E-2 25 pH9 36.4 1.90E-2 The o-chlorobenzyl chloride (OCBC) is hydrolyzed at pH 4.0, 7.0 and 9.0. (not stable in water)

OECD SIDS		BE	NZENE, 1-CHLOR	D-2-(CHLOROMETHYL)-
3. ENVIRONMEN	TAL FATE AND	PATHWAYS		ID: 611-19-8 DATE: 25.11.2004
Test substance:	-Source: Wake) Pure Chemic	al Industries,Lto	d.
Reliability:	(2) valid wi	th restrictine study	ons	
Flag: 30-JUL-2004	Critical stud	ly for SIDS e	ndpoint	(3)
3.1.3 Stability	in Soil			
Remark:	No data avail chloride (OCF agrochemical not detected	Lable for sta 3C). But, the manufactured as degradati	bility in soil of data for stabil from OCBC is ava on products of a	f o-chlorobenzyl ity in soil of an ailable. OCBC is grochemicals in
28-JAN-2004	SOII (See S.C	›).		(19) (27)
3.2.1 Monitoring	Data (Environr	ment)		
Remark: 16-JUL-2002	No data avail	Lable		
3.2.2 Field Stud	lies			
3.3.1 Transport	between Enviror	nmental Compa	rtments	
Type: Media: Year:	fugacity mode other:Air-sec 2002	el level III diment-soil-w	ater	
Result:				
	Compartment		Release	
		100%to air	100%to water	100%to soil
	Air	64.1%	12.2%	0.2%
	Water	1.1%	73.5%	0.0%
	Sediment	0.1%	7.7%	0.0%
Attached doc.: Reliability: Flag:	The detailed calculation a The reference "D. Mackay, S Evaluating Th 695-717. (199 Appendix1.doo calculation (2) valid wi Critical stud	results and are shown in e of the Fuga 5. Paterson, he Regional F 22)" c:The paramet (Level III) th restricti dy for SIDS e	the input parame Appendix 1. .city model Level W. Y. Shiu, Generate ate of Chemicals ers used in the sons ndpoint	ters used in the III is ric Models for , Chemosphere, 24, 6, fugacity

OECD SIDS	BENZENE, 1-CHLORO-2	<u>2-(CHLOROMETHYL)-</u>
3. ENVIRONMENT	TAL FATE AND PATHWAYS	ID: 611-19-8 DATE: 25.11.2004
24-NOV-2004		(5)
3.3.2 Distributio	n	
Remark:	Henry's law constant of o-chlorobenzyl chlor at 157 Pa m3/mole (bond estimation method) k v3.10. The input parameters are following; CAS No. 611-19-8	ride is estimated by HENRYWIN
	SMILES: c(c(cccl)CL)(cl)CCL Water solubility: 100 mg/l Log KOW: 3.32 Boiling point: 217 deg C	
18-FEB-2004	Meiting point: -17 deg C	(5)
Remark:	The soil adsorption coefficient (KOC) of o-c chloride is estimated as 856 by PCKOCWIN v1. The input parameters are following; CAS No. 611-19-8 SMILES: c(c(cccl)CL)(cl)CCL Water solubility: 100 mg/l Log KOW: 3.32 Boiling point: 217 deg C	chlorobenzyl .66.
28-JAN-2004	Mercing point: -17 deg c	(5)
3.4 Mode of Degra	adation in Actual Use	
3.5 Biodegradatio	on	
Type: Inoculum: Concentration: Contact time: Degradation: Result: Control Subst.: Kinetic: Deg. product:	<pre>aerobic activated sludge 100 mg/l related to Test substance 28 day(s) = 0 % after 28 day(s) under test conditions no biodegradation obse Aniline 7 day(s) = 68 % 14 day(s) = 74 % yes</pre>	erved
Method: Year: GLP:	OECD Guide-line 301 C "Ready Biodegradabili Test (I)" 1998 yes	Lty: Modified MITI
Method:	-Inoculum 1.Fresh sludge samples were collected from t Japan, such as municipal sewage-treatment pl lakes and seas.	cen sites in lants, rivers,
	The filtered supernatant of an activated slushing for 3 months) were mixed with an equa	udge (cultivated al volume of the

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)
3. ENVIRONMENTAL FATE AND PATHWAY	ID: 611-19-8
	DATE: 25 11 2004

filtered supernatant of freshly collected ten-source mixture when used. And the activated sludge were cultivated for OECD TG 301C.

-Method

Thirty mg of the test substance or aniline (reference substance) and 9 mg as MLSS (mixed liquor suspended solid) of activated sludge were added to 300 ml of test medium (OECD TG 301C). A concentration of inoculum was 30 mg/l as MLSS. A concentration of the test substance was 100 mg/l. A volume of mixture was 300 ml. The test and reference solutions were cultivated in BOD meter together with the inoculum blank and abiotic control ones at 25 deg C for 28 days, during which the oxygen consumption was continuously measured. After termination of the test, the residual amount of the test substance and DOC (dissolved organic carbon) were determined individually with HPLC and TOC meter. And pH values of test solutions were measured. The biodegradability was calculated from the oxygen consumption and the residual amount.

Result:

Results of test substance and specific chemical analysis by HPLC at end of test (after 28 days) are as follows:

Residual am of test substance	ount Breakdo	wn products	
	o-chlorobenzyl alcohol	o-chlorobenz aldehyde	o-chlorobenzoic acid
[Water + te	st substance sol	utions]	
mg O	26.3	0	0
80	99	0	0
[Sludge + t	est substance so	lutions (Value	are expressed as
mean of thr	ee times)]		
mg O	24.5	0.7	0.9
8 0	92	2	3
[Theoretica	l Value]		
mg 30.0	26.6	26.2	29.2
	=======================================		

Results of carbon analysis by TOC and of BOD at end of test (after 28 days) are as follows:

========================= Wa So	======================================	substance	======================================	substance
[Residual a mgC 1.	amount of 5.8 al Value	DOC] 15.7 mgC)	16	
8 1 [BOD]	0 0	5.	102	
mg	D		0	

o-Chlorobenzyl chloride (OCBC) was not detected at both water plus test substance and sludge plus test substance solutions after 28 days. In water plus test substance solutions, o-chlorobenzyl alcohol was detected by LC-MS

OECD SIDS	BENZENE, 1-CHLORO-2-	(CHLOROMETHYL)-
3. ENVIRONMENTAL FATE AND PATHWAY	S	ID: 611-19-8
		DATE: 25.11.2004

	after 28 days. Production rate of o-chlorobenzyl alcohol was 99 % from the measurement by HPLC. Therefore, it is considered that OCBC hydrolyzed into o-chlorobenzyl alcohol. In sludge plus test substance solutions, o-chlorobenzyl alcohol, o-chlorobenzaldehyde and o-chlorobenzoic acid were detected respectively after 28 days. Mean production rates of o-chlorobenzyl alcohol, o-chlorobenzaldehyde and o-chlorobenzoic acid were 92, 2 and 3 % respectively. Consequently it is considered that OCBC is hydrolyzed and produces o-chlorobenzyl alcohol, and then the o-chlorobenzyl alcohol is slowly biodegradable to o-chlorobenzaldehyde and o-chlorobenzoic acid. Degradation pathway of o-chlorobenzyl chloride is as follows: o-chlorobenzyl alcohol, o-chlorobenzaldehyde, o-chlorobenzoic acid
Conclusion:	In this test, the determination by the BOD method showed 0% degradation of OCBC through 28 days
Reliability:	(1) valid without restriction
Flag:	Critical study for SIDS endpoint
30-JUL-2004	(2)
Type: Inoculum: Concentration: Contact time: Degradation: Result:	<pre>aerobic activated sludge, industrial, adapted 50 mg/l related to COD (Chemical Oxygen Demand) 28 day(s) = 99 % after 9 day(s) other:Under this test conditions OCBC is inherently biodegradable.(99 % after 9 days with adaptation period of 6</pre>
	days)
Method: Year: GLP:	OECD Guide-line 302 B "Inherent biodegradability: Modified Zahn-Wellens Test" 1990 no
Remark:	A mixture containing OCBC, mineral nutrients and an industrial activated sludge was agitated with aeration. This test was adapted to the volatility of a test substance by using a respirometric method to determine the biodegradation instead of DOC measurement. Thus the result was not influenced by volatilisation if any. The determination by the respirometric method showed 99% degradation of OCBC after 9 days. First 6 days were adaptation period (less than 10% degradation) and 90% degradation of OCBC was observed in the last 3 days. Thus, OCBC is inherently biodegradable with adapted industrial sludge.
Reliability: 28-JAN-2004	(2) valid with restrictions (38)
3.6 BOD5, COD or H	BOD5/COD Ratio
3.7 Bioaccumulatio	n

BCF: = 71.85

OECD SIDS	BENZENE, 1-CHLOR	RO-2-(CHLOROMETHYL)-
3. ENVIRONMEN	VTAL FATE AND PATHWAYS	ID: 611-19-8
		DATE: 25.11.2004
Method:	other:(calculated), BCFWIN V 2.14	
Remark:	logKow=3.32 (measured)	
Reliability:	(2) valid with restrictions	
28-JAN-2004		(5)
3.8 Additional	Remarks	
Remark:	[Degradation of Orbencarb]	
	The degradation of 14C-orbencarb, an agr	ochemical
	manufactured from OCBC, was studied under	r various soil
	conditions, and three types of soils were conditions 14002 evolved rapidly in soil	e used. Under upland 1 where the
	half-lives of orbencarb were 18 to 26 day	ys. Orbencarb
	sulfoxide, monodesethyl-orbencarb, methy	1
	2-chlorobenzylsulfoxide, methyl 2-chlorob	benzyl-sulfone and
	2-chlorobenzylsulfonic acid were identif.	ied as orbencarb's
	N-ethyl-N-beta-hydroxyethyl-orbencarb, 4	-vinyi-oibencaib, -hvdroxy-orbencarb,
	5-hydroxy-orbencarb, didesethyl-orbencarb	b, 2-chlorobenzyl
	alcohol, 2-chlorobenzoic acid and methyl	
	2-chlorobenzylsulfide as its minor. Soil	bound residues
	hulvic acid and humin fractions, and its	benzene ring was
	finally degraded to 14 CO2.	
28-JAN-2004		(27)
Pomark.	OCPC is not formed during any known much	anism of dogradation
Nelliar K.	of clomazone in soil. Clomazone is an ag	rochemical
	manufactured from OCBC.	

28-JAN-2004

(19)

AQUATIC ORGANISMS

4.1 Acute/Prolong	ed Toxicity to Fish
Type: Species: Exposure period: Unit: LC50:	flow through Oryzias latipes (Fish, fresh water) 96 hour(s) mg/l Analytical monitoring: yes = .27 -
Method: Year: GLP:	OECD Guide-line 203 "Fish, Acute Toxicity Test" 1999 yes
Test substance:	other TS:Wako Pure Chemical Industries, Ltd., Purity 99.6 %, Lot No. PAM5243
Method:	<pre>[Test Organisms] a) Size (length and weight): 2.2 cm (2.1 - 2.4 cm) in length; 0.16 g (0.11 - 0.20 g) in weight b) Age: Not described c) Pretreatment: Acclimated for seven days or more and not fed for 24hours prior to the test. Any groups showing > 5 % mortality in the acclimation period were not used for the test.</pre>
	d) Supplier/Source: Takizawa Fish Hatchery, Ltd.
	<pre>[Test Conditions] a) Dilution Water Source: Laboratory supply water (dechlorinated) b) Dilution Water Chemistry: Hardness : 45 mg/l (as CaCO3) PH : 7.6</pre>
	 c) Exposure Vessel Type: 9-liter test solution in a 10-liter glass vessel. d) Nominal Concentrations (mg/l): 0, 0.10, 0.18, 0.32, 0.56 and 1.0
	e) Solvent/Dispersant and Concentrations: Mixture of dimethylsulfoxide and polyoxyethylenesorbitan fatty acid ester,100 ul/l test solution
	<pre>f) Stock Solutions and Stability: 1, 1.8, 3.2, 5.6 and 10 mg/ml solvent g) Number of Replicates: 1</pre>
	 h) Fish per Replicates: 10 i) Renewal Rate of Test Water: Flow-through with a flow-rate of 50 ml/min, comparable to 8-times renewal per day J) Water Temperature: 23.2 - 23.9 deg C k) Light Condition: 16:8 hours, light-darkness cycle l) Aeration: No m) Feeding: No
	[Analytical Procedure] Portions of the test solutions were withdrawn at 0 hour and 48 hours and extracted with hexane. Concentrations of the test substance were determined by gas chromatography.
	[Statistical Method] a) Data Analysis: Binominal method for LC50 b) Measured Concentrations : Geometric mean concentrations
Result:	[Measured Concentrations] All of the measured concentrations were between 80 and 120%

of the nominal concentrations (Table 1). Thus the nominal concentrations were used for calculating effect values.

Table 1.Measured concentrations of the test solutions in the 96-hour acute toxicity test on Oryzias latipes under the flow-through test conditions

Nominal concn.	Measured (mg/l)	d concn.	Arithmetic mean	Measu	======= red/Nominal (%)
(mg/l)	0 h	48 h	(mg/l)	0 h	48h
Control Solv. cont. 0.10 0.18 0.32 0.56 1.0	< 0.005 < 0.005 0.100 0.158 0.368 0.543 0.971	< 0.005 < 0.005 0.101 0.183 0.287 0.513 1.05	 0.101 0.171 0.328 0.528 1.01	 100 88 115 97 97	 101 102 90 92 105

[Water Chemistry]

Table 2.pH values of the test solutions in the 96-hour acute toxicity test on Oryzias latipes under the flow-through test coditions

	Cont.	Solv.		Nominal	====== L concn	. (mg/	======= l)
Hours		cont.	0.10	0.18	0.32	0.56	1.0
0 24 48 72 96	7.2 7.4 7.3 7.2 7.3	7.2 7.3 7.3 7.2 7.3	7.2 7.3 7.3 7.2 7.3	7.2 7.3 7.2 7.1 7.3	7.2 7.3 7.2 7.1 7.3	7.2 7.3 7.2 7.1 ND	7.2 7.2 7.2 ND ND

ND: Not determined because all fishes were dead at this time.

Table 3.Dissolved oxygen concentrations (DO) of the test solutions in the 96-hour acute toxicity test on Oryzias latipes under the flow-through test conditions

	Cont.	Solv.		Nomina	l conc	n. (mg/	======================================
Hours		cont.	0.10	0.18	0.32	0.56	1.0
0 24 48 72 96	8.8 8.5 8.5 9.0 8.7	8.8 8.6 8.6 8.9 8.9	8.6 8.5 8.5 8.9 8.6	8.7 8.5 8.6 8.9 8.6	8.8 8.7 8.6 8.9 8.8	8.8 8.6 8.6 9.1 ND	8.7 8.7 8.8 ND ND
ND: N time.	ot dete	ermined b	ecause a	all fis	hes we	re dead	d at this
[Effe LC50	ct Data (96 hr)	·] : 0.	27 mg/l	(Table	4 & 5)		

```
LC0 (96 hr) : 0.18 mg/l(Table 4 & 6)
LC100 (96 hr) : 0.56 mg/l(Table 4 & 6)
NOEC (96 hr) : 0.18 mg/l(Table 4 & 7)
```

Table 4.Cumulative numbers of deaths in the 96-hour acute toxicity test on Oryzias latipes under the flow-through test conditions

Nominal concn.	Cumulat	ive number	of deaths	(a)
(mg/l)	24hr	48hr	72hr	96hr
Control Solv. Control 0.10 0.18 0.32 0.56 1.0	0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (10) 2 (20)	0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 8 (80) 10 (100)	0 (0) 0 (0) 0 (0) 4 (40) 10 (100) 10 (100)	0 (0) 0 (0) 0 (0) 0 (0) 8 (80) 10 (100) 10 (100)
	========			

(a):Percentage of dead animals compared to the total animals tested is shown in parentheses.

Table 5.Calculated LC50 values based on the nominal concentrations in the 96-hour acute toxicity test on Oryzias latipes under the flow-through test conditions

Exposure Period (hours)		LC50 (mg/l)	95% co	nfidence li (mg/l)	 mit	Statistical method
24 48 72 96	>	1.0 0.47 0.34 0.27	not not not not	calculated calculated calculated calculated		Binominal Binominal Binominal Binominal

Table 6.Maximum concentrations causing 0% mortality and Minimum concentrations causing 100% mortality based on the nominal concentrations in the acute toxicity test on Oryzias latipes under the flow-through test conditions

	24 hr	Expo 48 hr	sure ti 72 hr	me 96 hr	
Maximum concn. (mg/l) causing 0% mortality	0.32	0.32	0.18	0.18	-
Minimum concn. (mg/l) causing 100% mortality	> 1.0	1.0	0.56	0.56	=

Table 7.Visible abnormalities in the 96-hour acute toxicity test on Oryzias latipes under the flow-through test conditions

	Nominal	Symptom					
	(mg/l)	24hr	48hr	72hr	96hr		
	Control Solv. Control 0.10 0.18 0.32 0.56 1.0	Normal Normal Normal Normal le, ss le, ss	Normal Normal Normal le le, ss a	Normal Normal Normal le, ss, es a a	Normal Normal Normal es a a		
Reliability: Flag:	<pre>le: Lethargy ss: Surface sl es: Erratic sw a: No observat this time. (2) valid wit OECD TG study Critical study</pre>	icks vimming ion was m h restric with use for SIDS	ade becau tions of solver endpoint	use all fishes nt/dispersant	were dead	at	
30-JUL-2004						(18)	
Type: Species: Exposure period: Unit: LC50:	static other:Danio re 96 hour(s) mg/l = .571	rio (Fish	n, fresh w Analytica	vater) al monitoring:	no no		
Method: Year: GLP: Test substance:	OECD Guide-lin 1988 yes other TS: Puri	e 203 "F ty 99.6%	'ish, Acut	ce Toxicity Te	est"		
Method:	<pre>[Test Organism a) Size (lengt b) Age: Not de c) Pretreatmen d) Supplier/So [Test Conditio a) Dilution Wa b) Dilution Wa b) Dilution Wa c) Exposure Ve d) Nominal Con 0.71,1.0,1.8, e) Dispersant solution f) Number of R g) Fish per Re h) Water Tempe i) Light Condi j) Aeration: N k) Feeding: No</pre>	h and wei scribed t: Acclim ource: Wes ter Source ter Chemi : 7.9-8.2 ssel Type centratic 10,100 and Conce eplicates plicates: tion: 12: o	aght): 2.8 mated for st Aquariu e: synthe stry: e: 10-lite ons (mg/l) entrations e: 1 10 21.0 - 23. 12 hours,	3 cm (2.4 - 3. 14 days or mo 14 days or mo 14 days or mo 14 days or mo 15 cm 16 cm 16 cm 16 cm 16 cm 16 cm 16 cm 16 cm 17 cm 17 cm 17 cm 18 cm 19 cm 10	4 cm) in le ore cberg. g to ISO 734 .on .5, .00 ul/l tes	ngth 6/1 t	
Result:	[Statistical M a) Data Analys [Effect Data]	lethod] is: Probi	t analysi.	ls for LC50			

	LC50(48 hr): LC50(96 hr): LC0(48 hr): LC0(96 hr): LC100(48 hr): LC100(96 hr):	1.25-1.8 0.5-0.71 1 mg/l 0.5 mg/l 1.8 mg/l 1.25 mg/	3 mg/l . mg/l cc /l	onf.interv	al:.0.59-0.8	mg/l
	Table1.Cumula Test on Danio	tive numbe rerio	ers of deat	ths in the	acute toxic	ity
	======================================	Cumu]	ative numk	per of dea	======================================	=
	concn. (mg/l)	24hr	48hr	72hr	96hr	_
	Control Solv. Control 0.25 0.5 0.71 1 1.25 1.8 10 100	0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 10 (100) 10 (100)	0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (30) 10 (100) 10 (100)	0 (0) 0 (0) 0 (0) 7 (70) 3 (30) 10 (100) 10 (100) 10 (100) 10 (100)	0 (0) 0 (0) 0 (0) 8 (80) 7 (70) 10 (100) 10 (100) 10 (100) 10 (100)	_
	<pre>(a):Percentage tested is show Table2. Water</pre>	e of dead wn in pare parameter	animals co entheses.	ompared to	the total a	nimals
	Parameter	te	est solutio	ons c	ontrol	
	pH Dissolved oxy Temperature	7. gen 6. 21.	3 - 8.1 0 - 9.3 0 - 23.0	7 7 21	.3 - 8.1 .0 - 9.6 .2 - 23.0	
Reliability: 30-JUL-2004	(2) valid wi OECD TG study were no analy	th restric with use sed.	ctions of dispers	sant. The	test solutio	ns (10)
Type: Species: Exposure period: Unit: LC50:	static Pimephales pr 96 hour(s) mg/l = .7196	omelas (B	Tish, fresh Analytical	n water) l monitori	ng: no	
Method: Year: Test substance:	other 1979 other TS:Subm Dept., Jackson	itted by (n Lab.	C.R. Haaf,	Chemicals	, Dyes & Pig	ments
Method:	[Test Organism a) Size (leng weight b) Age: Not du c) Pretreatmes d) Supplier/So	ms] th and wei escribed nt: Fastec ource: Not	.ght): 2.2 1 for 48 ho 2 described	cm in len ours prior d	gth; 0.17 g to the test	in

	[Test C a) Dilu	onditions tion Wate] r Source: La	aborato	orv supply w	vater
	b) Dilu	tion Wate:	r Chemistry:			
	Т	otal alka	linity : 11	.0 mg/1	L (as CaCO3)	
	Т	otal hard	ness	: 72	2 mg/l	
	S	pecific co	onductance	: 19	90 umhos	
	c) Expo vessel	sure Vesse	el Type: 15-	liter	test soluti	lon in a glass
	d) Nomi 0.32, 0	nal Conce .42, 0.56	ntrations (v , 0.75, 1.0	v/v, pr and 1	om): 0, 0.1, .5	0.15, 0.24,
	e) Solv f) Stoc	ent and Co k Solution	oncentration ns Preparati	ns: Ace ons ar	etone nd Stability	7: 0.2% in
	acetone g) Numb	er of Rep	licates: 1			
	n) Fish i) Rene	wal Rate	of Test Wate	er: No	renewal	
	j) Wate k) Ligh	r Tempera t Conditio	ture: 22 deg on: Not desc	g C cribed		
	l) Aera m) Feed	tion: No ing: No				
	[Analyt The tes	ical Proce t solution	edure] ns were not	analys	sed for the	test substance.
	[Statis	Analysis	nodj • No analvsi	9		
	b) Meth	od of Cal	culating Mea	n Meas	sured Concer	trations: Not
	calcula	ted becau	se concentra	tions	of the test	solutions were
	not mea	sured.				
Result:	[Water	Chemistry]			
	Table 1	.Dissolve	d oxygen and	l pH va	alues of the	e test solutions
	measure	d at the J 	oeginning an	nd the	end of the	test.
	Nominal	concn.	рН		Dissolved	oxygen(ppm)
	(ppm) (v/v)	(mg/l)a)	beginning	end	beginning	end
	Control		7.0	6.4	8.4	3.0
	Acetone	control	7.0	6.3	8.3	2.7
	0.1	0.13	7.0	6.3	8.3	2.4
	0.15	0.19	7.0	6.3	8.3	4.0
	0.24	0.31	7.0	6.2	8.4	2.7
	0.32	0.41	7.0	6.3	8.3	2.7
	0.42	0.54	7.0	6.3	8.3	2.8
	0.56	0.71	7.0	6.2	8.3	2.6
	0.75	0.96	7.0	6.6	8.3	6.5
	1.0	1.27	7.0	6.7	8.4	7.0
	1.5	1.91	7.0	6.9	8.4	7.3
	=======					
	a): con (relati	vert ppm ve densit	to mg/l usin y=1.274).	ng 1ppr	n(v/v)=1ul/]	L=1.274mg/1
	[Effect Table 2	Data] .Percenta	ge of deaths	s in th	ne 96-hour a	acute toxicity
			-			
	test on ======	Pimephal	es promelas ====================================	under	the static	test conditions

(v/v, ppm) (mg/l) a)_____ Control 0 Acetone control 0 0.1 0.13 0 0.15 0.19 0 0.24 0.31 0 0.32 0.41 0 0.42 0.54 0 0.56 0.71 20 0.75 0.96 100 1.0 1.27 100 1.5 1.91 100 _____ a): convert ppm to mg/l using 1ppm(v/v)=1ul/l=1.274mg/l(relative density=1.274). Reliability: (2) valid with restrictions The test solutions were no analysed. 30-JUL-2004 (14)4.2 Acute Toxicity to Aquatic Invertebrates flow through Type: Species: Daphnia magna (Crustacea) Exposure period: 48 hour(s) Unit: mg/l Analytical monitoring: yes NOEC: = .1 -= .38 -EC50: Method: OECD Guide-line 202 Year: 1999 GLP: yes Test substance: other TS:Wako Pure Chemical Industries, Ltd., Purity 99.6 %, Lot No. PAM5243 Method: [Test Organisms] a) Age: < 24 hours old b) Supplier/Source: National Institute for Environmental Studies (JAPAN) [Test Conditions] a) Dilution Water Source: Laboratory supply water (dechlorinated) b) Dilution Water Chemistry: Hardness : 75 mg/1 (as CaCO3) рН : 7.5 c) Exposure Vessel Type: 9-liter test solution in a 10-liter glass vessel d) Nominal Concentrations (as mg/l): 0, 0.10, 0.18, 0.32, 0.56 and 1.0 e)Solvent/Dispersant and Concentrations: Mixture of dimethylsulfoxide and polyoxyethylenesorbitan fatty acid ester, 100 ul/l test solution f) Stock Solutions and Stability: 1, 1.8, 3.2, 5.6 and 10 mg/ml solvent g) Number of Replicates: 4 h) Individuals per Replicates: 5 i) Renewal Rate of Test Water: Flow-through with a flow-rate of 50 ml/min, equivallent to 8-times renewal per day

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-							
4. ECOTOXICITY	ID: 611-19-8							
					D	ATE: 25.11.20		
	j) Water Temp k) Light Cond l) Feeding: N	erature lition: No	e: 20.0 - 2 16:8 hours	20.1 deg C s, light-darkn	ness c	ycle		
	[Analytical P Portions of t 48 hours and test substanc	Procedur The test extract te were	ce] solutions ced with he determined	s were withdra exane. Concent d by gas chrom	wn at ration natogra	0 hour and ns of the aphy.		
Result:	[Statistical a) Data Analy Binominal met b) Method of applied [Measured Con All of the me of the nomina concentration	Method] sis: Pr chod for Calcula centrat easured l conce as were	cobit metho c EiC50 (24 ating Mean cions] concentrat entrations used for o	od for EiC50 (4 hr) Measured Conc tions were bet (Table 1). Th calculating ef	(48 hr) centration tween of the the ffect of) and tions: Not 80 and 120% e nominal values.		
	Table 1.Measured concentrations of the test solutions in 48-hour acute immobilisation test on Daphnia magna under flow-through test conditions							
	Nominal concn. (mg/l)	Measure concn. (mg/l)		Arithmetic mean (mg/l)	c Measured /Nominal (%)			
		0 h	48 h		0 h	48 h		
	Control Solv. Control	<0.005	5 <0.005 5 <0.005					
	0.10	0.111 0.214	0.112	0.112	119 119	112		
	0.32	0.359	0.284	0.322	112	89		
	0.56	0.622	0.544	0.583	111	97		
	1.0	1.10	1.01	1.06	110	101		
	[Water Chemis Table 2.pH va Immobilisatio test conditions	try] lues of on test	f the test on Daphnia	solutions in a magna under	the 40 the f	8-hour acute low-through		
	Nominal concn	· ·	I	рН				
	(mg/l)		0 hour	48 hours				
	Control Solvent contr	rol	7.8 7.8	7.7 7.7				
	0.10		7.8	7.7				
	0.18		7.8	7.7				
	U.32 0.56		/.8 7 8	/./ 7 7				
	1.0		7.8	7.6				

Table 3.Dissolved oxygen concentrations (DO) of the test

solutions Daphnia ma	in the 48 gna under	-hour acute the flow-th	immobilisati nrough test c	on test on onditions
Nominal co	ncn.	DO	(mg/l)	
(mg/l)		0 hour	48 hours	
Control Solvent co 0.10 0.18 0.32 0.56 1.0	ntrol	8.9 8.8 8.7 8.7 8.6 8.6 8.6 8.6	9.0 9.0 8.9 8.9 8.9 8.9 8.9 8.9	
[Effect Da EiC50 (24 EiC50 (48 (95% c EiC100 (48 NOECi (48	ta] hr) : 0.7 hr) : 0.3 onfidence hr) : 1. hr) : 0.	2 mg/l (Ta 8 mg/l limits: 0.3 0 mg/l (Ta 10 mg/l (Ta	able 4 & 5) 33 - 0.45mg/l able 4 & 6) able 4 & 6))(Table 4 & 5)
Table 4.Cu Daphnia ma	mulative gna 	numbers of c	leaths or imm	obility on
Nominal co	ncn. (Cumulative r Cumulative f	number of dea 6 of deaths o	ths or immobility r immobility)
(mg/l)		24 hours 4	18hours	
Control Solvent. C 0.10 0.18 0.32 0.56 1.0	ontrol	0 (0) 0 0 (0) 0 0 (0) 0 0 (0) 1 0 (0) 4 1 (5) 18 2 (100) 20) (0)) (0)) (0) L (5) 4 (20) 3 (90)) (100)	
Table 5.Ca concentrat	lculated ions	EiC50 values	s based on th	e nominal
Exposure Period (hours)	EiC50 (mg/l)	95% confide (mg/l)	ence limits	Statistical method
24 48	0.72 0.38	not calcu 0.33 - 0.	11ated .45	Binominal Probit
Table 6.No lowest con on the nomina	observed centratio l concent	effective on in 100% mo rations	concentration ortality or i	(NOEC) and the mmobility based
Exposure Period (hours)	NOEC (mg/l)	Lowest cond mortality d (mg/l)	centration in or immobility	100%

BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-ID: 611-19-8

DATE: 25.11.2004

	24 48	0.32 0.10	1.0 1.0			
Reliability: Flag: 30-JUL-2004	(2) valid OECD TG str Critical s	with rest udy with u tudy for S	rictions se of solv IDS endpoi	vent/dispersant .nt	(16)	
4.5 IOXICITY TO A	quatic fian	LS E.Y. AI	yae			
Species: Endpoint: Exposure period: Unit: NOEC: EC50:	Selenastrum biomass 72 hour(s) mg/l = .045 - = .78 -	m capricor	nutum (Al Analyti	.gae) .cal monitoring: yes		
Method: Year: GLP:	OECD Guide 1999 yes	-line 201	"Algae, (Growth Inhibition Test"		
Test substance:	other TS:Wa Lot No. PA	ako Pure C M5243	hemical Ir	ndustries, Ltd., Purity 99.6	010	
Method:	[Test Organisms] a) Strain Number: ATCC22662 b) Supplier/Source: American Type Culture Collection c) Pretreatment: Subcultured for 3 days in OECD medium before use.					
	[Test Cond a) Medium: b) Exposure Flask c) Nominal 1.0, 2.2, d) Disperse fatty acid e) Number f) Initial g) Water Te h) Light Co	itions] OECD medi e Vessel I Concentra 4.6 and 10 ant and Co ester, 10 of Replica Cell Numb emperature ondition:	um (Table ype: 100-n tions (as ncentratic mg/l test tes: 3 per: 10,000 : 23+/-2 c 4,000 - 5,	1) nl Medium in a 500-ml Conica mg/l): 0, 0.10, 0.22, 0.46, ons: Polyoxyethylenesorbitan c solution) cells/ml deg C 000 lux, continuous	1	
	Table 1.The composition of OECD medium					
	H3BO MnCl: ZnCl: FeCl Na3E CoCl: Na2M CuCl: CaCl: NH4C KH2PC	3 2.4H20 2 3.6H20 DTA.2H20 2.6H20 004.2H20 2.2H20 2.2H20 1 04		0.185 0.415 0.003 0.08 0.1 0.0015 0.007 0.00001 18 15 1.6		
	MgCl:	2.6H2O		12		

____ 20

19

21

43

27

25

23

72

76

81

	MgSO4.7	7H2O		15	==	
	[Analytical E Portions of t 72 hours and test substand	Procedure the test a extracted ce were de] solutions d with he etermined	s were with exane. Conc d by gas ch	drawn at entratic romatog:	t 0 hour and ons of the raphy.
Result:	<pre>[Statistical Method] a) Data Analysis: Doudoroff method for EbC50, simpre regression method for ErC50 and Dunnett's multicomparison method for NOEC b) Method of Calculating Mean Measured Concentrations: Time-weighted mean concentrations [Measured Concentrations] Measured concentrations at the beginning (0 hr) and the end (72 hr) of the test were ranged within 66 - 91% and 19 - 43% of the nominal concentrations, respectively. Because most of the measured concentrations were lower than 80% of the nominal, the time-weighted concentrations were used to</pre>					
	Table 2.Measu 72-hour growt	ired conce ch inhibi	entration tion test	ns of the t t on Selena	est solu strum ca	utions in the apricornutum
	Nominal concn. (mg/l)	Measure concn. (mg/1)	======= d	Time -weighted mean	======= Measure (१)	======= ed/Nominal
		0 hr	72 hr	(mg/l)	0 hr	72 hr

Control<0.005</th><0.005</th>------Solv. Control<0.005</td><0.005</td>------

 Solv. Control <0.005</th>
 <0.005</th>
 -- --

 0.10
 0.0833
 0.0201
 0.0445
 83

8.13 2.32

3.49

[Water Chemistry]

0.22

0.46

1.0

2.2

4.6 10

Table 3. The pH values of the test solutions in the 72-hour Growth inhibition test on Selenastrum capricornutum. _____

1.15 2.11 2.32 4.63

0.185 0.0419 0.0964 84 0.303 0.0983 0.182 66 0.912 0.427 0.639 91

1.59 0.591 1.01

Nominal concn.	рH		
(mg/l)	0 hour	72 hours	
Control Solvent control 0.10 0.22 0.46 1.0 2.2 4.6 10	8.0 7.9 7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9	10.4 10.3 10.4 10.5 10.4 10.4 10.4 8.9 8.2 8.0	
	==========	=======================================	

UNEP PUBLICATIONS

```
[Effect Data]
Area method:
 EbC50 (0 - 72 hr) = 0.78 mg/l (Table 4 - 6)
 NOEC (0 - 72 \text{ hr}) = 0.045 \text{ mg/l} (Table4, 5 & 7)
Rate method:
 ErC50 (0 - 24 hr) = 1.5 mg/l
    (95% confidence limits: 1.2 - 1.9 mg/l) (Table 4 - 6)
 NOEC (0 - 24 \text{ hr}) = 0.096 \text{ mg/l} (Table4, 5 & 7)
 ErC50 (24 - 48 hr) = 1.2 mg/l
   (95% confidence limits: 1.16 - 1.21 mg/l) (Table 4 - 6)
 NOEC (24 - 48 \text{ hr}) = 0.64 \text{ mg/l} (Table4, 5 & 7)
 ErC50 (24-72hr) = 1.2 mg/l
  (95% confidence limits: 1.1 - 1.3 mg/l) (Table 4 - 6)
 NOEC (24 - 72 \text{ hr}) = 0.18 \text{ mg/l} (Table4, 5 & 7)
Table 4.Mean cell concentrations and their standard
deviations (S. D.) in the test cultures and controls
_____
Nominal concn Cell concentration (x 10000 cells/ml)
            0 hr 24 hr 48 hr 72 hr
(mg/l)
_____
        Mean 1.0 6.98 34.51 89.12
S. D. 0.0 0.28 1.37 0.65
Control
_____
Solvent control Mean 1.0 7.19 37.96 90.52
S. D. 0.0 0.23 2.91 3.79
_____
           Mean1.06.8235.3285.47S. D.0.00.451.074.37
0.10
_____
           Mean 1.0 6.49 33.39 76.51
S. D. 0.0 0.37 3.08 6.09
0.22
_____
           Mean 1.0 5.70 30.85 65.81
S. D. 0.0 0.24 0.98 0.91
0.46
_____
           Mean1.05.5828.1861.64S. D.0.00.372.384.74
1.0
_____
          Mean1.02.737.2317.51S. D.0.00.110.301.01
2.2
 _____
           Mean1.01.902.002.17S. D.0.00.060.060.10
4.6
_____
10
          Mean1.01.551.591.58S. D.0.00.050.030.08
                                 0.08
_____
```

Table 5.Percent inhibition of the cell growth (IA) and the average specific growth rates (Im) in the 72-hour growth inhibition test on Selenastrum capricornutum

		=======================================		======
Nominal	Area	Inhibition	Rate	Inhibition
concn.	А	IA (%)	М	Im (%)
(mg/l)	(0-72 hr)		0-24 hr)	

Control	20050800		0.080918	
Solv. cont.	21099600	-5.23	0.082181	-1.56
0.10	19769600	1.40	0.079954	1.19
0.22	18151600	9.47	0.077859	3.78
0.46	16068400	19.86	0.072471	10.44
1.0	14899600	25.69	0.071574	11.55
2.2	3891600	80.59	0.041823	48.31
4.6	596400	97.03	0.026732	66.96
10	343600	98.29	0.018244	77.45

Table 5.continue

Nominal concn.	Rate M	Inhibition Im (%)	Rate M	========= Inhibition Im (%)
(mg/l)	(24-48 hr)		(24-72 hr)
Control Solv. cont. 0.10 0.22 0.46 1.0 2.2 4.6 10	0.066612 0.069260 0.068548 0.068197 0.070396 0.067441 0.040579 0.002138 0.001073	 -3.98 -2.91 -2.38 -5.68 -1.24 39.08 96.79 98.39	0.053081 0.052764 0.052675 0.051387 0.050988 0.050032 0.038706 0.002760 0.000436	0.60 0.77 3.19 3.94 5.75 27.08 94.80 99.18

Table 6.Calculated EC50 values

	 Value (mg/l)	95% confidence limits (mg/l)	Ordinate
EbC50 (0-72 hr)	0.78	not calculated	IA
ErC (0-24 hr)	1.5	1.2 - 1.9	Im
ErC (24-48 hr)	1.2	1.16 - 1.21	Im
ErC (24-72 hr)	1.2	1.1 - 1.3	Im

Table 7.Calculated NOEC

		Value (mg/l)	Statistical method	Parameter
	NOEC (0-72 hr)	0.045	Dunnett (p<0.05)	IA
	NOEC (0-24 hr) NOEC (24-48 hr)	0.096 0.64	Dunnett (p<0.05) Dunnett (p<0.05)	Im Im
	NOEC (24-72 hr)	0.18	Dunnett (p<0.05)	Im
Reliability:	(2) valid with : OECD TG study wi	restricti th use of	ons dispersant	
Flag: 30-JUL-2004	Critical study for	or SIDS e	ndpoint	(15)

4.4 Toxicity to Microorganisms e.g. Bacteria

4.5 Chronic Toxicity to Aquatic Organisms 4.5.1 Chronic Toxicity to Fish 4.5.2 Chronic Toxicity to Aquatic Invertebrates Daphnia magna (Crustacea) Species: Endpoint: reproduction rate Exposure period: 21 day(s) mg/l Unit: Analytical monitoring: yes NOEC: = .02 -EC50: = .23 -LC50 : = .39 -1999 Year: GLP: yes Test substance: other TS:Wako Pure Chemical Industries, Ltd., Purity 99.6 %, Lot No. PAM5243 OECD Guideline 211 Method: [Test Organisms] a) Age: < 24 hours old b) Supplier / Source: National Institute for Environmental Studies (JAPAN) [Test Conditions] a) Dilution Water Source: Laboratory supply water (dechlorinated) b) Dilution Water Chemistry: Hardness: 87 - 88 mg/l (as CaCO3) PH : 7.6 - 8.2 Table 1.Water quality of dilution water Parameter Concentration _____ Coliform group ND Cadmium < 0.001 mg/l Mercury < 0.0001 mg/l Selenium < 0.001 mg/l < 0.005 mg/l Lead Arsenic < 0.001 mg/l < 0.005 mg/l Chromium (VI) < 0.005 mg/l Cyanide Nitrate and nitrite 0.2 mg/l Fluoride 0.20 mg/l Carbon tetrachloride < 0.0002 mg/l 1,2-Dichloroethane < 0.0002 mg/l 1,1-Dichloroethylene < 0.001 mg/l Dichloromethane 0.002 mg/l Cis-1,2-Dichloroethylene < 0.001 mg/l Tetrachloroethylene < 0.001 mg/l 1,1,2-Trichloroethane < 0.0005 mg/l Trichloroethylene < 0.001 mg/l Benzene < 0.001 mg/l Chloroform < 0.001 mg/l

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-				
4. ECOTOXICITY		ID: 611-19-8			
		DATE: 25.11.2004			
	Dibromochloromothano	< 0.001 mg/l			
	Bromochloromethane	< 0.001 mg/1			
	Bromoform	< 0.001 mg/1			
	Tribalomethanes	< 0.001 mg/1			
	1 3-Dichloropropene	< 0.001 mg/1			
	Simazine	< 0.0002 mg/1			
	Thiram	< 0.0002 mg/1			
	Thiobencarb	< 0.0005 mg/1			
	Zina	< 0.001 mg/1			
	Iron	< 0.000 mg/I			
	Copper	< 0.05 mg/1			
	Sodium	< 0.01 mg/l			
	Manganese	< 0.005 mg/l			
	Chlorido	< 0.005 mg/1			
	Total bardness (as CaCO3)	$\frac{49}{87}$ mg/1			
	Total mardiness (as cacos)	180 mg/l			
	Surface active acents (anionia)	< 0.02 mg/l			
	1 1 1-Trichloroothano	< 0.02 mg/1			
		< 0.001 mg/1			
	Pormanganato reduction substances	< 0.003 mg/I			
		7 9			
	Taste	Normal			
	Odor	Normal			
	Color	A l dograd			
	Turbidity	< 1 degree			
	Phosphorus	< 1 degree < 0.01 mg/l			
		< 0.01 mg/l			
	Nickol	< 0.001 mg/1			
	Tip	< 0.001 mg/l			
	IIII Free regidual chlorine	< 0.1 mg/l			
	Promido	< 0.01 mg/l			
	Sulfido	< 0.5 mg/I			
	Ammonium	< 0.01 mg/1			
	Floatria conductivity	< 0.05 mg/r			
	Alkalipity (ag CaCO3)	46 mg/1			
	Potassium	7 1 mg/l			
	Calcium	20 mg/l			
	Magnasium	20 mg/r			
		< 0.0005 mg/l			
	Organonhosnhate	< 0.00003 mg/1			
	=======================================	< 0.02 mg/1			
	 c) Exposure Vessel Type: 80-ml tes glass bottle d) Nominal Concentrations (as mg/l Test 1; 0, 0.0022, 0.0046, 0.01 and 0.22 	t solution in a 100-ml): 0, 0.022, 0.046, 0.10			
	Test 2; 0, 0.10, 0.22. 0.46 and *In the test1, the maximum concent only 24.7 % reduction in reproduct test 2 was conducted at more highe e)Dispersant and Concentrations: P fatty acid ester, 0.22 mg/l (Test f) Number of Replicates: 10 g) Individuals per Replicates: 1 h) Renewal Rate of Test Water: Tot was renewed every 48 hours (2 days I) Water Temperature: 19.2 - 20.7 J) Light Condition: 16:8 hours, li brighter than 1,200 lux	1.0 ration (0.22 mg/l) caused a ion rate. Therefore, the r concentration. olyoxyethylenesorbitan 1) and 1.0 mg/l (Test 2) al solution in a vessel). deg C ght-darkness cycle, not			

0	ECD SIDS
4.	ECOTOXICITY

k) Feeding: Fed on Chlorella vulgaris at 0.15 mg carbon/day/individual. [Analytical Procedure] Portions of the test solutions were withdrawn at 0 hour, on the 2nd day before renewal, on the 6th day after renewal, on the 8th day before renewal, on the 14th day after renewal and on the 16th day before renewal. The withdrawn samples were extracted with hexane and concentrations of the test substance were determined by gas chromatography. [Statistical Method] a) Data Analysis: Binominal method for LC50, single regression method for EC50, and Dunnett's multicomparison method for NOEC and LOEC. b) Method of Calculating Mean Measured Concentrations: Time-weighted mean concentrations Result: [Measured Concentrations] Measured concentrations of the test solutions just after renewal (fresh preparation) and those 48 hour after renewal were ranged within 81 - 117% and 10 - 27% of the nominal concentrations, respectively. Because all of the measured concentrations at 48 hour after renewal were lower than 80% of the nominal, the time-weighted concentrations were used to calculate the effect values (Table 2 & 3). Table 2.Measured concentrations of the test solutions in the

Table 2.Measured concentrations of the test solutions in the 21-day reproduction test on Daphnia magna under the semi-static test conditions

Nominal concn. (mg/l)	Measu Concn. (mg/l)	red	Time -weighte mean (mg/l)	d	Measured/Nomina (%)
D. f	ay 0 Day resh old	2		Day 0 fresh	Day 2 old
(Test 1) Control Solv. cont 0.0022 0.0046 0.10 0.22 (Test 2) Control Solv. cont 0.10 0.22 0.46 1.0	<0.0001 . <0.00233 0.00496 0.0107 0.0210 0.0528 0.0865 0.184 <0.0001 . <0.0001 0.102 0.228 0.484 1.16	<0.0001 <0.00012 0.000559 0.00146 0.00324 0.00558 0.0143 0.0326 <0.0001 <0.0001 0.0187 0.0466 0.113 0.226	 0.000884 0.00202 0.00464 0.00950 0.0210 0.0401 0.0875 0.0491 0.114 0.255 0.571	 106 107 95 115 87 84 102 104 105 116 ======	 10 8 12 15 15 12 14 15 19 21 25 23
Table 2 -	continued	(1).		======	
Nominal	Measured		Time I	Measur	ed/Nominal

DATE: 25.11.2004

(mg/l)	(mg/l)	w n (mean (mg/l)	(४)	
	Day 6 fresh	Day 8 old		Day 6 fresh	Day 8 old
(Test 1)					
Control	<0.0001	<0.0001			
Solv. cont.	. <0.0001	<0.0001			
0.0022	0.00241	<0.0001	0.000499	110	
0.0046	0.00411	0.000663	0.00189	89	14
0.010	0.0109	0.000966	0.00410	109	10
0.022	0.0216	0.00311	0.00954	98	14
0.046	0.03/3	0.00678	0.0179	81	15
0.10	0.0952	0.0144	0.0428	95	14
$(\square a + 2)$	0.222	0.0334	0.0996	101	15
Control	<0.0001	<0.0001			
Solv. cont.	. <0.0001	<0.0001			
0.10	0.0959	0.0220	0.0502	96	22
0.22	0.219	0.0526	0.117	100	24
	0.540	0.126	0.284	117	27
0.46					
0.46 ====================================	continued	(2).			
0.46 ====== Table 2 - c ======== Nominal	continued Measured	(2).	 Time	======================================	d/Nominal
0.46 ====================================	continued Measured Concn.	(2).	Time -weighted	====== Measure (%	d/Nominal
0.46 ======= Table 2 - c ======== Nominal concn. (mg/l)	continued ======= Measured Concn. (mg/l)	(2).	Time -weighted mean (mg/l)	====== Measure (%	d/Nominal
0.46 Table 2 - c 	continued Measured Concn. (mg/l) Day 14 fresh	(2). Day 16 old	Time -weighted mean (mg/l)	Measure (% Day 14 fresh	d/Nominal) Day 16 old
0.46 ====================================	Continued Measured Concn. (mg/l) Day 14 fresh	(2). Day 16 old	Time -weighted mean (mg/l)	Measure (% Day 14 fresh	d/Nominal) Day 16 old
0.46 Table 2 - c 	Continued Measured Concn. (mg/l) Day 14 fresh	(2).	Time -weighted mean (mg/l)	Measure (% Day 14 fresh	Day 16 old
0.46 Table 2 - c 	Continued Measured Concn. (mg/l) Day 14 fresh <0.0001 <0.0001	(2). Day 16 old	Time -weighted mean (mg/l) 	Measure (% Day 14 fresh	Day 16 old
0.46 Table 2 - c ====================================	Continued Measured Concn. (mg/l) Day 14 fresh <0.0001 . <0.0001 0.00213	(2). Day 16 old <0.0001 <0.0001 0.000245	Time -weighted mean (mg/l) 0.000872	Measure (% Day 14 fresh 97	Day 16 old
0.46 Table 2 - c mominal concn. (mg/1) (Test 1) Control Solv. cont. 0.0022 0.0046	Continued Measured Concn. (mg/l) Day 14 fresh <0.0001 . <0.0001 0.00213 0.00448	(2). Day 16 old <0.0001 <0.0001 0.000245 0.000603	Time -weighted mean (mg/l) 0.000872 0.00193	Measure (% Day 14 fresh 97 97	Day 16 old
0.46 Table 2 - c Table 2 - c Nominal concn. (mg/l) 	Continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873	(2). Day 16 old <0.0001 <0.0001 0.000245 0.000603 0.00166	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426	Measure (% Day 14 fresh 97 97 87	d/Nominal) Day 16 old 11 13 17
0.46 ====================================	<pre>continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237</pre>	(2). Day 16 old <0.0001 <0.0001 0.000245 0.000603 0.00166 0.00381	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109	Measure (% Day 14 fresh 97 97 87 108	Day 16 old 11 13 17 17
0.46 ====================================	<pre>continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237 0.0420</pre>	(2). Day 16 old <0.0001 <0.0001 0.000245 0.000603 0.00166 0.00381 0.00754	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109 0.0201	Measure (% Day 14 fresh 97 97 87 108 91	Day 16 old 11 13 17 17 16
0.46 ====================================	<pre>continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237 0.0420 0.0916</pre>	(2). Day 16 old <0.0001 <0.0001 0.000245 0.000603 0.00166 0.00381 0.00754 0.0140	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109 0.0201 0.021 0.0413	Measure (% Day 14 fresh 97 97 87 108 91 92	Day 16 old 11 13 17 17 16 14
0.46 Table 2 - c Table 2 - c Nominal concn. (mg/l) (Test 1) Control Solv. cont. 0.0022 0.0046 0.010 0.022 0.046 0.10 0.22	<pre>continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237 0.0420 0.0916 0.240</pre>	(2). Day 16 old <0.0001 <0.000245 0.000603 0.00166 0.00381 0.00754 0.0140 0.0388	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109 0.0201 0.0201 0.0413 0.110	Measure (% Day 14 fresh 97 97 87 108 91 92 109	Day 16 old 11 13 17 17 16 14 18
0.46 Table 2 - c Table 2 - c Nominal concn. (mg/l) (Test 1) Control Solv. cont. 0.0022 0.0046 0.010 0.022 0.046 0.10 0.22 (Test 2)	Continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237 0.0420 0.0916 0.240	(2). Day 16 old <0.0001 <0.0001 0.000245 0.000603 0.00166 0.00381 0.00754 0.0140 0.0388	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109 0.0201 0.0201 0.0413 0.110	Measure (% Day 14 fresh 97 97 87 108 91 92 109	d/Nominal Day 16 old 11 13 17 17 16 14 18
0.46 Table 2 - c Table 2 - c Nominal concn. (mg/l) Control Solv. cont. 0.0022 0.0046 0.010 0.022 0.046 0.10 0.22 (Test 2) Control	Continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237 0.0420 0.0916 0.240 <0.0001	<pre>(2). Day 16 old <0.0001 <0.0001 0.000245 0.000603 0.00166 0.00381 0.00754 0.0140 0.0388 <0.0001</pre>	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109 0.0201 0.0413 0.110	Measure (% Day 14 fresh 97 97 87 108 91 92 109 	Day 16 old 11 13 17 16 14 18
0.46 Table 2 - c Table 2 - c Nominal concn. (mg/l) Control Solv. cont. 0.0022 0.0046 0.010 0.022 0.046 0.10 0.22 (Test 2) Control Solv. cont. Solv. cont.	Continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237 0.0420 0.0916 0.240 <0.0001 .<0.0001	(2). Day 16 old <0.0001 <0.0001 <0.000245 0.000603 0.00166 0.00381 0.00754 0.0140 0.0388 <0.0001 <0.0001	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109 0.0201 0.0413 0.110 	Measure (% Day 14 fresh 97 97 87 108 91 92 109 	Day 16 old 11 13 17 17 16 14 18
0.46 Table 2 - c Table 2 - c Nominal concn. (mg/l) Control Solv. cont. 0.0022 0.0046 0.010 0.022 0.046 0.10 0.22 (Test 2) Control Solv. cont. 0.10	<pre>continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237 0.0420 0.0916 0.240 <0.0001 .<0.0001 0.0988</pre>	<pre>(2). Day 16 old <0.0001 <0.0001 <0.000245 0.000603 0.00166 0.00381 0.00754 0.0140 0.0388 <0.0001 <0.0001 <0.0001 0.0210</pre>	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109 0.0201 0.0413 0.110 0.0502	Measure (% Day 14 fresh 97 97 87 108 91 92 109 99	Day 16 old 11 13 17 17 16 14 18 21
0.46 Table 2 - c Table 2 - c Nominal concn. (mg/l) Control Solv. cont. 0.0022 0.0046 0.010 0.022 0.046 0.10 0.22 (Test 2) Control Solv. cont. 0.10 0.22	Continued Measured Concn. (mg/l) Day 14 fresh <0.0001 .<0.0001 0.00213 0.00448 0.00873 0.0237 0.0420 0.0916 0.240 <0.0001 .<0.0001 0.0988 0.218	(2). Day 16 old <0.0001 <0.0001 <0.000245 0.000603 0.00166 0.00381 0.00754 0.0140 0.0388 <0.0001 <0.0001 <0.0001 0.0210 0.0533	Time -weighted mean (mg/l) 0.000872 0.00193 0.00426 0.0109 0.0201 0.0413 0.110 0.0502 0.117	Measure (% Day 14 fresh 97 97 87 108 91 92 109 99 99	Day 16 old 11 13 17 17 16 14 18 21 24

NominalTime-weighted mean valueMean Value/Nominalconcn.(mg/l)(%)

(mg/l) _____ 0-7d. 0-14d. 0-21d. 0-7d. 0-14d. 0-21d. _____ (Test 1) 34 0.0022 0.000884 0.000691 0.000751 40 31 0.0046 0.00202 0.00195 0.00195 44 42 42 0.010 0.00464 0.00437 0.00433 46 44 43 0.022 0.00950 0.00952 0.00997 43 43 45 0.0460.02100.01950.019746420.100.04010.04140.041440410.220.08750.09350.09924043 43 41 45 (Test 2) 0.100.04910.04960.049849500.220.1140.1150.1165252 50 0.220.1140.1150.1165252530.460.2550.2700.2725559591.00.571---a---a57---a---a d.: days a:All of the parental animals died before Day 21 and thus the time-weighted mean value was not calculated for the period. [Water Chemistry] pH: 7.8 - 8.7 (Test 1), 7.8 - 8.8 (Test 2) Dissolved oxygen (mg/l): 8.4 - 9.8 (Test 1), 8.6- 9.7 (Test 2) Total hardness (mg/l as CaCO3): 87 - 88 (Test 1), 85 - 88 (Test 2) [Effect Data (reproduction)] All of the following effect values were calculated with the measured concentrations. NOEC and LOEC values were determined on the basis of reproduction using the data of Test 1. LC50 (21 days) = 0.39 mg/l (parental mortality) (Table 4 & 5) EC50 (21 days) = 0.23 mg/l (95% Confidence limits: 0.22 - 0.24 mg/l) (Table 7 - 9) NOEC (21 days) = 0.020 mg/l (Table 7 & 8) LOEC (21 days) = 0.041 mg/l (Table 7 & 8) Table 4.Cumulative numbers of deaths among the parental animal groups _____ Nominal Cumulative number of deaths on Day: concn. _____ 0 1 2 3 4 5 6 7 8 9 10 (mg/l) _____ (Test 1)
 Control
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</ 0 0 0 0 0 0 0 0 0 0 0.0022 0.0046 0 0 0 0 0 0 0 0 0 0 0.010 0.022 0 0 0 0 0 0 0 0 0 0 0.046 0.10 0 0 0 0 0 0 0 0 0 0

0.22

0 0 0 0 0 0 0 0 0 0

ID: 611-19-8 DATE: 25.11.2004

(Test 2)											
Control	0	0	0	0	0	0	0	0	0	0	0
Solv. cont.	0	0	0	0	0	0	0	0	0	0	0
0.10	0	0	0	0	0	0	0	0	0	0	0
0.22	0	0	0	0	0	0	0	0	0	0	0
0.46	0	0	0	0	0	0	0	0	0	0	0
1.0	0	0	0	3	10	10	10	10	10	10	10
==================	===	===	===	===	====	====	====	====	====	====	=====

Table 4 - continued.

		====		-===	=====	====:	=====		====		
Nominal		Cun	nulat	ive	num	oer (of de	eaths	on	Day:	
(mg/l)	11	12	13	14	15	16	17	18	19	20	21
(Test 1)											
Control	0	0	0	0	0	0	0	0	0	0	0
Solv. cont.	0	0	0	0	0	0	0	0	0	0	0
0.0022	0	0	0	0	0	0	0	0	0	0	0
0.0046	0	0	0	0	0	0	0	0	0	0	0
0.010	0	0	0	0	0	0	0	0	0	0	0
0.022	0	0	0	0	0	0	0	0	0	0	0
0.046	0	0	0	0	0	0	0	0	0	0	0
0.10	0	0	0	0	0	0	0	0	0	0	0
0.22	0	0	0	0	0	0	0	0	0	0	0
(Test 2)											
Control	0	0	0	0	0	0	0	0	0	0	0
Solv. cont.	0	0	0	0	0	0	0	0	0	0	0
0.10	0	0	0	0	0	0	0	0	0	0	0
0.22	0	0	0	0	0	0	0	0	0	0	0
0.46	0	0	0	0	0	0	0	0	0	0	0
1.0	10	10	10	10	10	10	10	10	10	10	10

Table 5.Cumulative mortality of parental animal groups (%)

Nominal concn.	Cun Day	ulativ	 7e perc	centage	====== e of de	eaths on
(mg/l)	1	2	4	7	14	21
(Test 1)	0	0	0	0	0	0
Control	0	0	0	0	0	0
Solv. cont.	0	0	0	0	0	0
0.0022	0	0	0	0	0	0
0.0046	0	0	0	0	0	0
0.010	0	0	0	0	0	0
0.022	0	0	0	0	0	0
0.046	0	0	0	0	0	0
0.10	0	0	0	0	0	0
0.22	0	0	0	0	0	0
(Test 2)						
Control	0	0	0	0	0	0
Solv. cont.	0	0	0	0	0	0
0.10	0	0	0	0	0	0
0.22	0	0	0	0	0	0
0.46	0	0	0	0	0	0
1.0	0	0	100	100	100	100

Nominal			I	Boti	tle	nui	mbe	r			
(mg/l)	1	2	3	4	5	6	7	8	9	10	Mean
(Test 1)											
Control	8	8	8	9	8	8	8	8	8	8	8.1
Solv. cont.	8	8	8	8	8	8	8	8	9	9	8.2
0.0022	8	8	8	8	8	8	9	8	8	9	8.2
0.0046	9	8	8	8	8	9	8	8	8	9	8.3
0.010	8	8	9	8	9	9	8	8	8	8	8.3
0.022	8	8	8	9	8	8	8	9	9	8	8.3
0.046	8	8	8	8	9	8	9	8	8	8	8.2
0.10	8	8	8	8	8	8	8	8	9	8	8.1
0.22	8	8	9	8	8	8	8	8	8	8	8.1
(Test 2)											
Control	8	8	8	8	8	8	8	8	8	9	8.1
Solv. cont.	8	8	8	8	9	8	8	8	9	8	8.2
0.10	8	8	8	8	8	8	8	8	8	8	8.0
0.22	10	10	8	8	9	8	9	8	8	10	8.1
0.46	15	11	13	12	11	1	0 1	3 1	1	12 13	12.1
1.0	D	D	D	D	D	D	D	D	D	D	a

Table 6.The time of the first production of juveniles (days)

D: The parental animal died before producing juveniles.

a:No production of juveniles during the 21-day test period.

Table 7.Mean cumulative numbers of juveniles produced per parental

animal survived for 21 days

				======				=====
Nominal		Me	an cum	ulativ	ve numk	ber on		
concn.			Da	y:				
(mg/l)	0	7	8	9	10	11	12	13
(Test 1)								
Control	0.0	0.0	4.2	4.9	4.9	25.5	29.0	29.0
Solv. co	ont.							
	0.0	0.0	3.2	3.8	3.8	21.0	25.2	25.2
0.0022	0.0	0.0	5.1	6.7	6.7	23.6	28.2	28.2
0.0046	0.0	0.0	4.8	6.4	6.4	22.2	28.2	28.2
0.010	0.0	0.0	4.6	6.2	6.2	24.4	31.1	31.1
0.022	0.0	0.0	3.8	5.6	5.6	20.9	28.0	28.0
0.046	0.0	0.0	5.1	5.9	5.9	22.6	27.5	27.5
0.10	0.0	0.0	0.2	0.2	0.2	12.2	13.4	13.4
0.22	0.0	0.0	0.0	0.0	0.0	8.3	9.0	9.0
(Test 2)								
Control	0.0	0.0	9.0	10.5	10.5	29.0	35.4	35.4
Solv. co	ont.							
	0.0	0.0	5.9	8.1	8.1	24.7	31.5	31.5
0.10	0.0	0.0	10.4	10.4	10.4	31.5	31.5	31.5
0.22	0.0	0.0	3.3	5.4	9.0	19.0	24.0	33.8
0.46	0.0	0.0	0.0	0.0	0.8	3.3	5.0	7.1
1.0	0.0	a	a	a	a	a	a	a

	Table	7	_	continued.
--	-------	---	---	------------

Nominal		Me	ean cur	nulativ	ve numk	ber on		
concn.			Da	ay:				
(mg/l)	14	15	16	17	18	19	20	21
(Test 1))							
Control	53.3	56.8	56.8	84.6	88.0	88.0	96.6	115.5
Solv. co	ont.							
	49.9	55.7	55.7	81.2	87.4	87.4	95.6	115.0
0.0022	53.9	60.4	60.4	82.4	87.0	87.0	103.4	110.0
0.0046	50.7	61.0	61.0	78.9	88.7	88.7	105.7	116.9
0.010	56.3	67.6	67.6	88.3	97.5	97.5	112.1	121.7
0.022	51.0	59.7	59.7	79.9	87.5	87.5	102.9	112.8
0.046	52.0	58.2	58.2	80.6	86.0	86.0	106.9	112.4
0.10	39.3	41.1	41.1	64.5	67.1	67.1	91.6	94.6
0.22	32.8	35.2	35.2	56.9	59.4	59.4	84.1	87.0
(Test 2))							
Control	57.8	63.3	63.3	86.0	91.6	91.6	108.4	115.2
Solv. co	ont.							
	53.6	63.5	63.5	86.3	93.7	93.7	102.0	122.6
0.10	62.6	62.6	62.6	87.3	87.3	87.3	111.5	114.0
0.22	47.2	51.4	57.6	72.7	78.6	88.7	101.1	101.1
0.46	12.3	16.3	21.2	28.9	34.8	37.0	40.7	45.3
1.0	a	a	a	a	a	a	a	a
								=====

a:Not counted because the parental animal died before producing juveniles.

Table 8.Cumulative numbers of juveniles per parental animal survived for 21 days in Test 1.

Bottle		Nominal concn., mg/l (Measured concn., mg/l)									
NO.	Control	Solv. cont.	. 0.0022 (0.000751)	0.0046 (0.00195)	0.010 (0.00433)						
1	126	105	103	124	109						
2	113	112	111	110	122						
3	115	112	112	111	102						
4	113	116	110	119	100						
5	113	131	108	115	114						
6	122	114	115	126	146						
7	108	124	109	116	143						
8	116	106	118	107	122						
9	121	116	106	123	109						
10	108	114	108	118	131						
Mean	115.5	115.0	110.0	116.9	121.7						
S.D.	5.9	7.7	4.3	6.3	14.6						
Inhibi rate(%	tion)	0 4	4 8	-1 2	-5 4						
		•••	1.0	±• 4	5.1						

Significant	: differenc - NS 	e 	NS	NS	NS
Table 8 - c	continued.				
Bottle		Nomina (Measur	l concn., ed concn.,	 mg/l mg/l)	
	0.022 (0.00997)	0.046 (0.0197)	0.10 (0.0414)	0.22 (0.0992)
1	103	118	84	94	
2 3	99 119	105	84 106	82 85	
4	100	109	103	86	
5	118	113	96	85	
6	124	107	93	96	
/ 8	⊥⊥4 110	110	10/ 87	86 86	
9	111	115	86	85	
10	130	117	100	85	
 Mean	112.8	112.4	94.6	87.0	
S.D.	10.3	4.4	9.1	4.4	
Inhibition rate (%)	2.3	2.7	18.1	24.7	
Significant difference	z NS (a)	NS	##	##	
<pre>(a) Indicate determined one-sided t</pre>	es a signif by the Dun cest. : not sig : signifi : signifi mulative nu or 21 days 	<pre>icant diff nett's mul nificant (p cant (p < mbers of j in Test 2. ======= ominal con Measured c ======</pre>	<pre>erence fro ticomparis p >= 0.05) 0.05) 0.01) uveniles p ====================================</pre>	m the con ons proce er parent ====================================	trol dure, al ani ======
NO .	Cont. S	. C. 0.1 (0.04	0 0.22 98) (0.116	0.46)(0.272)	1.0 (0.571
 1	104 1	16 11	4 107	34	 D
2	109 1	23 11	5 106	43	D
3	129 1	23 10	4 108	45	D
¥ 5	117 L	10 II 15 11	4 121 1 77	53 50	D D
5	108 1	10 12	394	41	ם ח
7	117 1	29 13	2 95	39	D
3	120 1	28 11	7 119	74	D
9	111 1	23 10	0 100	42	D

OECD SIDS			BENZ	ZENE, 1-0	CHLORO	-2-(CHLC	DROMET	ΓHY
4. ECOTOXICITY						DA	ID: 61 TE: 25.1	1-19 1.200
	10	127	141	110	84	32	D	
	Mean S.D.	115.5 8.3	122.6 8.8	114.0 9.0	101.1	45.3 11.9	 	
	Inhibit	ion	-6.4	1.0	12.2	60.7		
	Signifi differe	cant nce(a)	NS	NS	##	##		
Reliability: Flag: 25-NOV-2004	D: Not before (a)Indi Dunnett N # (2) va OECD TG Critica	calculated producing : cates the s 's multicor S : not : sign # : sign lid with re study with l study for	because t juveniles. significar mparison p significant nificant estriction h use of c r SIDS end	the paren of differ procedure ant ($p \ge =$ ($p < 0.05$ ($p < 0.01$) of lispersan dpoint	tal anin rence fro , one-s: 0.05)))	mal was om the c ided tes	dead	by (1
'ERRESTRIAL ORGAN	NISMS							
.6.1 Toxicity to	o Sedimen	t Dwelling	Organisms	3				
4.6.2 Toxicity to) Terrest	rial Plants	5					
4.6.3 Toxicity to	o Soil Dw	elling Orga	anisms					
4.6.4 Toxicity to -	o other N	on-Mamm. Te	errestrial	Species				
4.7 Biological Ef -	ffects Mo	nitoring						
4.8 Biotransforma -	ation and	Kinetics						
4.9 Additional Re	emarks							
Remark:	OCBC is of 33hr availab o-chlor v0.99g)	hydrolyzed at pH7 und le for this obenzyl ald	d to o-chl der 25 deg s substand cohol is e	orobenzy g C. Alth ce, the t estimated	d alcoho lough no loxicity l by ECO	ol with toxicit values SAR (ECO	half-li y data of WIN	fe is
	====== ECOSAR	======= Organ	nism I)uration	End po	====== oint Es	====== timated	

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
4. ECOTOXICITY	ID: 611-19-8
	DATE: 25.11.2004

Class				mg/1 (ppm)
Benzyl				
Alcohols	Fish [CLOGP]	96-hr	LC50	189.7
Benzyl				
Alcohols	Fish [SRC]	96-hr	LC50	15.7
Benzyl				
Alcohols	Daphnid [CLOGP]	48-hr	LC50	0.6
Benzyl				
Alcohols	Daphnid [SRC]	48-hr	LC50	0.3

24-NOV-2004

(5)

OECD SIDS 5. TOXICITY

5.0 Toxicokinetics, Metabolism and Distribution 5.1 Acute Toxicity 5.1.1 Acute Oral Toxicity Type: T.D.5.0 Species: rat Strain: Sprague-Dawley Sex: male/female No. of Animals: 60 Vehicle: other: 0.1% Tween80 = 783 - 951 mg/kg bw Value: OECD Guide-line 401 "Acute Oral Toxicity" Method: 1999 Year: yes GLP: Test substance: as prescribed by 1.1 - 1.4 T.D.5.0 Remark: male: 951 mg/kg bw (715-1435 mg/kg bw) female: 783 mg/kg bw (611-1011 mg/kg bw) All animals at 1400 mg/kg, two males and four femals at 1000 Result: mg/kg, two femals at 700 mg/kg, and one male at 500 mg/kg died until 2days afer treatment. Salivation, lacrimation, flushing, decrease in locomotor activity, loose stool, abnormal gait were observed in surviving animals, and adoption of prone position, irregular respiration, hypothermia and ptosis were also observed on animals that died. The gross necropsy findings for the animals found dead included erosion/ulcer of glandular stomach, and histopathological changes were submucosa edema of forestomach and ulceration of glandular stomach. At the terminal necropsy, thickening of the forestomach wall, erosion/ulcer of forestomach and adhesion of the organs in abdominal cavity were observed. The histopathological examination of surviving animals revealed ulceration, squamous epithelium hyperplasia, inflammatory cellular infiltration and granulation tissue in the forestomach, and peritonitis in the serous membrane. Table 1. Mortality of rats treated orally with o-chlorobenzyl chloride (OCBC) _____ Sex Dose Number of Number of deaths Mortality (mg/kg) animals -----Days: 1 2 3 4-15 _____
 Male
 0
 5
 0
 0
 0
 0
 0/5

 350
 5
 0
 0
 0
 0/5
 0/5

 500
 5
 0
 1
 0
 0
 1/5

 700
 5
 0
 0
 0
 0/5

 1000
 5
 1
 1
 0
 2/5

 1400
 5
 5
 0
 0
 5/5
 _____ Female 0 5 0 0 0 0 0/5

OECD SIDS			BE	NZEN	E, 1-Cl	HLORO-2	2-(CHLOROM	ETHYL)-
5. TOXICITY							ID: 6	511-19-8
							DATE: 25	.11.2004
	350	5	0	0	0	0	0 / 5	
	500	5	0	0	0	0	0/5	
	700	5	2	0	0	0	2/5	
	1000	5	3	1	0	0	4/5	
	==========			=====	=====		===========	
Test condition:	The test mat rats for bot 1000 and 140 approximatel experiments water ad lib treatment an animals were daily therea the animals animals. The necropsied.	erial w h sexs 0 mg/kg y 18 ho the ani itum. T d at 4, observ fter fo were re surviv	vas adm were u (. Anim purs) p mals w Chey we 8 and red fiv or 14 d corded ring an	inist sed f als w rior ere a re we 15 d e tim ays. . Nec imals	ered k or the ere fa to adm llowed ighed ays af es on Any sy ropsy were	by oral of a doses of asted over inistrat to acce individu ter trea the day omptoms of was made sacrific	yavage. Each of 350, 500, ernight (for tion. During ess to food a hally before atment. The of treatment of treatment of toxic sign e on all dead ced and	five 700, the and and s of
Test substance:	-Source: Iha No.T7030-Pur	ra Chem itv: 99	nical I 0.65%	ndust	ry Co.	, LtdI	lot	
Reliability:	(1) valid w OECD Guideli	ithout ne stud	restri ly	ction				
Flag: 24-NOV-2004	Critical stu	dy for	SIDS e	ndpoi	nt			(31)
Type: Species: Strain: Sex: No. of Animals: Vehicle:	LD50 rat Sprague-Dawl male/female 40 no data	ey						
Value.	- 330 - 880							_
Method: Year:	other:FIFRA Section 81-1 Test Substan 1986	Pestici , "Acut ces, "	de Ass e Oral Acute	essme Toxi expos	nt Gui city S ure, C	delines, Study" TS Dral Toxi	Subdivision SCA Health ef Loity"	i E', ffects
GLP:	yes							
Test substance:	other TS:- S 2503577	ource:	Monsan	to Co	mpany-	- Lot/Bat	ch No.: 3168	3723,
Remark:	LD50	<i>.</i> .			_			
	<pre>Male: 880 mg bw), Female: 350 determined) Male and fem mg/kg) The method w 401</pre>	/kg bw mg/kg b ale: 57 as in p	(95% c ww (95% 0 mg/k orincip	onfid conf g (95 le eq	ence l idence % conf uivale	imits 51 e limits Eidence l ent to OF	.2-1248 mg/kg was not Limits 380-76 ECD Guideline	50 9
Result:	All male and females at 1 first or the Signs seen o nasal and oc and urinary which died a hypopnea and	female 000 mg/ second n the d ular di stainin lso inc hypoth	e rats /kg, al day, day. day of scharg dg. Ant cluded mermia.	at 20 l fem Other dosin e, hy emort ataxi All	00 mg/ ales a rats g in a poacti em sig a, pro surviv	kg, foun at 500 mg survived all group wity, so ms in an ostration ving anim	males and a g/kg died at for 14 days os included c oft stool and nimals n, wet rales, mals had	<pre>ill the s. ral, i fecal</pre>

OECD SIDS 5. TOXICITY	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)- ID: 611-19-8 DATE: 25.11.2004
	decreased food consumption on the day after dosing and several had unthrifty coats, this continued in some animals through Day 7. However, most surviving animals were free of abnormalities from Day 8 through termination of the study (Day 14). Necropsy of animals which were found dead revealed a variety of changes, primarily in the lungs and gastrointestinal tract. Some dead animals exhibited changes in the stomach and intestine which were suggestive of an

irritant effect (the presence of red fluid material, discoloration or thickening of walls). No substance-related abnormalities were found in any survived animals. Oral LD50 with 95% confidence limits was calculated to be 880 (512-1248) mg/kg for male, 350 mg/kg for female (confidence limits cannot be calculated due to distribution of mortality), and 570 (380-760) mg/kg for combined both sexes.

Table 1.Summary of the observed signs in the acute oral toxicity study with OCBC.

Dose levels (mg/kg)	Mortali Male	ty Female	Signs
250	0/5	0/5	The following signs were observed: nasal discharge, oral discharge, ocular discharge, urinary staining, fecal staining, unthrifty coat, soft stool, hypoactivity and food consumption decrease
500	0/5	5/5	All females died through 6 hours after dosing. The following signs were observed: ataxia, nasal, oral and ocular discharge, hypopnea, urinary staining, fecal staining, unthrifty coat, soft stool, hypoactivity, prostration and food consumption decrease
1000	4/5	5/5	All females died through 6 hours after dosing. Four males died through 2 days after dosing. The following signs were observed: ataxia, nasal, oral and ocular discharge, hypopnea, wet rales, urinary staining, fecal staining, unthrifty coat, soft stool, hypothermia, hypoactivity, prostration and food consumption decrease
2000	5/5	5/5	All rats died through 23 hours after dosing. The following signs were observed: ataxia, nasal, oral and ocular discharge, hypopnea, wet
OECD SIDS 5. TOXICITY

	rales, urinary staining, fecal staining, soft stool, hypoactivity, and prostration						
Test condition:	Five males and five females were used for each dose group. Animals were individually housed in suspended stainless steel cages with wire mesh bottoms under 12-h light and 12-h dark cycle condition. Room temperature and humidity were maintained within the range of 67-76F and 30-70%. Commercial laboratory feed and water were freely given except for approximately 18 hours prior to the treatment. Test substance was administrated by oral intubation, using a ball-tipped intubation needle fitted onto a syringe at dose levels of 250, 500, 1000, and 2000 mg/kg. Following administration, obsevations were made three times at the first day and once daily thereafter for 14 days. Animals were weighed just prior to dosing, on Day 7 and Day 14. Any symptoms of toxicity of the animals were recorded. Necropsy was made on all dead animals. The surviving animals were sacrificed and necropsied. LD50 with 95% confidence limits was calculated according to the method of L. C. Miller and M. L. Tainter, Proc. Soc. Fyp. Bio. Med. 57: 261-264 (1944)						
Reliability:	(1) valid without restriction Test procedure according to national standards (EPA)						
24-NOV-2004	(32)						
Type: Species: Strain: Sex: No. of Animals: Vehicle: Value:	LD50 rat Sprague-Dawley male/female 30 other:0.5% w/v methylcellulose = 533 - 690 mg/kg bw						
Method: Year: GLP: Test substance:	other:EPA guidelines for registering Industrial Chemicals in the U.S., Pesticide Assessment Guidelines, Subdivision F, Section 81-1, TSCA Health effects Test Guidelines, 40 CFR798.1175 1993 yes other TS:- Source: Miki and Co., LTD- Lot No.: V1007- Purity : 99.64%						
Remark:	LD50 Male: 690 mg/kg bw (95% confidence limits 507-939 mg/kg bw), Female: 533 mg/kg bw (95% confidence limits 306-928 mg/kg bw) Combined: 618 mg/kg bw (95% confidence limits 475-805 mg/kg bw)						
Result:	The method was in principle equivalent to OECD Guideline 40 All deaths occured within one day of dosing. There were 3/10, 7/10 and 8/10 deaths in the 500, 720, and 1037 mg/kg dose groups, respectively. Clinical signs of systemic toxicity were noted in all dose groups. The majority of rats had urogenital staining, evidence of salivation, reddened extremities (nose, ears, forepaws and/or forelimbs), hypoactivity, abnormal defecation (mucoid feces, soft stool), ocular discharge and dried red stainig around the mouth on the day of dosing. In general, clinical sighs of systemic toxicity						

OECD SIDS				BENZE	<u>ENE, 1-</u>	<u>CHLORO</u>	<u>-2-(CHLOROM</u>	<u>(ETHYL)-</u>				
5. TOXICITY							ID: DATE [.] 25	611-19-8				
	subsided by day 2 and all surviving animals appeared normal day 6 or earlier. Other findings included ataxia, hypotherm bradypnea and prostration for rats that died during the stu The majority of surviving females suffered reduced weight gains during the study. Kidney abnormalities (reddend appearance, reddened cortico-medullary injuction, dilated pelvis) were noted for all animals that died during the study. Other gross necrops findings for the animals that died included dark red adrena glands, hemmorrhagic thymus glands and gastric abnormalities. At the terminal necropsy, gastric abnormalities (primarily thickened mucosa and adhesions) were observed for all surviving females and one male in 103 mg/kg dose group. There were no other gross necropsy findings for animals survived.											
	Table 1.Mo ========	rtalit	y of t =====	reated	orally	y with 0	CBC.					
		Number of deaths										
	Dose (mg/kg)	Days O M/F	1 M/F	2 M/F	3 M/F	4-14 M/F	Total M/F					
	500 720 1037	0/2 0/4 2/3	1/0 3/0 2/1	0/0 0/0 0/0	0/0 0/0 0/0	0/0 0/0 0/0	1/2 3/4 4/4					
Test condition: Reliability:	Animals we cages under temperatur 70-75F and guidelines decreased the health impact on this study available treatment. were admin 720 and 10 ball-tippe appropriat 3-4 hours and 4 hour days. Anim 14 and at The surviv necropsied (1) valid Test proce	120 0/4 5/6 0/6 0/0 0/0 3/4 1037 2/3 2/1 0/0 0/0 0/0 4/4 Animals were individually housed in suspended wire-mesh cages under 12-h light and12-h dark cycle condition. Room temperature and humidity were maintained within the range of 70-75F and 28-60%. The room humidity was slightly below the guidelines specified range on one day. A brief period of decreased humidity would not be expected to adversely affect the health of the animals. Therefore, this deviation has no impact on the scientific validity, integrity or objective of this study. Commercial laboratory feed and water were freely available except for approximately 18-20 hours prior to the treatment. Three groups of five male and five female rats were administered orally with single doses at levels of 500, 720 and 1037 mg/kg, using gastric intubation with ball-tipped oral dosing needles which affixed to the appropriate size syringes. The rats were returned to feed 3-4 hours after dosing, and observed at approximately 1, 3 and 4 hours post-dose on day 0 and daily thereafter for 14 days. Animals were weighed just prior to dosing, on day 7, 14 and at necropsy. Necropsy was made on all dead animals. The surviving animals were weighed, sacrificed and necropsied.										
25-NOV-2004	lest proce	aure a	ccordi	ing co		ai stand	alus (EFA)	(22)				
Type: Species: Strain: Sex: No. of Animals:	LD50 rat Sprague-Da male/femal 40	wley e										

GLP: yes Test substance: other TS:- Source: Occidental Chemical Corporation LD50 Remark: 430 mg/kg bw (95% confidence limits: 380-490 mg/kg bw) The method was in principle equivalent to OECD Guideline 401 All male and female rats at 540 and 760 mg/kg, and three Result: female at 390 mg/kg died at the first day. Other rats were survived for 14 days. Decreased motor activity and respiration, diarrhea, salivation and chromodacryorrhea were observed. There were no gross tissue changes observable at the necropsy. The oral LD50 with 95% confidence limits was calculated to be 430 (380 - 490) mg/kg.

Table	1.Morta	lity	of	rats	treat	ed or	ally	with	OCBC

Number of deaths										
Hours 0-4 M/F	Days 1 M/F	2 M/F	3 M/F	4-14 M/F	Total M/F					
0/0 0/0 0/0 0/0	0/0 0/3 5/5 5/5	0/0 0/0 -/- -/-	0/0 0/0 -/- -/-	0/0 0/0 -/- -/-	0/0 0/3 5/5 5/5					
	Hours 0-4 M/F 0/0 0/0 0/0 0/0 0/0	Hours Days 0-4 1 M/F M/F 0/0 0/0 0/0 0/3 0/0 5/5 0/0 5/5	Number Hours Days 0-4 1 2 M/F M/F M/F 0/0 0/0 0/0 0/0 0/3 0/0 0/0 5/5 -/- 0/0 5/5 -/-	Number of o Hours Days 0-4 1 2 3 M/F M/F M/F M/F 0/0 0/0 0/0 0/0 0/0 0/3 0/0 0/0 0/0 5/5 -/- -/- 0/0 5/5 -/- -/-	Number of deaths Hours Days 0-4 1 2 3 4-14 M/F M/F M/F M/F M/F 0/0 0/0 0/0 0/0 0/0 0/0 0/3 0/0 0/0 0/0 0/0 5/5 -/- -/- -/- 0/0 5/5 -/- -/- -/-					

Test condition: Five males and five females (body weight 180 - 300 g) were used for each dose group. Animals were individually housed in wire mesh cages under 12-h light and 12-h dark cycle condition. Other conditions were set according to AAALAC Standards. Commercial laboratory feed and water were freely given except for approximately 16 to 22 hours prior to the treatment. Test substance was administrated in a single dose to animals by gavage at dose levels of 280, 390, 540, and 760 mg/kg. Following administration, obsevations were made three times at the first day and daily thereafter for 14 days. Any symptoms of toxicity of the animals were recorded. Necropsy was made on all dead animals. At 14 days all surviving animals are weighed, then they were sacrificed and necropsied. LD50 with 95% confidence limits was calculated according to the method of C. S. Weil, Biometrics 249 (1952).

Reliability: (2) valid with restrictions

Comparable to guideline study with acceptable restrictions (34)

5.1.2 Acute Inhalation Toxicity

Type:	LC50
Species:	rat
Strain:	Wistar

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-									
5. TOXICITY				ID: 611-	19-8					
				DATE: 25.11.2	2004					
Sex: No. of Animals: Exposure time: Value:	male/female 60 4 hour(s) = 2.8 mg/l									
Method: Year: GLP: Test substance:	OECD Guide-line 1987 yes other TS:- Sour	∋ 403 "Acı rce: HOECHS	ute Inhalati ST AG- Code:	on Toxicity" GLAC 405- Purity: >99%	5					
Result:	Mortality durir	ng observat	cion period:							
	Dose (mg/l) 0.587 1.548 1.648 2.716 5.268 5.723	males 0 / 5 1 / 5 3 / 5 1 / 5 3 / 5 5 / 5	females 0 / 5 2 / 5 2 / 5 1 / 5 3 / 5 5 / 5	cumulative 0 / 10 3 / 10 5 / 10 2 / 10 6 / 10 10 / 10						
	Deaths occurred in between day 1 and day 44 post beginning of treatment. LD50 values determined by Probit analysis were as follows. LC50 males: 2.8 mg/l LC50 females: 2.8 mg/l LC50 cumulative: 2.8 mg/l									
	Clinical symptoms were gasping respiration, respiratory sounds, uncoordinated, ataxic and stilted gait, cyanosis, stupor, squatting posture, prone position, flanks pinched in, nose and lid margin red-encrusted, corneal opacity, and narrow palpebra fissure. Except two females of the 5.268 mg/l group and one male and one female of the 1.548 mg/l group which showed weak symptoms at day 56 and day 21 respectively, all surviving animals were free of symptoms between day 5 to 14 and had exceeded their primary weights									
	Macroscopic exa coloured lungs clear fluid and inflated small killed at day S observation per	amination of Pulmonary d of foam. intestine 56 none of riod showed	of perished y section re Sporadicall were observ the rats sa d any macros	rats revealed red sulted in discharge of y beige spots on liver ed. Except the two fema crificed at the end of copic abnormalities.	a and les the					
Test condition:	30 male and 30 weeks old, resp the day of expo and 199 g (177 to 1 of 6 dose were housed 5 of granulate mater water. Room ten within the rang humidity was 50 (mouth/nose onl atmospheres cor 2.716, 5.268 of The rats were of daily throughou observation per	female Wis bectively, bure were - 209 g) f groups, ea of same ses rial. All f nperature of ge of 20-24 0 +/- 20 % ly) continu- ntaining as r 5.723 mg, bbserved du ut the 14-or riod all ra	star rats, a were used. 201 g (184 for the fema ach of 5 mal k in Makrolo rats had fre of the holdi 4 degree C a Five group uously for 4 erosol of 0. /1 o-chlorob uring exposu day observat ats were wei	Average bodyweights on - 217g) for the males les. Rats were allocate es and 5 females and n cages with softwood e access to food and ta ng room was maintained nd the mean relative s of rats were exposed hour to test 587, 1.548, 1.648, enzyl chloride (OCBC). re and at least twice ion period. During the ghed at day 7 and 14	:d					

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-								
5. TOXICITY	ID: 611-19-8 DATE: 25.11.2004								
	post treatment. At the end of the 14-day observation period, the rats were sacrificed by an overdose of Nembutal except those animals which showed ongoing symptoms. Dead and sacrificed rats were subjected to a detailed macroscopic examination								
Reliability:	(1) valid without restriction OECD Guideline study								
Flag: 24-NOV-2004	Critical study for SIDS endpoint (9)								
Tvpe:	LC50								
Species: Strain:	rat Wistar								
No. of Animals:	20								
Vehicle: Exposure time: Value:	no data 1 hour(s) > 1.14 mg/l								
Mathad.	other								
Year:	1987								
GLP:	yes								
Test substance:	other TS:- Source: Occidental Chemical Corpotration- Batch No.: DR2-11-85- Purity: 99.25%								
Remark:	The method was in principle equivalent to OECD Guideline 403, except that only one concentration of exposure was used and the duration of exposure was 1 hour.								
Result:	No animal death was observed at 1.140 mg/l during 14-day observation period. Many signs of irritation of respiratory tract were observed during exposure. The signs observed were piloerection, wetness and redness around the eyes, partial closing of the eyes, fluid discharge from the mouth, peripheral vasodilation, exaggerated respiratory movements and excessive activity. During observation period, signs observed were wet fur around the jaws, lethargy, peripheral vasodilatation and exaggerated respiratory movements. All rats were recoverd 5days after exposure. There were no macroscopic abnormalities and no histopathological changes that could be attributed to inhalation of OCBC vapour in any of the rats.								
Test condition:	Ten male and ten female Wistar rats, about 6 weeks and 8 weeks old respectively, were used. These ages of rats were selected so that males and females would be of similar body weight (ca. 200 g) on the day of exposure. Rats were allocated to 1 of 2 groups, each of 5 males and 5 females and were housed 5 of same sex to a suspended polypropylene cage with detachable wire mesh tops and floors. All rats had free access to a measured excess amount of food and tap water. The rats remained in a holding room except for the 1-hour exposure and an overnight post exposure period when they were kept in ventilated cabinet to allow dispersal of any residual test substance. One group of rats was exposed continously for 1 hour to a test atmosphere containing vapour of 1.140 mg/l OCBC, and another group as a control received clean air only for 1 hour. Room temperature was maintained within the range of 19-23 degree C and the mean relative humidity was 49%. The rats were observed during exposure and at least twice daily throughout the 14-day observation period. All rats were weighed daily from the day								

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
5. TOXICITY	ID: 611-19-8 DATE: 25.11.2004
Reliability:	of delivery to the laboratory until the end of the observation period. The amount of food and water consumed by each cage of rats was measured daily and the daily mean intakes of food and water for each rat were calculated from the recorded data. At the end of the 14-day observation period, the rats were anesthetised by intraperitoneal injection of pentobarbitone sodium and sacrified by exsanguination. The rats were subjected to a detailed macroscopic examination. The lung were removed and weighed in order to calculate the lung weight to bodyweight ratio. Histopathological examination was confined only to the lungs. (2) valid with restrictions Comparable to guideline study with acceptable restrictions
28-JAN-2004	(34)
5.1.3 Acute Derma	al Toxicity
Type: Species: Strain: Sex: No. of Animals: Vehicle: Value:	LD50 rabbit New Zealand white male/female 30 no data = 1700 - 2200 ml/kg bw
Method: Year:	other:FIFRA Pesticide Assessment Guidelines, Subdivision F, Section 81-2; "Acute Dermal Toxicity Study "TSCA Health Effects Test Guidelines; " Acute Exposure, Dermal Toxicity" 1986 Ves
Test substance:	other TS:-Source: Monsanto Company- Lot/Batch No.: 3168723, 2503577
Remark:	LD50
Result:	1900 mg/kg (95% confidence limits: 1287-2513 mg/kg) male: 1700 mg/kg (95% confidence limits: 769-2631 mg/kg) female: 2200 mg/kg (95% confidence limits: 1022-3378 mg/kg) The method was in principle equivalent to OECD Guideline 402. No animal death was observed at 1000 mg/kg during 14-day
	observation period. Four males and two females died at 2000 mg/kg by Day 3, and all animals were dead at 4000 mg/kg by Day 7. The majority of animals at 2000 and 4000 mg/kg exhibited decreased activity and food consumption begininng 4 or 24 hours after administration. Other abnormalities seen in these groups, often as antemortem signs in animals which died, included ataxia, tremors, hypopnea, hypothermia, nasal discharge, unthrify coats and urinary and fecal staining. Survivors (in the 2000 mg/kg group) were free of signs of systemic toxicity by Day 10. The only systemic abnormalities seen in the 1000 mg/kg group were isolated occurrences of decreased activity and food consumption in one or two animals through Day 7. Most surviving animals exhibited severe dermal effects at the dose site (necrosis following by eschar formation, fissuring and/or exfoliation of the eschar tissue) which persisted throughout the study. Gross necropsies of animals founded dead revealed a number of

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
5. TOXICITY	ID: 611-19-8 DATE: 25.11.2004
-	
	abnormalities (red foci and/or discoloration of lungs, white patches of liver, extremely large gall bladder, reddened or swollen uterus, testes found in body cavity, red walls of stomach and intestine and black foci in stomach walls), most of which appeared to represent postmortem autolytic changes. Observations in animals sacrificed at Day 14 confirmed the presence of dermal lesions (necrosis following by eschar formation, figuration and constraints of the presence
	tissue), and no other abnormalities related to administration were observed.
Test condition:	Fifteen male and 15 female New Zealand rabbits, at least 8 weeks old at study initiation, were used. The rabbits weighed from 2.5 kg to 3.1 kg before administration. Rabbits were housed individually in the suspended stainless steel cages with wire mesh bottoms. The room temperature was maintained within the range of 60-70F and the relative humidity was maintained within the range of 30-70%. The lighting was provided for 12 hours per day. Food and water were freely suppled to the animals. One day before dosing, the hair of each rabbit was closely clipped from the dorsal area of the trunk with electric clipper, so as to expose at least 10% of the body surface area. Care was taken to avoid abrading the skin. Only animals with intact, healthy skin were used. The test substance was applied directly onto exposed skin of the animal at doses of 1000, 2000, and 4000 mg/kg, and spread evenly over the entire area. Guaze was then wrapped around the animal to cover the application site. The animal was then wrapped in an impervious plastic sleeve, designed to contain the test substance without leakage or undue pressure. The sleeve was secured with tape and Elizabethan collars were placed on all animals to prevent ingestion of the test substance or disruption of the wrappings. Animals were observed at approximately 1, 2, and 4 hours after application and daily thereafter for fourteen days. Gross necropsy was performed on all animals which died or were found dead during the study. All animals surviving
Reliability:	 necropsied. (1) valid without restriction Test procedure according to national standards (EPA)
Flag:	Critical study for SIDS endpoint
29-JAN-2004	(32)
Type: Species: Strain: Sex: No. of Animals: Vehicle: Value:	LD50 rat Sprague-Dawley male/female 10 other:undiluted > 2000 mg/kg bw
Method: Year:	other 1993
GLP: Test substance:	yes other TS:- Source: Miki and Co., LTD- Lot No.: V1007- Purity : 99.64%
Method:	EPA guidelines for registering Industrial Chemicals in the U.S., Pesticide Assessment Guidelines, Subdivision F,

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-								
5. TOXICITY	ID: 611-19-8								
	DATE: 25.11.2004								
	Section 81-2, TSCA Health effects Test Guidelines, 40 CFR798.1100The Japanese Agricultural Chemicals Laws and Regulations Testing Guidelines for Toxicology Studies published by the Society of Agricultural Chemical Industry, under the auspices of MAFF (Ministry of Agriculture, Forestry and Fisheries).								
Remark:	Exposure time:24 hours The method was in principle equivalent to OECD Guideline								
Result:	There were no deaths during the study. Clinical findings noted for the majority of rats included clear ocular discharge, reddened extremities (nose, ears, forepaws), and urongenital staining. Soft stool and hypoactivity were observed for four and three rats, respectively. All animals appeared normal by day 3 or earlier. The test substance generally induced very slight to slight erythema and edema amd desquamation on all rats. Two sites had severe erythema, eschar and exfoliation. Multiple focal area of brown discoloration and white discoloration were noted for six and four application sites., respectively. Erythema and edema completely subsided by day 13 or earlier. Very slight body weight losses were noted for two females during the first week of the study and for one female during the second week of the study. There were no findings at the terminal necropsy. The LD50 of o-chlorobenzyl chloride was found to be greater than 2000 mg/kg when administered once for 24 hours to the shaved, intact skin of male and female rats.								
Test condition:	Animals were individually housed in suspended wire-mesh cages under 12-h light and 12-h dark cycle condition. Room temperature and humidity were maintained within the range of 70-75F and 28-52%. The room humidity was slightly below the guidelines specified range on one day. A brief period of decreased humidity would not be expected to adversely affect the health of the animals. Therefore, this deviation has no impact on the scientific validity, integrity or objective of this study. Commercial laboratory feed and water are freely available. On the day prior to dosing, the hair was removed from the backs of rats using a small animal clipper. One group concisting of five male and five female rats was dermally administered by a single dose (24-hour) at a dose level of 2000 mg/kg. Individual dosed of the undiluted test substance were applied to the dorsal skin using glass rod and covered approximately 16-20% of the total body surface. Doses were applied under gauze binders that were secured with Dermiform tape. Collars were applied and remained on the rats for the duration of the exposure period. Upon completion of exposure, the collars, bandages and residual test material were removed and the sites wiped with wet paper towels with tepid tap water. The rats were observed at approximately 1, 3 and 4 hours post-dose on day 0 and daily thereafter for 14 days. The application sites were examined for erythema, edema and other dermal findings beginning approximately 30-60 minutes after bandage removal and daily thereafter for thirteen days. The rats were shaved to facilitate dermal observations on study days 3, 7, 10 and 14. Body weights were recorded on days 0, 7 and 14. All animals surviving at the end of the observation period were								
Reliability:	(1) valid without restriction								

OECD SIDS				BENZ	<u>'ENE</u>	E, 1-C	<u>CHLC</u>	<u>)RO-2</u>	<u>2-(C</u>	HL	<u>OROMETHYL)-</u>
5. TOXICITY										DA	ID: 611-19-8 ATE: 25.11.2004
Flag: 29-JAN-2004	Test Criti	procedure a .cal study f	iccordi for SID	ng to S end	nat poin	iona t	l st	anda	rds	(E)	PA) (23)
5.1.4 Acute Toxic -	ity, c	ther Routes	5								
5.2 Corrosiveness	and I	rritation									
5.2.1 Skin Irrita	tion										
Species: Concentration: Exposure: No. of Animals: Result:	rabbi undil Semic 3 sligh	t uted occlusive tly irritat	ing								
Method: Year: GLP:	OECD 1992 yes	Guide-line	404 "	Acute	Der	mal	Irri	tati	on/(Cori	rosion"
Method:	"Test Prope	Guidelines erties of Su	and C bstanc	riter es" (ia f Mari	or E time	valu Tsc	atin holo	g Da g Da	ange and	erous Safety
Properties of Substances" (Maritime Tschology and Safety Breau, Ministry of Transport, Japan) No dermal reaction was observed immediately after patch removal in either application site exposed for 3 min, 60 mir or 4 hr. From 24 hr to 7 days after patch removal, on the other hand, irritation reaction was observed in all the application sites. Slight dermal irritaion (erythema of Score 1) was observed in the 3 min-exposure sites, erythema of Score 1-2 in the 60-min exposure sites, and edema of Score 1 or 2 together with erythema in the 4-hr exposure sites. Thus increased exposure time tended to increase dermal reaction. The symptoms observed in all the application sites (3-min, 60-min and 4-hr exposure) in one animal (No. 1) disappeared within 7 days, and those in the other two animals within 10 days. In addition, scale was observed 7 or 10 days after application. Based on these results, it was concluded that o-chlorobenzyl chloride (OCBC) had no corrosion effect but had a slight dermal irritation potential on the rabbit skin. Table 1.Scores of the skin reaction of the rabbit after									patch min, 60 min , on the ll the ema of , erythema ema of xposure rease e) in one se in the ale was these oride ermal after h removal.		
	Anima	il Symp	====== tom		==== T	==== ime	==== afte	==== r pa	==== tch	rer	===== moval
	NO.		3 min	60 min	4 hr	24 hr	48 hr	72 hr	7 d	10 d	14 d
	1	erythema edema	0 0 	 - -	 - -	1 0	1 0	0	0	0	0 0
		erythema edema		0	-	1 0	1 0	0	0	0	0
		erythema	_	_	0	2	2	1	0	0	0

		edema	-	-	0	2	1	0	0	0	0		
	2	erythema edema	0 0		-	1 0	1 0	1 0	1 0	0 0	0 0		
		erythema edema	-	0 0	-	2 0	2 0	1 0	1 0	0 0	0 0		
		erythema edema	-	-	0 0	2 2	2 1	1 0	1 0	0 0	0 0		
	3	erythema edema	0 0	 -	- -	1 0	1 0	1 0	1 0	0 0	0 0		
		erythema edema	-	0 0	-	1 0	2 0	1 0	1 0	0 0	0 0		
		erythema edema	-	-	0 0	1 2	2 2	1 0	1 0	0 0	0		
Test condition: Test substance: Reliability: Flag: 25-NOV-2004	Expos as pr Co., (1) OECD Criti	Fure time:3, rescribed by LtdLot No. valid withou Guideline st cal study fo	60 m 1.1 .G44- ut res tudy or SI	inute - 1.4 4-Pur stric DS en	e(s) -Sour sity: stion	, 4 h rce: 99.3	nour(Ihar 37%	(s) ra Cl	hemi	.cal	Indu	stry	(21)
Species: Concentration: Exposure: Exposure Time: No. of Animals: Result:	<pre>rabbit undiluted Semiocclusive 4 hour(s) 3 irritating</pre>												
Method: Year: GLP: Test substance:	OECD 1985 yes other	Guide-line 4	104 е: но	"Acut ECHSI	e Dei AG-	rmal Code	Irri e: GI	.tat: JAC 4	ion/ 405-	Cor Pu	rosio rity:	n" >999	00
Remark: Result:	EC cl No ne	assification crosis was c	n:R38 bser	ved.									
	===== Anima No	l Symptom		===== me af	ter p	patch	===== n rem	iova.	==== 1	===	=====		
	NO.		30- mi	-60 n	24 hr	48 hr	7 h	2 1r	7 d	14 d			
	1	erythema edema	1 4		3 1	3 1	 4 1	 	2 0	0 0			
	2 3	erythema edema erythema edema	1 3 1 2		3 1 2 2	3 1 2 1	3 1 2 1	} - -	1 0 2 0	0 0 0 0			
	=====				=====	=====							

These results have led to the conclusion that OCBC had no corrosion effect but had a dermal irritation potential on the rabbit skin under these study conditions.

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-									
5. TOXICITY					·		Ì	I DATE	D: 611-19-8 : 25.11.2004	
Reliability:	(1) va OECD Gu	lid without ideline stu	restr. dy	iction						
24-NOV-2004									(8)	
Species: Concentration: No. of Animals: PDII: Result:	rabbit undilut 6 3.9 irritat	ed								
Method: Year: GLP: Test substance:	other:F Section Effects Irritat 1986 yes other I 2503577	TIFRA Pestic 81-5, "Pri Test Guide ion" S:-Source:	ide As mary D lines, Monsan	sessmen ermal "Acuto to Comj	nt Guid Irrita e Expo pany-L	deline: ion Stu sure, 1 ot/Bato	s, Sul udy "S Primas ch No	odivis ISCA H ry de: .: 310	sion F, Health rmal 68723,	
Remark:	The met 404, ex	The method was in principle equivalent to OECD Guideline 404, except that the test substance was not removed (not rinsed) after the exposure period. (4-hour application)								
Result:	(4-hour Irritat slight was see irritat applica Table 1 applica	application tion at the to moderate an, and two tion within attion. Scores(a) tion of OCE	a eryth of the 10 to 0f the 3C at d	s site ema and six and 14 day skin skin si	s gene d edem nimals s afte reaction nt time	rally (a. No f were : r test on of f es afte	consis cissue free a subst che ra er pat	ated of at al: tance abbit tch re	of truction l after emoval. ====	
	Animal No.	Symptom	Time a	after j	patch	remova.	L 		_	
			0.5 hours	24 hours	48 hours	72 hours	7 days	10 days	14 days	
	1M	erythema edema	1 3	1 3	3 3	3 3	3 3	2 3	1 3	
		erythema edema	1 3	2 3	3 3	3 3	3 3	2 3	1 3	
	2М	erythema edema	1 3	2 3	3 3	3 2	2 2	2 2	1 2	
		erythema edema	1 3	2 3	3 3	3 2	3 2	2 2	1 2	
	3F	erythema edema	<pre>// ***********************************</pre>							
2M erythema 1 edema 3 erythema 1 edema 3 3F erythema 1 edema 2 erythema 1 edema 2 erythema 2 edema 2			1 2	2	3 1	2 1	1 0	0 0	-	
	4 F	erythema edema	2	3	3	2	1 0	0	-	
		erythema	2	3	3	2	1	1	1	

ID: 611-19-8 DATE: 25.11.2004

	edema	2	3	1	1	0	0	0	
5F	erythema edema desquamation	2 2 -	3 2 -	3 1 -	3 1 -	1 0 x	1 0 x	1 0 x	_
	erythema edema desquamation	1 2 -	3 2 -	2 1 -	1 1 -	1 0 -	1 0 x	1 0 -	-
6M	erythema edema	1 2	2 3	2 2 2	2 2	2 1	1 0	0 0	-
	erythema edema 1	1	2 3	2	2	2	1 0	0	_
									-

(a): Scored using scale presented in Table 3.

-: Observation not present

x: Observation present

F: female; M: male

(24-hour application)

Four of the six animals had blanching of the skin, generally with moderate to severe edema, through 72 hours. The other two animals had slight to severe erythema and edema. Five of the animals subsequently exhibit epidermal or subepidermal tissue damage. The primary irritation index for the 24-hour exposure was 3.9. However, this low number reflects the blanching (and consequent absence of erythema scores) in most animals through 72 hours.

Table 2.Scores(a) of the skin reaction of the rabbit after application of OCBC at different times after patch removal.

Anima.	l Symptom	Time after patch removal								
INO		24.5 hours	48 hours	72 hours	7 days	10 days	14 days			
1M	erythema edema superficia necrosis	0b 4 L -	0b 3 -	0b 3 -	2 2 -	3 3 -	4 3 x			
	erythema edema superficial necrosis desquamation necrosis eschar subepiderma damage	0b 4 - - - - al	0b 3 - - - -	0b 3 - - - -	3 3 - - - -	4 3 × - -	4 3 - x x x x x			
2M	erythema edema necrosis	0b 4 -	0b 3 -	0b 3 -	3 3 -	4 3 x	4 3 x			
	erythema	0b	0b	0b	3	4	4			

							ID: 611-19-8
						DAT	TE: 25.11.2004
	odoma	Л	3	3	3	3	3
	superficial	4	5	J	5	5	5
	necrosis	-	-	-	-	х	х
	desquamation	-	-	-	-	-	х
3F	erythema	0b	0b	0b	2	4	4
	edema	4	2	1	2	2	2
	superficial						
	desquamation	_	_	_	_	-	x
	necrosis	-	-	-	-	-	х
	lack of hai	r					
	subepiderma	1	-	-	-	-	X
	damage	-	-	-	-	-	х
	erythema	0b 4	2 2	0b 1	2	4	4
	superficial	-1	2	1	-	1	1
	necrosis	-	-	-	-	Х	-
	necrosis	_	_	_	_	_	X
	exfoliation	_	_	_	_	_	x
	subepiderma	1					
	damage	-	-	-	-	-	х
4F	ervthema	0b	0b	0b	2	2	1
	edema	4	2	1	1	1	1
	desquamation	-	-	-	-	-	х
	ervthema	0b	0b	0b	4	4	4
	edema	4	2	2	2	2	2
	superficial						
	necrosis	_	_	_	x _	x _	-
	eschar	_	_	-	_	-	X
	exfoliation	-	-	-	-	-	х
	lack of hai	r	_	_	_	_	v
	subepiderma	1					~
	damage	-	-	-	-	-	х
 ភ្ក	ervthema	0b	4h	4h	 	4	 Д
51	edema	4	2	2	2	2	2
	superficial						
	necrosis	-	Х	Х	Х	-	-
	exfoliation	_	_	_	_	x -	x
	lack of hai	r					
	regrowth	-	-	-	-	-	Х
	subeniderma	-	-	-	-	-	X
	damage	-	-	-	-	-	х
	erythema edema	4 4	4 3	4 3	4 2	4 2	4
	necrosis	x	x	x	- x	x	_ X
	eschar	-	-	-	х	Х	х
	exfoliation	-	-	-	-	-	Х
	Sabepracrilla	-					

OECD SIDS 5. TOXICITY

DATE: 25.11.2004

			damage	-	-	-	-	-	Х	
		6M	erythema edema	1 4	2 2	2 2	3 2	2 1	1 1	
			erythema edema	1 4	2 3	2 3	3 2	2 2	1 2	
Test	condition:	a: Sco b: Bla -: Obs X: Obs F: fem Exposu Exposu Three were u stainl Food a temper range dorsal expose substa The 0. square neares non-ir animal test s (occlu remove animal exposu site 7 irrita indepe a site scorin	pred using s inched servation no servation pr hale; M: mal are:semi-occur ire time:4, male and fe used. Rabbit less steel c and water wa cature and r of 60-70F a g, the hair area of the eat least 1 ince was app 5 ml of the e, 1"x1", pl t the head critating ta and covere sites. Follo usive) of ex ed. Observation is at 30 min are and at 2 are. If ther is observation of the second is a covere sites. Follo usive) of ex ed. Observation is at 72 hour in gwas perfoo were evalua are of derma are system (S	acale preserve acale preserve acceleration and preserve and 24 hours and 24 hours and 30- of each aced and 30- of each aced ace aced ace ace ace ace ace ace ace ace ace ace ace aced ace aced ace aced ace ace ace aced aced aced aced aced aced aced aced aced aced aced aced aced aced aced aced aced aced	(4 hour (4 hour (5) bung adu housed house	d in Tak a in Tak alt New indivic 2-h lic able at ty were pective as was contact size was an elect y surface tact size to an elect y surface tact size an elect y surface tact size and 72 2 hours gns of i site was con was con was con was con was con the site. At ema and accordir the most	Lusive Zealan iually ght and all t e maint ely. On closely cric cl ce area ites on applied to f tw in plac capped to semi cclusiv and ga ere mad hours after irritat e made t or un s treat s to lc ereafte t each edema t	(24 hr id Whit in the ll2-h d imes. ained e day r clipper, i. The l benea ro test ion ro at each ion no at each ion no at each ion no at each clipter 24-hou interv or oth che Dra) e rabbits suspended ark cycle The room within the before ed from th so as to test animal. th a gauze sites the de the 24 hours fuare were all 4-hour foresent at further ral, all er ize rea was	1 · · ·
		compar Table	ison. 3.Draize ev	aluatio	on of de	ermal in	rritati	on		
		======		======			=======		======	
		Erythe N V M S	ema and esch lo erythema Very slight Well-defined Moderate to Severe eryth formation	eryther leryther severe lema (be lor neo	nation na (bare ema erythen eet redr crosis	ely perc na ness), e	ceptibl eschar	.e) (scab)	Grade 0 1 2 3 4	
		Edema N	formation Io edema						0	

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-								
5. TOXICITY						ID: 611-19-8			
						DATE: 25.11.2004			
		Very slight Slight edema by defi: Moderate edem Severe edema extendi:	edema (edge: nitera: ma (ra: (raise ng beye	(barel s of a sing) ised a ed mor ond ar	y perceptible) rea well-defined pproximately 1 mm e than 1 mm and ea of exposure	1 2 3 4			
	Othe:	r signs Desquamation (not includi: Exfoliation and or scabs Lack of hair Scarring Eschar (scab Necrosis (pro	- Scal ng scal - Sloud (escha regrov forma esence	ling o os or ghing ar) wth tion) of de	r flaking of epid necrotic areas) of dead (necrotic ad tissue)	ermal tissue) tissue ==========			
Reliability: 24-NOV-2004	(1) Test	valid withou procedure ac	t rest: cording	rictio g to n	n ational standards	(EPA) (32)			
Species: Concentration: Exposure: Exposure Time: No. of Animals: PDII: Result:	rabb: undi: Occlu 4 hou 6 3.5 mode:	it luted usive ur(s) rately irrita	ting						
Method: Year: GLP: Test substance:	othe: 1984 yes othe:	r:DOT Skin Co. r TS:- Source	rrosiv: : Occio	ity, 4 dental	9 CFR 173.240 Chemical Corpora	tion			
Remark: Result:	The r 404, and No ne sligh hours 3.5. orthe irri	method was in except that 48 hours after ecrosis was of ht edema and s. The primary These result ochlorobenzyl tating to the	princ: the de: r appl: bserved exhibi y irri s have chlor: skin b	iple e rmal r icatio d. All ted we tation led t ide wa out no	quivalent to OECD esponses were sco n. animals had very ll-defined erythe index was calcul o the conclusion s found to be mod t corrosive.	Guideline red at 4, 24 slight to ma through 48 ated to be that erate			
	Table appl:	e 1.Scores of ication of OC	the si BC at o	kin re differ	action of the rab ent times after p	bit after atch removal.			
	Anima No.	al Symptom	Time a 4 hours	after 24 hours	application 48 hours				
	 1	erythema edema	2	2 1	2 1	-			
	2	erythema edema	2 2	2 1	2 1	-			
	3	erythema edema	2	2 1	2				

	4	erythema edema	2 2	2 2	2 1		
	5	erythema edema	2 2	2 2 2	2 1		
	6	erythema edema	2 2 2	2 2 2	2 1		
Test condition:	Six were Vire Comm all stan side of t rabb x 1 trun The harn test at 2 hour acco 48 h	male or fema used. The r mesh cages ercial labor times. Other dards. The h of each ani est substanc it and cover inch and 2 p k of the ani animals were esses were r sites were 4 hours (20 after patch rding to the ours	le New abbits under atory condi air wa mal us e was ed wit ly thi mal wa harne emoved evalua hours remov	w Zeala s were a 12-h feed a itions as remo sing a applie th a pi ick). I as wrap essed. d. At t ated for after val). I ze tech	and rabbits, weigh housed individual a light: 12-h dan and water was free were according to oved from an area small animal cli ad to one intact ed to one intact ed to one intact dece of gauze (not the gauze was see oped with a rubbe At 4-hours, the the time of patch or corrosively, a patch removal) a in addition, the anique (See Table	when over 2.0 H ally in elevate the cycle. The levate the cycle. The levate the back a sper. The 0.5 skin site on e the back a sper. The 0.5 skin site on e the back a skin site on e the back a sper. The 0.5 skin site on e the back a sper. The 0.5 skin site on e the back a sper. The 0.5 skin site on e the back a skin site on e the back a sper. The 0.5 skin site on e the back a sper. The 0.5 skin site on e the back a skin site on e the back a sper. The 0.5 skin site on e the back a spectra spectra spectra skin was grade a skin was grade	kg, at and mL each inch e and ved s (44 ed and
	Tabl	e 2.Draize e	valuat	tion of	dermal irritati	on	
	==== Eryt	hema and esc No erythema Very slight Well-define Moderate to Severe eryt formatio	har fo eryth d eryth seven hema n or r	nema (k thema (k thema re eryt (beet r necrosi	parely perceptibl chema redness), eschar s	Grade 0 .e) 1 2 3 (scab) 4	
	Edem	a formation No edema Very slight Slight edem by def Moderate ed (raise Severe edem and ex	edema a (edo inite ema d appr a (rai tendir	a (bare ges of rasing roximat ised mo ng beyo	ely perceptible) area well-define) eely 1 mm) ore than 1 mm ond area of expos	0 1 2 3 sure 4	
Reliability:	==== (2) Comp	valid with arable to gu	restri deline	====== ictions e studv	with acceptable	restrictions	
25-NOV-2004	- 1-	5-		1			(34)

5.2.2 Eye Irritation

Species:		rak	obit
Concentra	ation:	und	diluted
Dose:		.1	ml
Exposure	Time:	24	hour(s)
Dose: Exposure	Time:	.1 24	ml hour(s)

OECD SIDS			BEN	ZENE	, 1-CH	ILORC)-2-(Cl	HLOROM	ETHYL)-
5. TOXICITY								ID:	611-19-8
								DATE: 25	.11.2004
Comment: No. of Animals: Result:	other:r 3 slightl	insed with phy y irritating	siolo	gical	sali	ne			
Method: Year: GLP: Test substance:	OECD Gu 1985 yes other T	ide-line 405 'S:- Source: HO	"Acuto ECHST	e Eye AG- (Irri [.] Code:	tation GLAC	405-	osion" Purity:	>99%
Result:	All ani grades animals All sym observa	mals gave posi of ocular reac excrete a cle ptoms were com tion period.	tive : tions ar lio plete	respo disp quid ly re	nses. layed at the versil	Besic in th e day ole wi	le the le tab of ap thin	numeric le benea plicatio the	al th n.
	Numeric	al grades of o	cular	reac	tions	after	trea	tment =====	
	Animal	Region	Time	e aft	er apj	plicat	ion		
	NO.		1 hr	24 hr	48 hr	72 hr	7 d	14 d	
	1	Conjunctivae -Chemosis -Redness	2	1	0 1	0	0	0	
	2	Iris Cornea Conjunctivae	1 0	0	1 2	0	0	0	
		-Chemosis -Redness Iris	2 2 1	2 3 1	1 2 1	1 2 0	1 2 0	0 0 0	
	3 C	Cornea Conjunctivae -Chemosis	0 2	1	2 0	0	0	0	
		-Redness Iris Cornea	2 1 0	2 0 0	1 1 2	0 0 0	0 0 0	0 0 0	
	These r	esults have le	d to	the c	onclu	sion t		CBC had	only
Reliability:	classif (1) va OECD Gu	eye irritant e ication and la lid without re ideline study	belli stric	s whi ng ac tion	cn do cordii	not m ng to	eet c EC re	riteria gulation	ior s.
Flag: 25-NOV-2004	Critica	l study for SI	DS en	dpoin	t				(7)
Species: Concentration: Dose: Comment: No. of Animals:	rabbit undilut .1 ml not rin 6	ed Ised							
Method:	other:F Section Effects Irritat	TFRA Pesticide 81-4, "Primar Test Guidelin ion"	Asse y Eye es, "2	ssmen Irri Acute	t Guio tatio Expo	deline n Stud sure,	es, su ly" TS Prima	bdivisio CA Healt ry Eye	n F, h
GLP: Test substance:	yes other I	'S:- Source: Mo	nsant	o comj	pany-	Lot/E	Batch	No.: 316	8723,

2503577

Remark: Result:	The met 405. mildly/	hod was in prin	ciple tating	equiva g	lent	to 0	ECD	Guide	eline		
	OCBC pr irritat conjunc three e iridial signifi instill	coduced mild to a tion. All six an tival irritation exhibited cornea damage. Howeve cant ocular irr ation of the te	modera imals n (red l opad r, siz itationst mat	ate but exhibi dness, city an x anima on with terial.	reve ted s chemo id ulo ils we nin 3	ersib sligh osis, cerat ere f to 2	le c t to dis ion ree 1 da	cular mode charc and c of ys af	erate ge), one had		
	elicite	ed by OCBC	les awarded to the ocular reactions								
	Animal No.	Region of eve	T: 	ime aft	er ap	pplic	atio	n 			
		- 1 -	1h	24h	48h	72h	7d	14d	21d		
	1	Conjunctivae Redness Chemosis Discharge Necrosis(N)/ Ulceration(U)	1 1 2 0	1 1 0 0	1 1 0 0	1 1 0 0	0 0 0 0	ND ND ND ND	ND ND ND ND		
		 Iris	+	0	0	0	0	ND	ND		
		Cornea Opacity Area Stipping Ulceration Other	0 0 0 0 -	0 0 0 0f -	0 0 0 0f -	0 0 0 0 -	0 0 0 0 -	ND ND ND ND ND	ND ND ND ND ND		
	2	Conjunctivae Redness Chemosis Discharge Necrosis(N)/ Ulceration(U)	1 1 2 0	3 1 1 0	2 1 0 0	2 1 0 0	0 0 0 0	ND ND ND ND	ND ND ND ND		
		Iris	+	+	+	0	0	ND	ND		
		Cornea Opacity Area Stipping Ulceration Other	0 0 0 0 -	2 4 0 1f	1 4 0 0f -	+ 4 0 0f -	0 0 0 0	ND ND ND ND ND	ND ND ND ND ND		
	3	Conjunctivae Redness Chemosis Discharge Necrosis(N)/ Ulceration(U)	1 1 2 0	1 1 0 0	1 1 0 0	2 1 0	1 0 0 0	1 0 0 0	1 0 0		

	Iris	+	+	0	0	0	0	0
	Cornea Opacity Area Stipping Ulceration Other	+ 2 0 0 -	0 0 0 0 f	0 0 0f -	0 0 0	0 0 0 -	0 0 0 0	0 0 0 0
4	Conjunctivae Redness Chemosis Discharge Necrosis(N)/ Ulceration(U)	1 1 3 0	2 1 0 0	1 1 0 0	1 1 0 0	0 0 0 0	ND ND ND ND	ND ND ND ND
	Iris	0	1	0	0	0	ND	ND
	Cornea Opacity Area Stipping Ulceration Other	+ 2 0 0 -	1 4 1 1f -	+ 4 0 0f -	+ 4 0 0f -	0 0 0 0 -	ND ND ND ND ND	ND ND ND ND ND
5	Conjunctivae Redness Chemosis Discharge Necrosis(N)/ Ulceration(U)	1 2 2 0	2 1 0 0	1 1 1 0	1 1 0 0	1 1 0 0	0 0 0 0	ND ND ND ND
	Iris	0	+	0	0	0	0	ND
	Cornea Opacity Area Stipping Ulceration Other	+ 2 1 0 -	1 4 1 1f -	+ 4 1 0f -	+ 4 0 0f -	0 0 0 0	0 0 0 0 -	ND ND ND ND ND
6	Conjunctivae Redness Chemosis Discharge Necrosis(N)/ Ulceration(U)	1 1 2 0	2 1 1 0	2 1 0 0	1 1 0 0	0 1 0 0	0 0 0 0	ND ND ND ND
	Iris	+	0	0	0	0	0	ND
	Cornea Opacity Area Stipping Ulceration Other	+ 2 0 0 -	0 0 0 0 0 f -	0 0 0 0f -	0 0 0 0 b	0 0 0 0 -	0 0 0 0 -	ND ND ND ND ND

b - one small area of superficial necrosis on lower lid.

f - observation confirmed with fluorescein.

ND- no dat

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOR	COMETH
5. TOXICITY	DAT	ID: 611-1 E: 25.11.2
Test condition:	Grading and scoring of irritation were performed in accordance with the following table:	
	Table 2	
	### CORNEA ###	
	A. Opacity-degree of density	
	(area most dense taken for reading)	Grade
	- Slight dulling of normal luster	0 +
	- Scattered or diffuse areas of opacity (other	
	than slight dulling of normal luster), details	
	of iris clearly visible	1
	- Easily discernible translucent areas, details	0
	OI 1115 SIIGNTLY ODSCURED - Nacreous areas, no details of iris visible	Z
	size of pupil barely discernible	3
	- Opaque cornea, iris not discernible through	-
	the opacity	4
	B. Total area of cornea involved: (total area exhibition any opacity, regardneless of degree)	iting
	ang opaolog, logalanoloos ol aogloo,	Grade
	- One quarter (or less) but not zero	1
	- Greater than one quarter less than half	2
	- Greater than half, but less than three quarters	3
	C. Stippling - (appearance of pinpoint roughening)	Grade
	- No stippling	0
	- One quarter (or less) but not zero	1
	- Greater than one quarter less than half	2
	- Greater than half, but less than three quarters	3 4
	D. Ulceration -(absence of a gross patch of corneal	
	epithelium)	Grade
	- No ulceration	0
	- One quarter (or ress) but not zero - Greater than one guarter less than half	⊥ 2
	- Greater than half, but less than three guarters	3
	- Greater than three quarters, up to whole area	4
	### IRIS ###	
	A. Values - Normal	Grade N
	- Slight deepining of the rugae or slight hyperemia	of
	the circumcorneal blood vessels	+
	- Markedly deepened rugae, congestion, swelling,	
	moderate circumcorneal hyperaemia or injection,	
	still reacting to light (sluggish reaction	
	is positive)	1
	- No reaction to light, hemorrhage, gross destruction	on
	(any one or all of these)	2

_____ _____ ### CONJUNCTIVAE ### _____ A. Redness (refers to palpebral and bbulbar conjunctivae excluding cornea and iris) Grade - Vessels normal 0 - Some vessels definitely injected above normal 1 - Diffuse, crimson red, individual vessels not easily discernible 2 - Diffuse beefy red 3 _____ B. Chemosis Grade - No swelling 0 - Any swelling above normal (includes nictitating membrane) 1 2 - Obvious swelling with partial eversion of the lids 3 - Swelling with lids about half closed - Swelling with lids more than half closed 4 -----C. Discharge Grade - No discharge 0 - Any amount different from normal (does not include small amount observed in inner canthus of normal animals) 1 - Discharge with moistening of the lids and hairs just adjacent to the lids 2 - Discharge with moistening of the lids and hairs and considerable area around the eye 3 _____ D. Necrosis or ulceration of palpebral and bulbar conjunctivae Grade - Not present 0 - Necrosis present Ν - Ulceration present IJ Reliability: (1) valid without restriction Test procedure according to national standards (EPA) Critical study for SIDS endpoint Flag: 25-NOV-2004 (32)rabbit Species: Concentration: undiluted .1 ml Dose: Exposure Time: .5 minute(s) Comment: other:rinsed with water for one minute No. of Animals: 4 Result: irritating other:Federal Register, vol.50, No.188, part II of 27 Method: September 1985 Section 798.4500 - Primary Eye Irritation Year: 1987 GLP: yes Test substance: other TS:-Source: Occidental Chemical Corporation-Batch No.:DR2/11/85- Purity: 99.25% Remark: The method was in principle equivalent to OECD Guideline

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-										
5. TOXICITY								ID: 6	11-19-8		
								DATE: 25.	11.2004		
Result:	405, except that the eyes were irrigated 30 seconds after instillation with water for one minute. (With rinsing) Three animals gave a positive response. No corneal damage or iridal inflammation was seen in any of the animals. Obvious swelling with partial eversion of the eyelids was observed in all three animals one hour after instillation only. The eyes were normal, 2, 3, or 4 days after instillation.										
	Table : elicite	Table 1.Numerical grades awarded to the ocular reactions elicited by OCBC (1).									
	Animal	Region of eye		Time	after	appi	licat	ion			
	NO.		1h	1d	2d	3d	4d	7d			
	1	Cornea	0	0	0	0	0	0			
		Iris	0	0	0	0	0	0			
		Conjunctivae -Redness -Chemosis	1 2	1 0	1 1	0 0	0 0	0 0			
	2	Cornea	0	0	0	0	0	0			
		Iris	0	0	0	0	0	0			
		Conjunctivae -Redness -Chemosis	1 2	1 1	0 0	0 0	0 0	0 0			
	3	Cornea	0	0	0	0	0	0			
		Iris	0	0	0	0	0	0			
		Conjunctivae -Redness -Chemosis	1 2	0 0	1 1	1 0	0 0	0 0			

(Without rinsing)

The animal gave a positive response. A corneal opacity developed 24 hours after instillation and persisted through Day 14. Iridial inflammation was observed between one and three days after instillation. A diffuse crimson coloration of the conjunctivae, accompanied by considerable swelling with the eyelids about half-closed and a copious discharge was observed in the animal. All effects were reversible within the observation period of 21 days.

Table 2.Numerical grades awarded to the ocular reactions elicited by OCBC (2).

Animal No	Region	Time after application								
NO.	or eye	1h	1d	2d	3d	4d	7d	14d	21d	
1	Cornea	0	1	2	2	2	2	1	0	

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)									
5. TOXICITY									DATI	E: 25.11
		Iris	0	1	1	1	0	0	0	0
	_	Conjuncti	Lvae							
		-Redness -Chemosis	2 2	2 3	2 3	2 1	1 2	1 1	1 0	0 0
Test condition:	======================================	of animals	===== s:4 (with	===== rinsi	===== na:3.	===== with	===== out r	======	====== r:1)
		· 1 · 7 ·						11.1		5• - 7
	OCBC (0.1 ml) was applied to eyes of 4 rabbits. The eyes o 3 rabbits were rinsed with water for one minute after 30-second exposure while the eye of one rabbit was not rinsed during the experiment.									
	Grading and scoring of irritation were performed in accordance with the following table:									
	Table3									
	======= ### COF	======================================	=====	=====	=====:					====
	Opacity		E der	nsity						
	(area - No ul - Scatt	a most dens ceration c cered or di	se ta opaci lffus	ken f ty se are	or rea	ading opac) ity		Gı	rade 0
	(otne detai	er than sli ls of iris	ignt s cle	aulli early	ng or visib	norm le	ai iu	ster)	,	1
	- Easil of ir	y discerni is slight]	ible Ly ob	trans	lucen [.] d	t are	as, d	etail	S	2
	- Nacre size	eous areas, of pupil k	no no narel	detaı y dis	ls of cernil	ırıs ble	VISI	ble,		3
	- Upaque cornea, iris not discernible through the opacity								4	
					=====	=====		=====		
	======= ### IRI	 S ###			=====	=====				
								Grad	е	
	- Norma - Marke moder injec	al edly deeper cate circum ction,any c	ned r ncorr	rugae, neal h nese o	congo yperao r comi	estio emia binat	n, sw or ion o	ellin f	g,	0
	(slug	gish react	ls st cion	is po	sitiv	ng to e)	ттдп	L		1
	- No re destr	eaction to cuction (ar	ligh ny or	nt, he ne or	morrh all o	age, f the	gross se)			2
					=====:	=====				
	======= ### CON	IJUNCTIVAE	===== ###							
	A. Redness (refers to palpebral and bulbar									
	conj - Blooc	unctivae e	exclu	ding	corne	a and	iris)	Gi	rade 0
	- Some	blood vess	sels	defin	itely	hype	raemi	С		1
	- Diffu	use, crimso	on co	blo	indi	vidua	l ves	sels		C
	not e - Diffi	asily aiso use, beefv	red	лте						∠ 3

OECD SIDS		BENZ	<u>ZENE, 1-CHLORO-2-</u>	(CHLOROMETHY	<u>(L)-</u>
5. TOXICITY				ID: 611-19	9-8
				DATE: 25.11.20	004
	B. Chei	nosis		Grade	
	- No s	velling		0	
	- Any	swelling above normal	, ,	1	
	(inc	ludes nictitating mem	brane)	Ţ	
	- UDV1	ous swelling with par	tial eversion	2	
	- Swel	ing with lids about	half-closed	2	
	- Swel	ling with lids more t	han half-closed	4	
	======				
Reliability:	(1) V	alid without restrict	lon		
25-NOV-2004	Compar	able to guideline stu	ay	(3)	4)
5.3 Sensitization					
Type:	othe	Skin sensitization	test		
Species:	guin	ea pig			
No. of Animals:	13				
Vehicle:	othe	c:olive oil			
Result:	sens	ltizing			
Method:	other				
Year:	1936				
GLP:	no dat	1			
Test substance:	other	ſS			
Result: Test condition:	Positi animal cross- Thirte 0.01mg weeks, orthoc on the	ve skin reaction was s. Animals sensitized ceacted with 2,4-dini en guinea pigs were i o-chlorobenzyl chlor followed by two week nlorobenzyl chloride flank.	observed in eight with OCBC were al trobenzyl chloride ntracutaneously in ide (OCBC), twice s of rest. Then on solution in olive	of thirteen lso e. njected with a week for 12 ne drop of 20% oil was spread	
Reliability:	(3) i	nvalid			
29-JAN-2004	Does n	ot meet important cri	teria of today sta	andard methods. (2	6)
				(-	.,
5.4 Repeated Dose	Toxici	У			
Species:		rat	Sex	: male/female	
Strain:		Sprague-Dawley			
Route of administ	ration:	gavage			
Exposure period:		male: 45 days, femal	e: 41-48 days		
Frequency of trea	tment:	daily			
Doses:		2, 10, 50 mg/kg/day			
Control Group:		yes			
NOAEL:		$= 2 \operatorname{mg/kg}$			
Method:	OECD c	ombined study TG422			
Year:	1999				
GLP:	yes	1, , , , ,			
Test substance:	as pre	scribed by 1.1 - 1.4			
Result:	Suppre consum of adm	ssion of body weight otion were observed i inistration at 50 mg/	gain and decrease n both sexes in th kg/day. At necrop:	in food he early period sy, thickening	

<u>OECD SIDS</u> 5. TOXICITY		E	<u>BENZENE, 1-C</u>	<u>CHLORO-2-(CHLOROMETHYL)-</u> ID: 611-19-8 DATE: 25.11.2004			
	of the fore mg/kg/day a weight was increased i examination and ulcerat both sexes forestomach test substa in the prox granular ca kidneys of hematologic males. In t was conside female. Table 1. Ab	of the forestomach wall was observed in males of 10 mg/kg/day and both sexes of 50 mg/kg/day. The relative live weight was increased and absolute liver weight tended to be increased in females of 50 mg/kg/day. Histopathological examination revealed squamous epithelium hyperplasia, eros: and ulceration in the forestomach in males of 10 mg/kg/day both sexes of 50 mg/kg/day. These changes observed in the forestomach were considered to be related to the irritancy test substance. In addition, the increase of hyaline drople in the proximal tubular epithelium, eosinophilic bodies, granular casts and basophilic tubule were observed in the kidneys of males of 50 mg/kg/day. There were no effects on hematological and clinical examination or organ weights in males. In this experiment, the no observed effect level (NC was considered to be 2 mg/kg/day for male and 10 mg/kg/day female. Table 1. Absolute and relative liver weights in rats treated					
	orally with ======== Dose (mg/kg 0	1 OCBC (a) ====================================	10	50			
	[Male] No. of anim 12	nals 12	12	12			
	Body weight 464+/-30	(g) 478+/-27	457+/-19	461+/-27			
	Liver, abso 12.2+/-1.4	olute (g) 12.6+/-1.1	11.7+/-1.0	12.4+/-1.5			
	Liver, rela 2.62+/-0.19	utive (g%) 0 2.64+/-0.12	2.55+/-0.17	2.69+/-0.20			
	[Female] No. of anim 12	nals 11	11	11			
	Body weight 324+/-26	(g) 314+/-29	302+/-25	313+/-15			

Liver, absolute. (g)

13.6+/-1.7 13.9+/-1.5 13.2+/-1.6 14.6+/-1.0

Liver, relative (g%) 4.21+/-0.32 4.43+/-0.34 4.37+/-0.28 4.67+/-0.23** Values are expressed as Mean+/-S.D. Significantly different from control;**: P<0.01 (a) No significant change was observed in absolute nor relative weights of the following organs; thymus, spleen, kidneys, adrenals, testes, and epididymis. Test condition: Nine-week-old male and female rats were used. Twelve males and twelve females were used for each dose levels, 2, 10, and 50 mg/kg/day. 0.1% Tween 80 solution was gavaged control group. Test substance was administrated by gavage. Males

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
5. TOXICITY	ID: 611-19-8 DATE: 25.11.2004
	were dosed for 14 days before mating; during the mating period and up to the day before scheduled kill (total 45 days). Females were dosed for 14 days before mating, during the mating period, during the gestation and four days after delivery (total 41-48 days). The rats were weighed at Day 3, 7 and 14, and weekly thereafter. During the gestation, females were weighed at Day 0. 7, 14 and 20 of gestation, and Day 0 and 4 of lactation. At the termination of the experiment, all rats were sacrificed and necropsied. Hematological examination and clinical biochemistry determination were performed on the blood samples obtained from the male rats. Histopathological examinations by hematoxylin eosin staining were carried out on brain, stomach, heart, liver, kidneys, spleen, adrenals, testes and epididymides of the all animals in the control and 50 mg/kg/day group, and on all gross lesions of all animals. The treatment-related changes were observed in the kidney of 50 mg/kg/day, therefore, histpathological examination were performed on the kidney of all animals in 2 and 10 mg/kg/day
Test substance: Reliability:	-Source: Ihara Chemical Industry Co., LtdLot No.T7030-Purity: 99.65% (1) valid without restriction
Flag: 25-NOV-2004	OECD Guideline study Critical study for SIDS endpoint (28)
Species: Strain: Route of administ Exposure period: Frequency of trea Doses: Control Group: NOAEL:	<pre>rat Sex: male/female Wistar ration: inhalation 28 days tment: 6 hours a day, five consecutive days a week (Monday to Friday) for 4 consecutive weeks 0.01, 0.03, 0.10 mg/l yes = .03 mg/l</pre>
Method: Year: GLP: Test substance:	OECD Guide-line 412 "Repeated Dose Inhalation Toxicity: 28-day or 14-day Study" 1990 yes other TS:- Source: Occidental Chemical Corporation-Batch No.:20-50253 00/S-2359- Purity: 99%
Result:	No animals were dead. At the highest exposure level only, there were several observations indicative of an adverse effect of the test substance. During exposure, there were clinical signs indicative of an irritation of the respiratory tract. These included eyes shut/half-shut, adoption of a prone/hunched posture, rubbing of the chin on the mesh floor of the exposure chamber with licking of the inside of the mouth, red ears, agitated grooming and short periods of head shaking, and rale was noted in one male rat of highest dose group during the latter half of Week 4. Weight gain, food consumption and water consumption were reduced during the 4 weeks of exposure. The laboratory investigations performed at the end of the exposure period showed increased packed cell volume, hemoglobin and red cell count and production of a reduced volume of urine. The ratio

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
5. TOXICITY	ID: 611-19-8
	DATE: 25.11.2004
	of myeloid: erythroid cells was also increased. The gross necropsy revealed enlarged tracheobronchial lymph nodes and elevated lung weights. The histopathological examination showed damage to the nasal mucosa, trachea and bronchi

showed damage to the nasal mucosa, trachea and bronchi (epithelial degeneration and hyperplasia of the nasal mucosa and the bronchiolar epitherium, squamous metaplasia of the bronchiolar epitherium) consistent with inhalation of an irritant vapour. The tracheobronchial lymph nodes of some of the rats showed lymphoid hyperplasia. There were no changes that were considered to be treatment-related in male and female rats exposed at 0.01 or 0.03 mg/l. The no observed adverse effect level (NOAEL) in this study was considered to be 0.03 mg/l.

Table 1. Effects of OCBC observed in the lungs

					======			
	Dose (mg/l)	0	0.01	0.03	0.10			
	[Male]							
	No. of animals	5	5	5	5			
	Body weight (g)	392	384	380	306			
	Weight gain (g)	131	127	127	52**			
	Lung weight (g)	1.37	1.37	1.38	1.47			
	Enlarged tracheo-bronch	ial lymp	ph nodes					
		0	0	0	4			
	Lymphoid hyperplasia in	1 trached	o-bronch:	ial lympł	n node			
		0	0	0	3			
	[Female]							
	No. of animals	5	5	5	5			
	Body weight (g)	244	231	234	224			
	Weight gain (g)	61	53	50	33**			
	Lung weight (g)	1.04	1.07	1.05	1.25**			
	Enlarged tracheo-bronch	ial lymp	oh nodes					
	-	0	0	0	1			
	Lymphoid hyperplasia in	trached	-bronch:	ial lymph	n node			
		0	0	0	1			
	** D<0 01 compared with		======================================					
Tost condition.	Poth male and female ra		Di uala (ISING WI	LIIdus Lest			
iest condition.	molog and five females	us, o we	eks old,	, wele us	lovola Dota			
	males and five females were used for each dose levels. Rats							
	were whole-body exposur	tanco d	le atmos	phere con				
	consecutive days a week	(Mondar	, to Eric	a uay, II day) for	1 concoquitiv			
	wooks and the concentr	(Monua)	y to filo	lay) IUI Srobongvi	4 CONSECULIV			
	weeks, and the concentr	10 ma/1			during			
	were 0.01, 0.05, and 0.	IU mg/l.		ar signs	uuring			
	day your live price to	Allinais	s were ez	distolu d	LWICE Each			
	day, usually prior to 1	.oading a	and immed	juately i	TOTTOWING			
	unloading from the cham	ubers on	exposure	e days, a	and in the			
	morning and atternoon o	n non-ez	kposure (days. Ead	ch rat was			
	weighed daily, and food	and wat	cer consi	imption v	vere also			
	recorded daily.Samples	ot blood	d used id	or hemato	ological and			
	biochemical examination	is were v	withdrawn	n from th	ne orbital			
	sinus of each rat durin	ıg Week 4	1 of the	study. 1	The rats were			
	lightly anaesthetized w	ith ethe	er during	g removal	l of blood. N			
	food was available to t	he rats	overnigh	nt prior	to sampling.			
	Urine was collected fro	om all ra	ats over	night. Al	ll rats in al			
	groups were sacrificed	and nec	ropsied.	At necro	opsy, samples			
	of bone marrow were rem	noved fro	om the fe	emur of a	all rats and			

OECD SIDS		Bl	ENZENE, 1-CHLOF	RO-2-(CHLOROMETHYL)-
5. TOXICITY				ID: 611-19-8 DATE: 25.11.2004
	the ratio for each on the na liver, sp abnormali group. As trachea, nodes and	o of myeloid: er rat. Histopatho asal passages, p bleen, heart, ki ities in all rat s a result of fi nasal turbinate d lungs were als	ythroid cells pr logical examinat harynx, larynx, dneys, adrenals, s in control and ndings in the 0. , larynx, trache o examined in th	esent was calculated ions were performed trachea, lungs, and any gross the 0.01 mg/l 1 mg/l group, the obronchial lymph e 0.01 and 0.03 mg/l
Reliability:	(1) vali OECD Guid	ld without restr deline study	iction	
Flag: 25-NOV-2004	Critical	study for SIDS	endpoint	(33)
5.5 Genetic Toxi	city 'in Vi	ltro'		
Type: System of testin Concentration: Cytotoxic Concen	An g: Sa Es 0. tration: wi >(cc >(wi >(T T tion: wi	mes test almonella typhim scherichia coli .0156 - 0.5 mg/p thout metabolic 0.25 mg/plate(S. bli WP2uvrA) 0.18 mg/plate (S ith metabolic ac 0.25 mg/plate(S. A1537, E. coli W	WP2 uVTA WP2 uVTA late activation: typhimurium TA1 tivation: typhimurium TA, P2 uVTA)	535, TA98, TA1537, 535,TA98,TA1537,E. 100) 100, TA1535, TA98,
Method:	OECD Guid	de-line 471		
GLP: Test substance:	yes as presci	ribed by 1.1 - 1	.4	
Result:	possibly	positive		
	In S. typ the number without m colonies control. were perf TA100 wit tests rev of revert was from control. was possi metabolic typhimuri with and TA100 wit	chimurium TA100, er of revertant metabolic activa was not twice a Therefore, foll formed at 0.09 t chout metabolic vealed concentra cant colonies, a 1.5 to 2.1-times These results h bbly mutagenic i c activation. No um TA1535, TA98 without metabol ch metabolic act	concentration-r colonies were ob tion, but number s many as that o ow-up tests and o 0.24 mg/plate activation. The tion-related inc nd the number of as many as that ave led to the c n S. typhimurium mutagenic activ , TA1537 and E. ic activation, a ivation.	elated increases of served reproducibly of revertant f the solvent a verification test in S. typhimurium results of these reases of the number revertant colonies of the solvent onclusion that OCBC TA100 without ity was observed in S. coli WP2 uvrA both nd in S. typhimurium
	Table 1.M	Mutagenicity of	OCBC on bacteria	(1)
	With or without	Test substance dose	Mean number o revertant col	f onies/plate
	S9mix	(ug/plate)	Base-pair	Frameshift

OECD SIDS 5. TOXICITY

			subs type	tituti	on	type	
			TA 100	TA 1535	WP2 urvA	TA 98	TA 1537
without (-)	0 15.6 31.3 62.5 125 250 500		125 142 169 194 205 0* 0*	9 10 11 9 10 0* 0*	24 26 21 25 25 1* 0*	22 16 22 24 26 0* 0*	7 7 8 9 10 1* 0*
with (+)	0 15.6 31.3 62.5 125 250 500		142 127 166 159 172 68* 0*	11 12 10 12 10 6* 1*	33 33 32 32 32 35 0*	33 23 36 28 32 21* 3*	13 12 14 15 13 8* 0*
[Positive Chemical Dose(ug/p Mean numb Colonies/	control late) er of plate	without	S9mix AF2 0.01 549] SA 0.5 525	AF2 0.01 205	AF2 0.1 608	9AA 80 355
[Positive Chemical Dose(ug/p Mean numb Colonies/	control late) er of plate	with S9m	ix] 2AA 1 1061	2AA 2 450	2AA 10 811	2AA 0.5 536	2AA 2 442

AF2: 2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide, SA: Sodium azide, 9AA: 9-Aminoacridine, 2AA: 2-Aminoanthracene *: Growth inhibition was observed.

Table 2.Mutagenicity of OCBC on bacteria (2)

		=====	=====					
With or without	Test substance dose	Mean number of revertant colonies/plate						
S9mix	(ug/plate)	Base subs type	-pair tituti	Frameshift type				
		TA 100	TA 1535	WP2 urvA	TA 98	TA 1537		
without (-)	0 15.6 31.3 62.5 125 250 500	146 168 171 202 227 25* 0*	10 11 9 11 14 0*	22 20 26 25 27 5* 0*	26 18 19 26 23 0* 0*	10 8 6 13 10 1* 0*		
	0	138	14	27	33	12		

OECD SIDS 5. TOXICITY		B	ENZENE	, 1 - CH	ILORO-2-(CHLOF	<u>ROMETHYL)-</u> ID: 611-19-8 E: 25.11.2004
	15.6 with 31.3 (+) 62.5 125 250 500		151 153 157 187 109* 0*	11 11 9 11 6* 0*	30 29 28 35 32 0*	34 31 28 32 24* 0*	13 13 13 10 7* 0*
	[Positiv Chemical Dose(ug/ Mean num Colonies	e control withou plate) ber of /plate	at S9mix AF2 0.01 543] SA 0.5 562	AF2 0.01 201	AF2 0.1 588	9AA 80 471
	[Positiv Chemical Dose(ug/ Mean num Colonies	e control with S plate) ber of /plate	39mix] 2AA 1 1031	2AA 2 404	2AA 10 732	2AA 0.5 473	2AA 2 337
	======= AF2: 2-(azide, 9 *: Growt	2-Furyl)-3-(5-ni AA: 9-Aminoacric h inhibition was	tro-2-f line, 2A observ	uryl)a A: 2-2 ed.	acrylamid Aminoanth	e, SA: racene	===== Sodium
	With without	th Test Mean nu substance reverta					
	S9mix	(ug/plate)	Base-p TA10	air su Oa	ubstituti TA100b	on type TA10(e)c
	without (-)	0 90 120 150 180 210 240	131 235 276 258 136* 0* 0*		149 194 240 265 143* 0* 0*	132 195 237 224 142* 16* 0*	
	[Positiv Chemical Dose(ug/ Mean num Colonies	e control withou plate) ber of /plate	at S9mix AF2 0.01 503]	AF2 0.01 522	AF2 0.01 495	
Test condition:	AF2: 2-(*: Growt a: Addit test Triplica concentr (S9) was pretreat result w found wa was expo o-chloro increase	2-Furyl)-3-(5-ni h inhibition was ional test 1, b: te plates were w ations of the sa prepared from t ed with phenobar as considered po s twice the numk sed to dimethyls benzyl chloride over the range	Additi ased for ample. T the live bital a ositive oer of c sulfoxid (OCBC), tested	estimation and reaction and solution and solution and solution and solution and solution and reaction and rea	acrylamid test 2, c of six d ver micro Sprague-D 6-benzofl e number es of the e solvent concentra eproducib	e : Confi ifferer some fr awley r avon. ? of cold contro for tion-re le inc:	irmation nt raction rats The onies ol, which elated rease at

OECD SIDS			Е	BENZE	NE. 1-0	CHLOR	0-2-(CHLO	ROME	THYL)-	
5. TOXICITY							<u> </u>		ID: 61	1-19-8	
								DAT	E: 25.1	1.2004	
	000 00	mara	aanaantrati	000	mo ob	arred					
Test substance:	-Source	e: Iha	ra Chemical	Indus	stry Co	o., Ltd	lLo	t			
	No.T703	30-Pur	ity: 99.65%		-						
Reliability:	(1) Va	alid w uideli	vithout rest	rictic	on						
Flag:	Critica	al stu	dy for SIDS	endpo	oint						
25-NOV-2004			-	_						(30)	
Type:		Ames	test								
System of testing	g:	Salmo	onella typhi:	murium	n TA98,	. TA100	, TA	1535, '	TA1537	,	
		TA153	8, Escheric	hia co	oli WP2	2 uvrA					
Concentration: Cytotoxic Concent	tration	0.8 - Withc	· 1,500 ug/p nut metaboli	late c acti	vation	ı. >= 1	. 500	ומ/חו	ate		
cycocoxic concent		with	metabolic a	ctivat	ion: >	>= 500	ug/p	late	100		
Metabolic activat	tion:	with	and without								
Result:		negat	ive								
Method:	other:	Ames E	B. N. et al.	1973							
Year:	1983										
GLP:	yes other '	TC C	OURCE! HOFC	<u>цет</u> л <i>с</i>	-						
lest substance.	other .	15 3	Source. HOLE	nsi Ad	T						
Remark:	The met	thod w	as in princ	iple e	equival	Lent to	OEC	D Guid	eline	471	
	except	that matior	no follow-u	p expe	eriment	ts were	e done	e for			
Result:	The nur	The number of revertant colonies did not increase compare									
	with th	he sol	vent contro	l in S	3. typł	nimuriu	ım , a	and E.	coli	WP2	
	uvrA, 1	uvrA, both with and without metabolic activation.									
	Table 1	Table 1									
	======			=====				======			
	With		Test	Mean number of							
	without	t	dose								
	S9mix	(ug/plate)	Base-pair substitution type			Frameshift type					
Test substance: Remark: Result:				ΤA	TA	WP2	TA	TA	TA		
				100	1535	urvA	98	1537	1538	_	
			0	154	12	30	25	12	10		
			0.8	169	15	26	22	12	12		
	without	t	4	159	13	26	22	14	11		
	(-)		∠∪ 100	186 186	12 13	∠9 28	19 14	13 0.5	ठ 9		
			500	*	*	13	*	*	*		
			1,500	**	* *	*	* *	* *	**		
			0	 163	16	49	30		 19		
			0.8	158	11	52	29	15	16		
	with		4	151	15	44	32	15	19		
	(+)		20	175	14	44	32	14	16 15		
			500	123	 6	27	23 18	13 6	12		
		1,	500	*	**	19	7	*	*		
	[POSIT: Chemic:	⊥ve co al	MILLOI WILDO	ut S9N MD	ı⊥x] SC	ENNG	MD	9AA	MD		
	Dose (ug	g/plat	e)	5	5	2	5	100	5		

	Mean nu Colonie	umber of es/plate	3405	>5000	633	3170	>500	0 3035	
	[Positi Chemica Dose(ug Mean nu Colonie	ve control with s al g/plate) amber of es/plate	S9mix] 2AA 0.5 715	2AA 1 156	2AA 10 2330	2AA 0.5 750	2AA 1 136	2AA 0.5 740	
	MD: Met ENNG: N 9AA: 9- *: no c	Chylhydrazone Der: N-Ethyl-N-nitro-N- Aminoacridine, 27 colony growth, **	ivativ -nitrc AA: 2- : no b	re, SC: osoguan Aminoan oacteria	Strep idine, nthrac al gro	cene wth	ocine	······	
Test condition:	These results have led to the conclusion that OCBC was not mutagenic under the conditions of this study. Quadruplicate plates were used for each of six different concentrations of the sample and for the solvent control. The liver microsome fraction (S9) was prepared from the liver of Sprague-Dawley rats pretreated with Aroclor 1254R (polychlorinated biphenyl). The result was considered positive if the number of colonies found was twice the number of colonies of the control, which was exposed to dimethylsulfoxide, the solvent for the substance in test,								
Reliability: Flag: 25-NOV-2004	(2) va Compara Critica	alid with restrict able to guideline al study for SIDS	tions study endpo	with a wint	accept	able	restr	ictions	(6)
Type: System of testing: Concentration: Cytotoxic Concentration: Metabolic activation: Result:		Chromosomal aber: Chinese hamster 2 0.0013 - 0.02 mg, - 0.2 mg/l (with without metabolic 0.010 mg/mL with treatment): 0.10 with and without positive	ration lung (/mL (w metab c acti metab mg/mI	test CHL/IU vithout volic ad vation polic ad) cell metak ctivat (cont ctivat	s bolic tion) tinuou tion (activ s tre short	ation)0 atment) -term	.013 :
Method: Year: GLP: Test substance:	OECD Guide-line 473 1999 yes as prescribed by 1.1 - 1.4								
Result:	Lowest mg/mL w metabol at 0.02 short-t aberrat after s (freque after s (freque treatme Table 1 treated	concentration provithout metabolic Lic activation. Cl 2 mg/mL for contin- term treatment. Ce clons, including of short-term treatme ency: 13.0 %). Pol short-term treatme ency: 2.88%) and a ent for 24 h (free contractions) in the short contraction of the short ency of the short of the short ency of the short of the short ency of the short of the short of the short ency of the short of the short of the short of the short of the ency of the short	oducin activ nromos nuous ells w gaps w ent wi lyploi ent wi at 0.0 quency Chine ut S9	ng cyto ration, come and treatme rith st rere ind th meta dy was th meta 10 mg/n r: 3.38 ² ese ham mix.	toxic and w alysis ent ar ructur crease abolic induc abolic mL aft %).	effec vas 0. vas vas nd 0.2 cal ch ed at cacti ced at cacti cer co cells	ts wa 10 mg not p 0 mg/ romos 0.10 vatio 0.10 vatio ntinu conti	s 0.01 /mL with erformed mL for omal mg/mL n mg/mL n ous nuously	n đ

Time (hr)	Conc. (mg/ml)	Total no of cells			% of control		
		dish 1		dish 2			
24	0 0.0013 0.0025 0.0050 0.010 0.020	7438 8934 8751 8674 6466 2629		8304 8202 8624 8254 5679 1830	100.0 108.9 110.4 107.5 77.1 28.3		
48	0 0.0013 0.0025 0.0050 0.010 0.020	12622 11499 9900 11819 8544 1717		12117 9287 8780 9526 9855 1071	100.0 84.0 75.5 86.3 74.4 11.3		

Table 2.Cytotoxicity in Chinese hamster cells treated with OCBC for 6 hr with or without S9 mix.

Conc. (mg/ml)	Total no of ce dish 1	lls % d dish 2	of control
[without S9 0 0.0013 0.0025 0.0050 0.010 0.020	mix] 5766 5068 6619 5829 4951 2303	5796 5760 5571 5722 5155 2728	100.0 93.6 105.4 99.9 87.4 43.5
[with S9 mi: 0 0.013 0.025 0.050 0.10	x] 6967 6035 5654 6368 5425	6128 6229 6022 5966 5752	100.0 93.7 89.2 94.2 85.4
0.20	354	293	4.9

Table 3.Chromosome analysis of Chinese hamster cells continuously treated with OCBC without S9 mix.

Conc. Ti (mg/ml)	ime of No exposure (hr)	cells analysed	Total no. structural aberration	of s	TAG (%)	TA (%	A Poly (9	yploid ≷)
0 0.0025 0.0050 0.010 0.020**	24 24 24 24 24 24 24	200 200 200 200 -	1 2 1 10	1 2 1 7	(0.5) (1.0) (0.5) (3.5)	1 1 1 6	(0.5) (0.5) (0.5) (3.0)	0.00 0.13 0.38 3.38*
0 0.0025	48 48	200 200	1 3	1 3	(0.5) (1.5)	1 2	(0.5) (1.0)	0.13

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-							
5. TOXICITY						ID: 611-19-8 DATE: 25.11.2004		
	0.0050 0.010 0.020**	48 48 48	200 200 -	0 0	0 (0.0) 0 0 (0.0) 0) (0.0) 0.00) (0.0) 0.75		
	TAG: to TA: tota *: Sign: Fisher': **: Chra small no Table 4 with OCI	tal no. of al no. of ificantly s exact promosome ar umber of r .Chromosor BC with ar	f cells wi cells wi differen robability nalysis wa metaphase me analys: nd withou	ith aberrat. th aberration t from solved y test., as not perfe due to cyte is of Chines t S9 mix.	ions, ons except ent contro ormed beca otoxicity. se hamster	gap, ol at p<0.01 by ause there was c cells treated		
	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	ime of No exposure (hr)	cells analysed	Total no. o structural aberration	======== of TAG TA (%) (१ s	A Polyploid 8) (%)		
	[withous 0 0.0025 0.0050 0.010 0.020**	t S9 mix] 6 6 6 6 6	200 200 200 200 -	0 1 0 1	0 (0.0) 0 1 (0.5) 1 0 (0.0) 0 1 (0.5) 1	$\begin{array}{c} (0.0) & 0.00 \\ (0.5) & 0.25 \\ (0.0) & 0.38 \\ (0.5) & 0.50 \end{array}$		
	[with S ¹ 0 0.025 0.050 0.10	9 mix] 6 6 6 6 6	200 200 200 200	0 0 4 34	0 (0.0) 0 0 (0.0) 0 4 (2.0) 4 26* 2 (13.0) 0	0 (0.0) 0.13 0 (0.0) 0.00 4 (2.0) 0.50 25* 2.88* (12.5)		
	TAG: tot TA: tota *: Sign Fisher': **: Chro small n	tal no. of al no. of ificantly s exact promosome ar umber of r	f cells wi cells wi different robability nalysis wa metaphase	ith aberration th aberration t from solve y test., as not perfe due to cyte	ions, ons except ent contro ormed beca otoxicity.	gap, ol at p<0.01 by ause there was		
Test condition:	Duplication concent: and 0.02 short-te 0.013, 0 treatment co-factor prepared phenobation	Duplicate plates were used for each of five different concentrations of the sample (0.0013, 0.0025, 0.0050, 0.010 and 0.020 mg/mL for continuous treatment (24 and 48 hr) and short-term treatment (6 hr) without metabolic activation; 0.013, 0.025, 0.050, 0.10, 0.20 mg/mL for short-term treatment (6 hr) with metabolic activation). The co-factor-supplemented post-mitochondrial fraction (S9) was prepared from the livers of male SD rats treated with phenobarbital and 5,6-benzoflavon. Mytomycin C and						
Test substance:	- Source	e: Ihara (Chemical :	Industry Co	., Ltd I	Lot No.: T7030-		
Reliability:	(1) val	lid withou	ut restric	ction				
Flag: 25-NOV-2004	Critica	l study fo	or SIDS e	ndpoint		(29)		

5.6 Genetic Toxicity 'in Vivo'

Type: Species: Strain: Route of admin Exposure period Doses: Result:	Micron rat Spragu : gavage d: Twice 50, 15 negati	ucleus assay e-Dawley at an interva 0, 500 mg/kg D ve	l of 24 hc bw	Sez	k: male/fen	nale			
Method: Year: GLP:	OECD G 2003 yes	uide-line 474	"Genetic	Toxico	Logy: Micro	onucleus Te	est"		
lest substance	99.6%	15,-50uice, C.	Tallant Gn	DH-Batti	I NO. DEBG	04/131-201	LICY.		
Result:	Oral a one ma and su were o the se postur	dministration le out of 10 a rvived after bserved in the cond applicat e.	of 500 mg animals tr treatment. e main stu ion: diarr	y/kg bw m reated. T The foi dy from Thea, st	resulted ir This animal Llowing sig 2 hours to ilted gait	h the death was repla gns of tox o 6 hours a and cower:	ı of aced icity after ing		
	The di relate	ssection of t d macroscopic	he animals findings.	reveale	ed no test	substance			
	Animal bw) sh macros	s from the oth owed neither of copic finding	her dose g clinical s s after di	roups (! igns of ssection	50 mg/kg bw toxicity r n.	7, 150 mg/] Nor	кg		
	The bo micron in Tab	The bone marrow smears were examined for the occurrence of micronuclei in red blood cells. The results are summarized in Table 1.							
	The in in the within of mic 1.7-4. micron ratio both m contro depend group.	cidence of mid dose groups of the normal ra- ronucleated poly 9). No statis ucleated poly of polychroma- ale and female 1 value in al- ently indicat	cronucleat with o-chl ange of th olychromat tically si chromatic tic erythr e animals l dose gro ing slight	ed polyconobenzy orobenzy ic eryth gnifican erythroco cocytes f differed bups, but toxicit	chromatic e yl chloride ive control hrocytes pe nt increase cytes was c to total er d less thar c decrease cy in the h	erythrocyte e (OCBC) wa groups (r er 2000 ce e in observed. 7 cythrocytes n 20 % from d dose nighest dos	≥s as nean lls: The s in n the se		
	From t substa erythr in viv	he results, in ntial increase ocytes and is o under the co	t was conc e in micro not clast onditions	luded th nucleate ogenic : describe	hat OCBC di ed polychro in the micr ed in this	d not caus omatic conucleus t study.	se a test		
	Table ======	1.Results ====================================							
	Sex	Dose (mg/kg bw)	Poly/ animal counted	Poly/ Ery Mean	Poly with MN Mean	Poly with MN Mean [%]			
	male male male male	0-control 50 150 500	2000 2000 2000 2000 2000	0.47 0.54 0.51 0.43	3.0 4.0 3.2 2.8	0.15 0.20 0.16 0.14			

OECD SIDS			BENZ	<u>ZENE, 1-CHI</u>	LORO-2-(0	CHLOROMETH	<u>YL)-</u>
5. TOXICITY						ID: 611-1	9-8
						DATE: 25.11.2	.004
	male	40-Endox	an 2000	0.46	30.8*	1.54	
	female	0-contro	1 2000	0.49	3.0	0.15	
	female	50	2000	0.50	3.0	0.15	
	female	150	2000	0.50	3.2	0.16	
	female	500	2000	0.41	3.2	0.16	
	female	40-Endox	an 2000 	0.40	22.8*	1.14	
	*= siar	ificantly	different	from contr	 _l (n<0 ()5)	
Test condition: The test substance was administered twice at an in 24 hours oral to the test animals at doses of 50, 500 mg/kg bw. The vehicle, sesame oil, was admini- the same way to the negative control groups. The included a concurrent positive control using Endo which was administered once orally at a dose of 4 The animals were examined regularly for mortality clinical signs of toxicity. Experimental design i summarized in table 2.						an interval of 50, 150 and ainistered in The study Endoxan R, of 40 mg/kg bw Lity and gn is	
	Table 2	-Experime:	ntal design ========	:=============			
	Group D)ose mg/kg bw)	Vol. (ml/kg bw)	Number of and sex	animals	Killing time (hours p.a.)	
	1 0)	10	5 males/5	females	24	
	2 5	0	10	5 males/5	females	24	
	3 1	.50	10	5 males/5	females	24	
	4 5	00	10	5 males/5	females	24	
	5* 4	0	10	5 males/5	females	24	
	6** 5	500	10	3 males/3	females	24	
Reliability: Flag: 25-NOV-2004	*= posi dissolv **= rep hours p (1) va OECD Gu Critica	tive cont red in dis placement o .a.= hour lid witho ideline s il study fo	rol: Endoxa tilled wate group s after adm ut restrict tudy or SIDS end	n R contai r inistratio ion lpoint	ning cyc] n	Lophosphamide,	12)
5.7 Carcinogenici -	ty						
5.8.1 Toxicity to	Fertili	ty					
Species:		rat	_				
Sex:		male/fe	male				
Strain:		Sprague	-Dawley				
Exposure Period:	ration:	gavage male: 1 female:	4 days befo 14 days be	ore mating	and there	eafter 31 days, 3 of lactation	,
Frequency of trea	tment:	daily	_1 0010 00	mactin	, co day		
Premating Exposur	e Period	1					
male:		14 days					
female:		14 days		_			
Duration of test: Doses:		male: t 2, 10,	o day 45 fe 50 mg/kg/da	emale: to d Y	ay 3 of 1	Lactation	
OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-						
--	---						
5. TOXICITY	ID: 611-19-8						
	DATE: 25.11.2004						
Control Group: NOAEL Parental: NOAEL F1 Offsprir	other:yes, 0.1% Tween 80 solution was gavaged > 50 mg/kg bw ng: > 50 mg/kg bw						
Method:	other:OECD Guideline 422, "Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test"						
Year:	1999						
Test substance:	yes as prescribed by 1.1 - 1.4						
Result:	Test substance had no effects in reproductive parameters such as the mating index, the fertility index, number of corpora lutea or implantations, the implantation index, the delivery index, the gestation index, gestation length, parturition or maternal behavior. On examination of neonates, there were no significant differences in number of offspring or live offspring, the sex ratio, the live birth index, the viability index or body weight. No abnormal findings related to the test substance were found for external features, clinical signs or necropsy of the offspring.						
Test condition:	Nine-week-old male and female rats were used. Twelve males and twelve females were used for each dose levels, 2, 10, and 50 mg/kg/day. Test substance was administrated by gavage. Males were dosed for 14 days before mating; during the mating period and up to the day before scheduled kill (total 45 days). Females were dosed for 14 days before mating, during the mating period, during the gestation and four days after delivery (total 41-48 days). For mating, one male to one female mating was used, and the female was placed with the same male until pregnancy occurs or 7 days have elapsed. Day 0 of pregnancy was defined as the day a vaginal plug or sperm was found. The rats were weighed at Day 3, 7 and 14, and weekly thereafter. During the gestation, females were weighed at Day 0, 7, 14 and 20 of gestation, and Day 0 and 4 of lactation. The body weights of the live pups were also recorded. Gestated females were delivered and lactated through Day4 of lactation. At the termination of the experiment, all rats were sacrificed and necropsied. All pups were also sacrificed and necropsied.						
Test substance:	-Source: Ihara Chemical Industry Co., LtdLot						
Reliability:	No.T/030-Purity: 99.65% (1) valid without restriction						
Flag:	Critical study for SIDS endpoint						
29-JAN-2004	(28)						
5.8.2 Development	al Toxicity/Teratogenicity						
5.8.3 Toxicity to -	Reproduction, Other Studies						
5.9 Specific Inve	estigations						
_							

5.10 Exposure Exp	perience
_	
5.11 Additional F	Remarks
Type:	other:RESPIRATORY TRACT IRRITATION
Remark:	Type:sensory irritation Species:mouse, Swiss-Webster, male and female Concentration:11.9, 24.2, 82.3 and 179.5 mg/m3 Exposure:vapour inhalation Exposure time:30 min Number of animals:4 animals per dose and sex, at least 4 doses Result:RD50, male: 84.9 mg/m3. RD50, female: 69.4 mg/m3. Method:Sensory irritation response was determined by measurement of respiratory rates using body plethysmography. Additionally inspiratory and expiratory airflow and tidal volume was measured. Year:1993 GLP:not stated Test substance:other TS- Source: Aldrich- Purity: >99% Result:RD50, male: 85 mg/m3. RD50, female: 69 mg/m3. The
Reliability:	<pre>potency for sensory irritation is defined as concentration necessary to reduce respiratory rate in mice by 50% (RD50). The exposure resulted in a characteristic change to the normal breathing pattern consisting of a lengthening of stage I of expiration. (2) valid with restrictions</pre>
Flag:	Study report which meets basic scientific principles. Critical study for SIDS endpoint
30-JAN-2004	(37)
Type:	other:RESPIRATORY TRACT IRRITATION
Remark: Reliability:	Type:sensory irritation Species:mouse, Swiss-Webster, male Concentration:not stated Exposure:vapour inhalation Exposure time:10 min Number of animals:4 animals per dose, at least 4 doses Result:RD50: 4.9 ppm Method:Sensory irritation response was determined by measurement of respiratory rates using body plethysmography. Year:1992 GLP:not stated Test substance:other TS- Source: Monsdanto Co Purity: 99% Result:RD50: 4.9 ppm corresponding to about 32.9 mg/m3. The potency for sensory irritation is defined as concentration necessary to reduce respiratory rate in mice by 50% (RD50). (2) valid with restrictions Study report which meets basic scientific principles.
29-JAN-2004	(13)
Type:	other:RESPIRATORY TRACT IRRITATION

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
5. TOXICITY	ID: 611-19-8
	DATE: 25.11.2004

Remark:	Type:sensory irritation
	Species:mouse
	Concentration:not stated
	Exposure:vapour inhalation
	Exposure time:not stated
	Number of animals:not stated
	Result:log RD50: 0.756 (ppm)
	Method:not stated
	Year:1998
	GLP:not stated
	Test substance:other TS
	Result:log RD50: 0.756 corresponding to 5.7 ppm
	corresponding to about 38.3 mg/m3. The potency for sensory irritation is defined as concentration necessary to reduce respiratory rate in mice by 50% (RD50).
Reliability:	(4) not assignable Only secondary literature

29-JAN-2004

(1)

OECD SIDS 6. REFERENCES

- Alarie, Y., Schaper, M., Nielsen, G. D. and Abraham, M. H. (1998) Structure-activity relationships of volatile organic chemicals as sensory irritants, Arch. Toxicol. 72, 125-140.
- (2) Chemicals Evaluation and Research Institute (CERI), Japan (1998). Unpublished report
- (3) Chemicals Evaluation and Research Institute (CERI), Japan (1999a). Unpublished report
- (4) Chemicals Evaluation and Research Institute (CERI), Japan (1999b). Unpublished report
- (5) Chemicals Evaluation and Research Institute (CERI), Japan (2003). Unpublished data.
- (6) Clariant GmbH, (1983) Unpublished testing report titled "A Mutagenicity Screening of Ortho-Chlorbenzylchlorid D, in Bacteria (Ames Test)", Report No.: 83.0517, 23.09.1983, conducted by HOECHST AG, Pharma Research, Exp. Pathology.
- (7) Clariant GmbH, (1985) Unpublished testing report titled "o-Chlorbenzylchlorid D, Augenreizung am Kaninchen", Report No.: 85.0678, 15.07.1985, conducted by HOECHST AG, Pharma Forschung Toxikologie.
- (8) Clariant GmbH, (1985) Unpublished testing report titled "o-Chlorbenzylchlorid D, Prufung auf Hautreizung am Kaninchen", Report No.: 85.0677, 14.07.1985, conducted by HOECHST AG, Pharma Forschung Toxikologie.
- (9) Clariant GmbH, (1987) Unpublished testing report titled
 "o-Chlorbenzylchlorid D, Akute Aerosolinhalation an der
 mannlichen und weiblichen SPF-Wistar Ratte, 4 Stunden LC50", Report No.: 87.1003, 14.09.1987, conducted by HOECHST
 AG, Pharma Forschung Toxikologie und Pathologie.
- (10) Clariant GmbH, (1988) Unpublished testing report titled "o-Chlorbenzylchlorid D, Prufung der akuten Toxizitat am Fisch Zebrabarbling (Brachydanio rerio) uber 96 Stunden", Report No.: 88.1592, 7.10.1988, conducted by HOECHST AG, Pharma Forschung Toxikologie.
- (11) Clariant GmbH, (2003) Unpublished data.
- (12) Clariant GmbH, (2003b) Unpublished testing report titled "o-Chlorobenzyl chloride Mammalian Erythrocyte Micronucleus Test in Male and Female Sprague Dawley Rats", Report No: PT02-0413, 04-Mar-2003, conducted by Aventis Pharma Deutschland GmbH.
- (13) Dudek, B. R., Short, R. D., Brown, M. A. and Roloff, M. V. (1992) Structure-activity relationship of a series of sensory irritants., J. Toxicology and Environmental Health, 37, 511-518.
- (14) Dupont Chem (1992) Initial submission: acute toxicity of benzene, 1-chloro-2-chloromethyl in fathead minnows with cover letter dated 081092, Haskell Laboratory for Toxicology and Industrial Medicine (1979) EPA Doc. ID 88-920009285,

NTIS/OTS 0571039.

- (15) Environmental Agency, Japan (1999a) Unpublished testing report on toxicity of o-chlorobenzyl chloride to Selenastrum capricornutum, Test No. 10041, conducted by Japan Food Research Laboratories.
- (16) Environmental Agency, Japan (1999b) Unpublished testing report on acute immobilization toxicity of o-chlorobenzyl chloride to Daphnia magna, Test No.10042, conducted by Japan Food Research Laboratories.
- (17) Environmental Agency, Japan (1999c) Unpublished testing report on reproduction toxicity of o-chlorobenzyl chloride to Daphnia magna, Test No. 10043, conducted by Japan Food Research Laboratories.
- (18) Environmental Agency, Japan (1999d) Unpublished testing report on acute toxicity of o-chlorobenzyl chloride to Oryzias latipes, Test No.10044, conducted by Japan Food Research Laboratories.
- (19) FMC (2003) FMC CORPORATION, Unpublished data.
- (20) Hammond, P.D., Kirk-Othmer Encyclopedia, 3 (1949) 840.
- (21) Ihara Chemical Industry Co., Ltd. (1992) Unpublished testing report titled "Dermal corrosion study of 2-chlorobenzyl chloride in rabbits.", Study No. 1L335-E, conducted by Mitsubishi-Kasei Institute of Toxicological and Environmental Sciences.
- (22) Ihara Chemical Industry Co., Ltd. (1993a) Unpublished testing report titled "Acute oral toxicity study of o-chlorobenzyl chloride in albino rats.", Study No. WIL-211001, conducted by WIL Reserch Laboratories, Inc.
- (23) Ihara Chemical Industry Co., Ltd. (1993b) Unpublished testing report titled "Acute dermal toxicity study of o-chlorobenzyl chloride in albino rats.", Study No. WIL-211002, conducted by WIL Reserch Laboratories, Inc.
- (24) Ihara Chemical Industry Co., Ltd. (2003) Unpublished additional calculation report by Japan Food Research Laboratories.
- (25) Ihara Chemical Industry Co., Ltd. Unpublished data
- (26) K. Landsteiner and J. Jacobs (1936) Studies on the sensitization of animals with simple chemical compounds. II. Journal of Experimental Medicine, 64, 625-639.
- (27) M. Ikeda, T. Unai and C. Tomizawa (1986) Degradation of the Herbicide Orbencarb in Soils., J. Pesticide Sci., 11, 85-96.
- (28) Ministry of Health and Welfare (1999) Combined repeat dose and reproductive/developmental toxicity screening test of 1-chloro-2 (chloromethyl)benzene in rats. Japan Toxicity Testing Reports of Environmental Chemicals, 7, 492-502.

OECD SIDS 6. REFERENCES

- (29) Ministry of Health and Welfare (1999) In vitro chromosomal aberration test of 1-chloro-2 (chloromethyl)benzene on cultured Chinese hamster cells. Japan Toxicity Testing Reports of Environmental Chemicals, 7,509-512.
- (30) Ministry of Health and Welfare (1999) Reverse mutation test of 1-chloro-2 (chloromethyl)benzene on bacteria. Japan Toxicity Testing Reports of Environmental Chemicals, 7,503-508.
- (31) Ministry of Health and Welfare (1999) Single dose oral toxicity test of 1-chloro-2 (chloromethyl)benzene in rats. Japan Toxicity Testing Reports of Environmental Chemicals, 7, 489-491.
- (32) Monsanto Company (1992) Initial submission: letter from Monsanto Co submitting four toxicity studies with o-chlorobenzyl chloride in rats and rabbits, EPA Doc# 88-920007143, NTIS/OTS0545482.
- (33) Occidental Chemical Corporation (1990) Orthochlorobenzylchloride 28-day inhalation toxicity study in rats with cover letter, EPA Doc# 88-900000192, NTIS/OTS0526421.
- (34) Occidental Chemical Corporation (1990) Letter from Occidental Chem Corp to US EPA submitting studies on orthochlorobenzylchloride with attachments, EPA Doc# 89-900000417, NTIS/OTS0526421-1
- (35) Tessenderlo Chemie S. A. (2003) Unpublished data.
- (36) The nine volume 2nd edition of the CRC Handbook of Data on Organic Compounds
- (37) Vijayaraghavan, R., Schaper, M., Thompson, R., Stock, M. F. and Alarie, Y. (1993) Characteristic modifications of the breathing pattern of mice to evaluyte the effects of airborne chemicals on the respiratory tract, Arch. Toxicol. 67 (7), 478-490.
- (38) Wellens H. (1990) Z.Wasser-Abwasser-Forsch. 23, 85-98

Appendix 1 The parameters used in the fugacity calculation (Level III).

o-Chlorobenzyl chloride

Physicochemical parameters used

Molecula	ar weight	161.03	Measured
Melting po	oint [deg C]	-50	Measured
Vapour pre	essure [Pa]	2.04E+01	Estimated
Water solu	bility [g/m³]	100	Measured
log	Kow	3.32	Measured
	in air	103	Estimated
half life [h]	in water	33	Measured
	in soil	240,000	Default
	in sediment		Default

Temp. [deg	25
C]	25

Environmental parameters used

						Lipid		
		Volume	Depth	Area	Organic	content	Density	Residence
		[m ³]	[m]	[m ²]	carbon [-]	[-]	[kg/m ³]	time [h]
	Air	1.0E+13					1.2	100
Bulk air	Particles	2.0E+03						
	Total	1.0E+13	1,000	1E+10				
	Water	2.0E+10					1,000	1,000
Bulk water	Particles	1.0E+06			0.04		1,500	
	Fish	2.0E+05				0.05	1,000	
	Total	2.0E+10	10	2E+09				
	Air	3.2E+08					1.2	
Bulk soil	Water	4.8E+08					1,000	
	Solid	8.0E+08			0.04		2,400	
	Total	1.6E+09	0.2	8E+09				
Bulk	Water	8.0E+07					1,000	
sediment	Solid	2.0E+07			0.06		2,400	50,000
	Total	1.0E+08	0.05	2E+09				

Intermedia Transport Parameters

	[m/h]		[m/h]
Air side air-water MTC	5	Soil air boundary layer MTC	5
Water side air water MTC	0.05	Sediment-water MTC	1E-04
Rain rate	1E-04	Sediment deposition	5E-07
Aerosol deposition	6E-10	Sediment resuspension	2E-07
Soil air phase diffusion MTC	0.02	Soil water runoff	5E-05

OECD SIDS	BENZENE, 1-CHLORO-2-(CHLOROMETHYL)-
APPENDIX I	ID: 611-19-8
	DATE: 25.11.2004

Soil water phase diffusion MTC	1E-05 Soil solid runoff	1E-08
--------------------------------	-------------------------	-------

Appendix 1 (continued) Result of the calculation of the theoretical distribution o-Chlorobenzyl chloride

Scenario 1

	Emission	Conc	Amount	Percent	Transformati	ion rate [ka/b]
	[ka/h]	[a/m ³]	[ka]	[%]	Reaction	Advection
Air	1,000	5.8.E-06	5.8.E+04	64.1	3.9E+02	5.8.E+02
Water	0	5.1.E-05	1.0.E+03	1.1	2.1E+01	1.0.E+00
Soil	0	2.0.E-02	3.2.E+04	34.6	9.1E-02	
Sediment		1.1.E-03	1.1.E+02	0.1	1.0E-04	2.2.E-03
		Total amour	119.1.E+04			

Scenario 2

	Emission	_				
	rate	Conc.	Amount	Percent	Transfomati	on rate [kg/h]
	[kg/h]	[g/m³]	[kg]	[%]	reaction	Advection
Air	0	6.7.E-07	6.7.E+03	12.2	4.5.E+01	6.7.E+01
Water	1,000	2.0.E-03	4.0.E+04	73.5	8.5.E+02	4.0.E+01
Soil	0	2.3.E-03	3.6.E+03	6.6	1.0.E-02	
Sediment		4.3.E-02	4.3.E+03	7.7	4.1.E-03	8.5.E-02
		Total amour	nt5.5.E+04			

Scenario 3

	Emission					
	rate	Conc.	Amount	Percent	Transfomation rate [kg/h]	
	[kg/h]	[g/m ³]	[kg]	[%]	Reaction	Advection
Air	0	4.7.E-06	4.7.E+04	0.2	3.2.E+02	4.7.E+02
Water	0	3.3.E-04	6.7.E+03	0.0	1.4.E+02	6.7.E+00
Soil	1,000	1.5.E+01	2.4.E+07	99.8	6.9.E+01	
Sediment		7.0.E-03	7.0.E+02	0.0	6.8.E-04	1.4.E-02
		Total amount	t2.4.E+07			

Scenario 4

	Emission						
	rate	Conc.	Amount	Percent	Transfomati	Transfomation rate [kg/h]	
	[kg/h]	[g/m ³]	[kg]	[%]	Reaction	Advection	
Air	600	4.2.E-06	4.2.E+04	1.7	2.8.E+02	4.2.E+02	
Water	300	6.7.E-04	1.3.E+04	0.5	2.8.E+02	1.3.E+01	
Soil	100	1.5.E+00	2.4.E+06	97.7	6.9.E+00		
Sediment		1.4.E-02	1.4.E+03	0.1	1.4.E-03	2.8.E-02	
·		Total amou	Int2.5.E+06			·	