FOREWORD

INTRODUCTION

Cyanuric chloride

CAS N°: 108-77-0

SIDS Initial Assessment Report

For

SIAM 13

Bern, Switzerland, 6-9 November 2001

- 1. Chemical Name: Cyanuric chloride
- **2. CAS Number:** 108-77-0
- 3. Sponsor Country:

Switzerland National SIDS Contact Point in Sponsor Country: Dr Georg Karlaganis Swiss Agency for the Environment, Forests and Landscape CH – 3003 Bern Tel : +41 31 322 69 55 Fax : +41 31 324 79 78 E-mail : georg.karlaganis@buwal.admin.ch ICCA (Syngenta Crop Protection Ltd)

- 4. Shared Partnership with:
- 5. Roles/Responsibilities of the Partners:
- Name of industry sponsor /consortium
- Process used
- 6. Sponsorship History
- How was the chemical or category brought into the OECD HPV Chemicals Programme ?
- 7. Review Process Prior to the SIAM:
- 8. Quality check process:
- 9. Date of Submission: 25 September 2001
- **10. Date of last Update:**
- 11. Comments:

No testing ☑ Testing

SIDS INITIAL ASSESSMENT PROFILE

CAS No.	108-77-0	
Chemical Name	Cyanuric chloride	
Structural Formula		
RECOMMENDATIONS		

The chemical is currently of low priority for further work.

SUMMARY CONCLUSIONS OF THE SIAR

Human Health

Acute toxicity of cyanuric chloride showed an oral LD50 of \sim 320 mg/kg bw and a dermal LD50 of \geq 2000 mg/kg bw. The high acute inhalation toxicity of cyanuric chloride (LC50 170 mg/m³) is likely to be secondary to its highly irritating/caustic properties. The compound is highly irritating to the skin, the eyes and the respiratory tract (RD50 5.9 mg/m³). In humans exposure to cyanuric chloride causes irritation and caustic effects to the skin, eyes and respiratory tract. Cyanuric chloride is sensitizing. Asthma and contact dermatitis are also reported in humans.

In oral repeated dose studies cyanuric chloride induced body weight loss and stomach erosion and ulceration. In a 21-day dermal study decreased body weight was reported at 150 and 500 mg/kg bw. Severe dermal irritation was seen at all dose levels tested. Since it can not be excluded that the effects on body weight were secondary to stress by the treatment, no systemic NOAEL was derived. The LOAEL for local effects is 50 mg/kg bw. From a 90-day inhalation study a NOAEC of 0.25 mg/m³ (the highest concentration tested) for systemic toxicity was derived. The NOAEC for local effects in the respiratory tract of rats displaying intercurrent respiratory infection was found to be 0.05 mg/m³. The effects included inflammation in the nose and lungs.

For developmental toxicity an oral teratogenicity study is available. The NOAEL for maternal toxicity is 25 mg/kg bw, based on a decreased body weight gain. For developmental effects a NOAEL of 25 mg/kg bw was derived, based on increased post-implantation loss and a decreased number of fetuses at 50 mg/kg bw. In the 90-day inhalation toxicity study no effects on the gonads were found and therefore no studies of any effects of cyanuric chloride on fertility are required under SIDS.

Cyanuric chloride is found to be not mutagenic in the Ames test and the mouse micronucleus test.

Environment

Released cyanuric chloride will end up in surface water for ~99% (EQC-model). In water cyanuric chloride hydrolyses quickly to cyanuric acid via the intermediates 2,4-dichloro-6-hydroxy-s-triazine and 2-chloro-4,6-dihydroxy-s-triazine ($DT_{50} < 5$ hours). The DT_{50} for the disappearance of cyanuric chloride in aqueous medium is < 5 minutes.

Cyanuric chloride has a low vapour pressure and logKow of 1.7. Due to its low solubility (440 mg/L) and its hydrolysis properties, the actual concentration of cyanuric chloride in water is very low. For the biodegradation process of cyanuric chloride the hydrolysis products are much more relevant than cyanuric chloride itself. Studies on these hydrolysis products showed very limited biodegradability of these compounds under standard test

conditions.

The toxicity of cyanuric chloride to aquatic organisms can not be determined in view of the hydrolytic properties of the substance. For the hydrolysis product 2-chloro-4,6-dihydroxy-s-triazine the LC50 in fish and the EC50 in daphnia were >2000 mg/L. For cyanuric acid the fish LC50 was >1000 mg/L and the daphnia EC50 was >1800 mg/L. No effects of cyanuric acid on algae were found in saturated medium. Algal toxicity was investigated for isocyanuric acid (72-h LC50 620 mg/L, NOEC 62.5 mg/L). No bioaccumulation in carps was found in a test with cyanuric acid.

Exposure

Yearly more than 100,000 tonnes of cyanuric chloride are produced. The compound is used exclusively as an intermediate in the production of pesticides (herbicides), optical brighteners, dyes and plastic additives.

Due to the fact that cyanuric chloride is almost exclusively used in closed systems, worker exposure is expected to be low or negligible. During production cyanuric chloride may be released to the environment via the waste water. The annual release into the atmosphere was 268 kg/year (1990/1991), Consumer exposure is considered not relevant in view of the use as an intermediate.

NATURE OF FURTHER WORK RECOMMENDED

No further work recommended.

SIDS Initial Assessment Report

1 IDENTITY

1.1 Identification of the Substance

CAS Number:	108-77-0
IUPAC Name:	2,4,6-trichloro-1,3,5-triazine
Molecular Formula:	$C_3Cl_3N_3$
Structural Formula:	$\begin{array}{c c} Cl & & \\ $

Molecular Weight:	184.41
Synonyms:	Cyanuric chloride, Chlorotriazine, cyanuric acid chloride, s-triazine
	trichloride, 2,4,6-trichlorotriazine

1.2 Purity/Impurities/Additives

Purity: 99-99.5% w/w

1.3 Physico-Chemical properties

Property	Value	Reference
Physical state	Solid	
Melting point	145-146°C	1, 22
Boiling point	190-198°C (at 760 mm Hg)	3, 21, 83
Relative density	1.32 (20°C)	
Vapour pressure	1.2 Pa 2.5 Pa (20°C) 267 Pa (70°C)	17 45
Water solubility	440 mg/L (20°C)	7, 17
Partition coefficient n- octanol/water (log value)	0.51 >1.7 1.73	6 50 Epiwin
Henry's law constant	0.04 Pa.m ³ /mol	17
Flash point	> 190°C	106
Ignition temp.	> 650 °C	106

Table 1Summary of physico-chemical properties

The data presented in this section came from ref. 71, 72 unless indicated to be from other sources.

For the logKow three values are available. The lowest value comes from a publication using the CLOGP-program (ref. 6). For cyanuric chloride, however, the way of derivation of the logKow value was not clear. In a study using HPLC retention time as a measurement for logKow, the value for cyanuric chloride was above the logKow for acetophenone (i.e. 1.7). No exact value for cyanuric chloride could be derived from this study, since only extrapolation would have been possible (ref. 50).

Based on the above mentioned the value calculated with the Epiwin model , i.e. 1.73 was considered to be most reliable (Appendix A).

Calculations with the Epiwin model on the hydrolysis products of cyanuric chloride (see section on environmental fate) 2-chloro-4,6-dihydroxy-1,3,5-s-triazine and cyanuric acid gave the following values for water solubility and log Kow (values not included in the summaries):

	Log Kow	Water solubility (g/L)
2-chloro-4,6-dihydroxy-1,3,5-s-triazine	0.98	11.2
cyanuric acid	0.61	288

2 GENERAL INFORMATION ON EXPOSURE

Yearly more than 100000 tonnes of cyanuric chloride are produced. The compound is used exclusively as an intermediate in the production of pesticides (herbicides), optical brighteners, dyes and plastic additives (ref.100).

From old Russian reports it was deduced that cyanuric chloride was present in the air of chemical premises at a maximum measured concentration of 0.1 mg/m³. The substance could be released during loading and sampling (ref. 42, 43, 45 and 70). In a more recent publication (ref. 79) measured concentrations were $7.09 \pm 9.22 \ \mu g/m^3$ during filling , $4.43 \pm 2.72 \ \mu g/m^3$ (exhaust air concentration) and $92.76 \pm 147.52 \ \mu g/m^3$ (concentration measured on workers).

In an unpublished letter from a producer it is reported that a peak concentration of 3.2 mg/m^3 was measured in exhaust air released from a production site (ref. 16). This value corresponds to total dust concentration. However, the amount of cyanuric chloride was not determined.

Although at present cyanuric chloride will be used mostly in closed (automated) systems, it can not be excluded that worker exposure (also non-accidental) may occur in less developed countries.

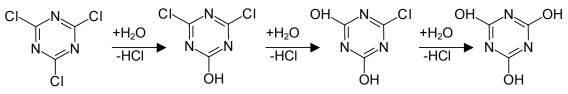
Consumer exposure is considered to be not relevant for cyanuric chloride.

It can not be excluded that during production and use of cyanuric chloride some environmental release will take place. During chemical production the distribution can be assessed with several models, i.e. the USES 3.0 model (distribution in waste water treatment plant) and the EQC-model (Equilibrium Criterion model). Both models indicate that the substance will predominantly end up in the aquatic compartment either directly or via passage of a biological waste water treatment plant and hydrolyse rapidly (ref. 106)(see appendix B1 and C1), using a DT_{50} of 5 minutes (ref. 12)

From the EQC model it is deducted that 98.9% will up in surface water (appendix C1). Since the substance will hydrolyse rapidly, the final product will be cyanuric acid. The overall hydrolysis rate will depend on the third hydrolysis step (see below). The concentration calculated with this model in surface water is (7 ng/L) lower than calculated with USES 3.0 (0.04 mg/L). This is related to the use of other default input parameters (see appendices B1 and C1).

From the USES 3.0 it can be deduced that 98% of cyanuric chloride will be hydrolysed/degraded in the waste water treatment plant and only 1.7% will be emitted. The detectable hydrolyse products, that will end up in surface water, will be 2-chloro-4,6-dihydroxy-s-triazine or cyanuric acid. With the data available it is considered that only 4.7% of 2-chloro-4,6-dihydroxy-s-triazine (using cyanuric chloride data) will be degraded due to abiotic degradation in the waste water treatment plant, which is due to the fact that the $DT_{50} = 4$ days (ref. 11), as the first and second hydrolysis step will take place more rapidly. When another DT_{50} is chosen i.e. DT_{50} is 5 hours (ref. 12.) the degradation in the waste water treatment plant is default 24 hours, the hydrolysis of the hydrolysis product(s) is/are of importance. It can be concluded that the annual average concentration between 1.0 and 2.0 mg/l (appendix C2) in surface water for 2-chloro-4,6-dihydroxy-s-triazine and below the 0.0424 mg/l for cyanuric acid. This fact is confirmed by the BUA report which indicates that appearance of cyanuric chloride in the hydrosphere is not expected (ref. 70). The difference between the actual values in the BUA report and the values presented here can be explained by the high amount of cyanuric acid used as default data by USES3.0 (50 kg/day for 300 days/year)

Release to atmosphere was reported to be 268 kg/year in 1990/91 (German data).


2.1 Environmental Exposure and Fate

The atmospheric oxidation potential (AOP) predicted from the Epiwin program indicates that cyanuric chloride is not photolytically reactive (degradation half-life of > 15 year). A summary of the Epiwin calculations is attached as Appendix A.

Cyanuric chloride reacts readily with nucleophilic substances like ammonia, diethylamine, aniline, methanol and water (ref. 1).

Cyanuric chloride hydrolyses quickly to cyanuric acid in water via formation of 2,4-dichloro-6-hydroxy-s-triazine and 2-chloro-4,6-dihydroxy-s-triazine (ref. 12, 15, 16, see fig. 1).

Fig. 1 Hydrolysis of cyanuric chloride

Cyanuric chloride 2,4-dichloro-6-hydroxy-s-triazine 2-chloro-4,6-dihydroxy-s-triazine cyanuric acid

The reactivity of cyanuric chloride is comparable to that of an acid chloride. The hydrolysis of cyanuric chloride takes place by a step-wise substitution of all three chlorine atoms by hydroxyl groups. In the 3-step reaction, the first intermediate formed is 2,4-dichloro-6-hydroxy-1,3,5-triazine which further reacts to 2-chloro-4,6-dihydroxy-1,3,5-triazine. The final product of the subsequent reaction is cyanuric acid, which is stabilised by tautomerism (tautomer: isocyanuric acid). Compared with its hydrolytic products, cyanuric chloride is relatively poorly soluble in water. Therefore, precise and dependable statements on the hydrolytic degradation are difficult to make.

The nucleophilic reaction in all partial steps can be described by a first-order reaction rate equation. Reaction rate constants of the single partial reactions differed by one to two orders of magnitude, i.e. at the time of the concentration maximum of the respective hydrolytic product, its predecessor was already extensively degraded. The half-lives of cyanuric chloride and its hydrolysis products depend on pH value, the temperature and partially also on the type of buffer system used. The lowest reaction rate was calculated for a pH value of about 5.5. The reaction rate constant rises

sharply towards higher as well as lower pH values, whereby the reaction of cyanuric chloride to cyanuric acid is faster in acidic solution than in alkaline solution. The relative decrease of the rate of hydrolysis with increasing basicity compared to increasing acidity is caused by the fact that although k1 (cyanuric chloride to 2,4-dichloro-6-hydroxy-1,3,5-triazine) increases, k2 (2,4-dichloro-6-hydroxy-1,3,5-triazine) and k3 (2-chloro-4,6-dihydroxy-1,3,5-triazine) and k3 (2-chloro-4,6-dihydroxy-1,3,5-triazine to cyanuric acid) are nonetheless lower than the corresponding values in the acidic range.

The reason for the slower reaction rate in neutral or alkaline media than in an acidic medium lies in the dissociation of the hydroxyl groups and formation of mono- or di-sodium salts of the hydroxychlorotriazines. The reactivity of the remaining chlorine atom(s) on the triazine ring is reduced upon formation of these salts, which leads to a stabilization of the hydrolytic intermediate products in form of its anions under neutral or alkaline conditions. In fact, under alkaline conditions, the hydrolysis can almost come to a standstill at the step of 2-chloro-4,6-dihydroxy-1,3,5-triazine (see below).

Measured DT_{50} -values for cyanuric chloride (based on hydrolysis to cyanuric acid) range from 1 hour (ref. 13) to 1-2 days (ref. 11) in different studies without specification of the pH.

In a particular hydrolysis study cyanuric chloride was incubated at different pH values and at different temperatures. The DT_{50} for the disappearance of cyanuric chloride was calculated to be <5 minutes at pH 2-12 and temperature 25-40 °C. The calculation of the DT_{50} for the transformation to the acid were based on the rate limiting step (conversion of 2-chloro-4,6-dihydroxy-s-triazine to cyanuric acid). The DT_{50} is <5 hours at pH 2-7 and temperature 25-40°C (at pH 12 at 40°C a DT_{50} of 2.5 days was found)(ref. 12). In this study little information on the analytical method was available.

The same trend was reported in another study. The DT_{50} for hydrolysis of cyanuric chloride decreased with increasing temperature (at pH 1 and 3) from 50 minutes (at 0°C) to 4.5 minutes (at 25°C). At increasing pH values decreasing DT_{50} values were found (at pH 3: DT_{50} 30 min.; at pH 9: DT_{50} 3.7 min.) for cyanuric chloride. These results confirm the abovementioned finding that under alkaline conditions k1 increases in comparison with acidic conditions.

The values reported were not determined under sterile conditions and therefore it is thought that other processes apart from hydrolysis may have been involved in the degradation of cyanuric chloride (ref.7).

The DT_{50} for the disappearance of 2,4-dichloro-6-hydroxy-s-triazine was assessed in a study at pH 10 and 50°C in toluene/water (50/50) for approximately 3 hours. The test solution, however, was not buffered. The DT_{50} calculated by the reviewer was 1.5 days (extrapolation from first order regression). The result is considered to be less reliable (ref. 10).

As expected, increasing the temperature will lead to a faster hydrolysis (ref. 7, 12, 13, 14)

Adsorption of cyanuric chloride to soil is expected to be very low based on the log Pow (ref. 18).

Furthermore the substance may be hydrolysed in the aqueous phase of the soil. Information on the K_{oc} (solid/liquid partition coefficient) is not available. The Epiwin model predicts a K_{oc} of 124.4, but this value is considered to be less reliable since it will be highly pH dependent.

In soil (clay loam) cyanuric acid persisted with a DT_{50} of 183 days (at 20°C). This DT_{50} value was based on nitrate measurements only (ref. 55).

In a test with radio-labelled cyanuric chloride a DT_{50} of 8.3 days was found in a sandy loam. This value was only based on the amount of ${}^{14}CO_2$ recovered (ref. 54). In both tests transformation to

other degradation products was not taken into consideration. Therefore the DT_{50} calculated is considered a worst case value. Although both studies were poorly reported, measurement of nitrate is considered a less reliable method in the determination of disappearance of cyanuric chloride from soil.

The biodegradation of cyanuric chloride as such cannot directly be determined, because its water solubility is low (0.44 g/L at 20° C) and the compound hydrolyses very quickly to various degradation products. Therefore, the parent compound can only be measured together with its degradation products, or degradation products as such can be tested.

2-Chloro-4,6-dihydroxy-s-triazine was found to be not readily biodegradable in a modified OECD screening test, most probably under aerobic conditions (ref. 48). In this test, however, no toxicity controls were included and therefore the lack of biodegradability may have been caused by toxicity towards the micro-organisms of the inoculum. In a Zahn Wellens test cyanuric acid was found to be not inherently biodegradable (ref. 67). Only a summary of the test was available.

Tests were performed with domestic sewage sludge both under anaerobic and (partially) aerobic conditions to establish the biodegradation of cyanuric acid. The compound (radio-labelled) was found to degrade completely within 96 hours under anaerobic conditions. When incubated aerobically for 48 hours at 23°C 95-98% of the added ¹⁴C evolved as CO₂. In a separate test the biodegradability of cyanuric acid appeared to increase under anaerobic conditions (ref. 52). Cyanuric acid (1600 mg/L) was degraded completely (100%) by pre-adapted micro-organisms within 1 week after 11 weeks. In the effluent the main degradation product was ammonium (ref. 107). Except for the first two tests (ref. 48 and 67), none of the tests was performed in accordance with current OECD-guidelines.

Conclusion:

Cyanuric chloride is considered to be photolytically stable. The DT_{50} for hydrolysis (transformation to the acid) is established to be <5 hours, while the DT_{50} for disappearance of cyanuric chloride is <5 minutes (ref. 12). From the EQC model it can be deduced that >98 % of cyanuric chloride will end up in the water phase.

No studies on biodegradability of cyanuric chloride were available. Due to the low solubility and its hydrolysis properties, the actual concentration of cyanuric chloride in water is very low. For the biodegradation process of cyanuric chloride the hydrolysis products are much more relevant than cyanuric chloride itself. Studies on hydrolysis products showed very limited biodegradability of these compounds under standard test conditions (ref. 48 and 67).

3 HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

3.1.1 Acute Toxicity

Oral

Cyanuric chloride was tested in an acute oral test in rats in peanut oil. At and above 1000 mg/kg piloerection, diarrhoea and ataxia were noted together with decreased muscle tone and loss of rightening reflex in females only. Macroscopically dark areas in the stomach and erosion of the stomach were found. The oral LD_{50} is 1143 mg/kg bw (ref. 23). In a separate test (vehicle polyethylene glycol) an LD_{50} of 315 mg/kg bw was reported for males and 327 mg/kg bw for females (ref. 24). Dose related findings included hypokinesia, somnolency, decreased muscle tone,

loss of reflexes, piloerection, accelerated respiration and decreased body temperature. Macroscopic findings were mainly related to stomach lesions (increasing in severity with higher doses).

In other studies LD_{50} -values between 208 and 1170 mg/kg bw were reported for rats (ref. 92, 94, 96). In one study (ref. 5) an LD_{50} of 166 mg/kg bw was reported for rats. This value is considered not reliable, since the method for calculation (logit) is not appropriate for response values of 0% mortality and 100% mortality. Recalculation of the LD_{50} by the reviewer gave values of 200 mg/kg and above (ref. 5). For mice a range of 350-1000 mg/kg bw was presented. Ranges for the lowest lethal dose in rabbits and dogs were 340-380 and 500-1000 mg/kg bw, respectively (ref.81).

Dermal

Two dermal tests (ref. 28 and 29) were available with cyanuric chloride. In rabbits a LD_{50} of >2000 mg/kg bw was found. The test was performed under the corresponding OECD guideline (without indication of the size of the application area)). In rats only males were tested. The effects were limited to the skin. At 5000 mg/kg bw 2 of 5 animals died (ref. 28).

Inhalation

In a well documented inhalation study (ref. 78), it was demonstrated that particulate cyanuric chloride at concentrations of up to about 300 mg/m3 air (sum of gaseous and particulate cyanuric chloride) is to be considered thermodynamically unstable; i.e. smaller particles evaporate until the vapour saturation is attained. Air enriched with cyanuric chloride dust thus always contains solid and gaseous fractions. On the other hand, one must expect solid particulate fractions in the exposure atmosphere for gaseous cyanuric chloride to desublimate. In this study, a LD₅₀ of 170 mg/m³ (vapour and respirable dust) was established (201 mg/m³ for males and 150 mg/m³ for females) (ref. 78). Animals a concentration related increase of showed heavy and slow breathing, shortness of breath, nasal discharge, reduced motility, poor coat condition, piloerection, gasping, bloody and crusted nose, periorbital crusts, cyanosis and cachexia, abnormal gait and diminished reflexes. Macroscopically bloated, oedematous and discoloured lungs with bronchia filled with slime, hydrothorax, red staining of the nose, pale liver and kidneys, liver lobulated, bloody-slimy contents of gastrointestinal tract and red staining of mucosa of small intestine were reported. The high acute inhalation toxicity of cyanuric chloride may be secondary to its highly irritating/caustic properties.

The LC₅₀ after inhalation exposure during 2 hours for mice was 10 mg/m³ (ref. 68). In other studies LC₅₀ values between 18.5 and 180 mg/m³ were reported for exposure of rats during 4-hours to the vapour or to aerosols of cyanuric chloride (ref.85, 86, 87, 88, 89, 90, 91).

Conclusion

The great variance in the acute oral LD_{50} values may be explained by the dependency of the used vehicles. The oral LD_{50} for cyanuric chloride is 315 mg/kg bw for males and 327 mg/kg bw for females (ref.24).

The dermal LD_{50} for cyanuric chloride is > 2000 mg/kg bw (ref. 28 and 29).

The inhalatory LC_{50} for cyanuric chloride is 170 mg/m³ (ref. 78).

3.1.2 Irritation and sensitisation

In two tests performed with two different strains of rabbits, cyanuric chloride proved to be irritating to the skin (ref. 30, 32)

Application of 0.1 g cyanuric chloride to the conjunctival sac of the rabbit eye, led to effects on the cornea, iris and conjunctivae. Cyanuric chloride was extremely irritating to the rabbit's eye (ref. 33, 34).

Mice (Balb/C) were exposed to an aerosol of cyanuric chloride $(2.1 - 14.6 \text{ mg/m}^3)$ for 15 minutes. No details were provided on particle size or stability of the aerosol. The respiratory rate of the animals was found to be reduced in a dose dependant manner. A 50% reduction of the respiratory frequency (RD₅₀) was found at 5.9 mg/m³ (ref. 41).

Cyanuric chloride exhibited sensitising properties in a maximisation test in the guinea-pig (ref. 35). Local lymph node assays in mice and guinea-pigs confirmed the findings of the maximisation test and showed that the effects on the immune system increased with dose both in presence and absence of interleukin-2 (ref. 75, 76).

Conclusion

Cyanuric chloride is irritating to the skin (ref. 30, 32) and extremely irritating to eyes (ref. 33, 34). Based on the RD_{50} value and the results found in repeated dose inhalation studies (see next section), cyanuric chloride is highly irritating to the respiratory tract. The substance is sensitising in the maximisation test (ref. 35).

3.1.3 Repeated Dose Toxicity

Oral

Five days oral (gavage) exposure of mice (5/sex/dose level) to 10 to 320 mg/kg bw led to a decreased body weight and a reduced food consumption at 20 mg/kg bw and above. At 40, 80, 160 and 320 mg/kg bw 1, 6, 8 and 10 of 10 animals died, respectively. Clinical symptoms seen at 20 mg/kg bw and at the higher dose levels consisted of rales, excessive salivation, laboured breathing, gasping, cool to touch, decreased motor activity, brown material around mouth/nose, moist areas of yellow material on several body regions, dry and/or red material around eye(s) and/or mouth and black material around anal opening. Macroscopic findings found at 20 mg/kg bw and above consisted of dark discoloration (with foci), haemorrhage and erosions or ulcerations in the glandular stomach and/or nonglandular stomach. Only limited endpoints were investigated in this 'range finding' study (ref. 36).

In a 4-5-week dietary study no toxic effects were seen at 37 mg/kg diet in rabbits (ref. 45, 99). No further information was available. In another study administration of 0.1 and 0.5% cyanuric chloride in the diet of rats led to decreased body weight gain. No effects were seen at the lowest tested dose (0.02%, corresponds to 20 mg/kg bw according to ref. 99). Only an abstract was available (ref. 99).

In a 28-day study rats (Wistar, 8 animals/sex) were given daily oral doses of 0, 4, 20 and 100 mg/kg bw. At 4 mg/kg bw 1 female, at 20 mg/kg bw 1 male and 2 females and at 100 mg/kg bw 6 males and 3 females died. Animals that died showed atrophic spleen lymphatic nodules and gastritis. In survivors dose related effects included erosion and ulceration of the stomach mucosa and focal papillomatous proliferation and hyperkeratosis of the forestomach epithelium. Active germinal centers of lymphatic nodules in the small intestine were seen at the two highest dose groups. At 100 mg/kg bw vacuolisation of hepatocytes and polymorphism of hepatocyte nuclei was reported. Food consumption and body weight were decreased in the highest dose group. Liver and adrenal weights were increased and red blood cell count, haemoglobin concentration and haematocrit were lowered in the same group. An increase in alkaline phosphatase activity was seen at 100 mg/kg bw. The report was available as an abstract (ref. 73).

Dermal

In a 21-day dermal test, rabbits received 50, 150 or 500 mg cyanuric chloride/kg bw in mineral oil (occlusive). Local effects (dermal irritation and inflammation) were seen in rabbits of all treatment groups and vehicle treated controls. Body weights were decreased in males at 150 and 500 mg/kg bw and (significantly) in females at the highest dose group. This effect may be at least partly related to stress due to the repeated use of bandages and the skin damage. A significant increase in number of neutrophils in males at all treatment groups and a concomitant increase in leukocytes at the two highest dose levels may be related to the skin damage. The exposed area was about 30% of the body surface, therefore the study represents a worst case situation. Since it cannot be excluded that the effects on body weight were related to stress by the treatment, no NOAEL for systemic effects was derived. For local effects 50 mg/kg is a LOAEL. (ref. 37).

Inhalation

Rats (10/group) were exposed to 0 or 1.88 mg/m³ during 75 days. Cyanuric chloride exposed animals showed irritation of the mucous of the eyes and the upper respiratory tract, lethargy, reduced red blood cell counts, decreased haemoglobin level and reduced body weight gain. Three out of ten animals died. Pathological findings included mild granular dystrophy in the liver, kidneys and myocardium.(ref. 68, 70). In a parallel 5 months study, a NOEC of 0.3 mg/m³ was reported (ref. 68, 70). No further information is available.

Inhalation exposure of Wistar rats to cyanuric chloride (6 hours/day, 5 days/week) at 0, 0.04, 0.2, 0.4, 1.0 and 1.5 mg/m³ during 4 weeks gave at the higher dose groups (not indicated) increased mortality, decreased body weight gain and food consumption. Other effects seen in treated animals included increase of bronchoalveolar lymphatic tissue, atrophy of the thymus cortex, enlargement of the mesenteric lymph nodes and increase of lymph node weights and cell numbers. The study was available as a short abstract, a full evaluation was not possible based on insufficient description (ref. 77).

In a 90-day inhalation study Wistar rats (10/sex/treatment, exposure 6 hours/day, 5 days/week) were exposed to vapour concentrations of 0.01, 0.05 and 0.25 mg/m³. No effects on mortality, clinical observations, body weight and food consumption were found. There were no effects on the gonads at any concentration tested. At the highest concentration, an increased incidence of inflammation of the repiratory tract was observed. Yellow exudate with a concomittant increase of the number of neutrophils was present in the nasal cavities of 6 of 10 males. In controls and other exposed animals vellowish exudate was seen with 0-2 of 10 animals/sex/treatment. Presence of PMN in the lumen (6/10 males) and tracheitis (5/10 males) were found at the top dose level. Congestion of the lungs with foamy macrophages (5/10) and lymphocyte infiltrations (7/10) were observed in high dose males, but in all other exposed animals low levels of interstitial lymphocyte infiltration(1-5/10) in alveolar septa of the lungs and foamy macrophages (0-3/10) were reported. The pathogenesis was considered by the author to be of infectious origin rather than due to local irritation. The increased background levels of lung pathology can be related to the use of non-SPF rats in this study. Since the changes in nose and lung are most severe at the highest concentration, an exacerbation of the intercurrent infection by the treatment cannot be excluded. The NOAEC for systemic toxicity was 0.25 mg/m³. The NOAEC for local effects in the respiratory tract of rats displaying intercurrent respiratory infection was found to be 0.05 mg/m^3 (ref. 74).

Conclusion

Main effects seen in the repeated dose studies were considered to be related to the irritating properties of cyanuric chloride.

From the 90-day inhalation study (ref. 74) a NOAEC for systemic toxicity of 0.25 mg/m³ was derived. The NOAEC for local effects in the respiratory tract of rats displaying intercurrent respiratory infection was found to be 0.05 mg/m^3 .

In the dermal study (ref. 37) the LOAEL for local effects was 50 mg/kg bw based on dermal irritation.

The oral studies were either of very short duration (ref. 36) or only available as an abstract (ref. 73). Findings included corrosion and ulcerations in the stomach.

3.1.4 Mutagenicity

In vitro Studies

Cyanuric chloride was not mutagenic in the Ames test with strain TA97a, TA98, TA100 and TA102 (ref. 38)

In vivo Studies

In a micronucleus test mice (NMRI) received cyanuric chloride at a dose level of 619 mg/kg bw (gavage). At this level toxicity in the animals was observed (4 of 42 mice died and salivation, forced respiration, ruffled fur, hypokinesia, tremor and disturbance of the general condition was reported). No increase in the number of micronucleated erythrocytes was seen (ref. 39).

Other

25 male and 25 female rats received weekly subcutaneous injections with cyanuric chloride (purity 96.5%) in sunflower oil. After 3.5 months the subcutaneous administration was discontinued due to severe necrotic effects seen at the injection sites and the animals received 10 mg/0.5 ml oil for the additional 20.5 months (6 days/week) of the study. Nine rats were found with sarcomas at the necrotic application sites. These tumours were connected with the irritating/caustic effect of cyanuric chloride. Additional tumours found were considered to be without relationship to the treatment (ref. 45, 97).

In another study male and female rats (n= 27 and 23, respectively) received 10 mg/0.5 ml oil with the food during 24 months. The tumours (5 fibrosarcoma of the mammary gland, 1 leiomyosarcoma of the uterus, 1 lymphosarcoma of the intestinal tissue, 1 subcutaneous tissue fibroma and 1 prostate carcinoma) observed were considered spontaneous pathological findings based on their type and incidence and were considered unrelated to treatment (ref. 97).

These studies do not correspond to international guidelines regarding test performance and are considered not suitable for determining carcinogenic potential. In both studies no control groups were included.

3.1.5 Toxicity for Reproduction

Effects on Fertility

In the 90-day repeated dose inhalation study no macroscopic or microscopic findings on male and female gonads were reported (ref. 74).

Developmental Toxicity

In a range-finding study pregnant rats (5/group) received 0, 5, 10, 20, 30 and 40 mg cyanuric chloride/kg bw during day 6 to 19 of gestation. No effects on the offspring were found (ref. 93).

In the following main study no teratogenic effects were found at 5, 25 or 50 mg cyanuric chloride/kg bw in the offspring of mated female rats. At the highest dose tested maternal toxicity became apparent (decreased body weight gain and clinical signs). Increased post-implantation loss and a decreased number of live foetuses were reported at maternally toxic doses. The NOAEL for maternal toxicity developmental effects was 25 mg/kg bw (ref. 40).

3.1.6 Effects on Humans

Although large amounts of cyanuric chloride have been handled in the industry for more than 40 years, mainly cases of irritation and caustic effects to the skin and mucosa of the eyes and respiratory tract were observed from acute exposure (ref. 102, 103, 104). These effects disappeared completely after a short time and no persisting problems were reported.

Effects of cyanuric chloride on the viscosity of arterial vessels were reported in exposed workers (n=38). No effects were seen in an unexposed control group (n=30) (ref. 46).

In studies with workers, who were exposed to cyanuric chloride for a period between 1 and 22 years, physical examinations did not reveal effects on lungs, eyes and skin. Lung function appeared to be normal and no other adverse effects of cyanuric chloride were reported (ref. 79).

An, in general, healthy male (age 54) was exposed to cyanuric chloride during an inspection in a factory where herbicides were produced. Cyanuric chloride (one of the basic materials) was accidentally released, because a vessel broke down. The man was heavily exposed to the powder.

Signs of intoxication consisted of irritation of the skin, eyes and pharynx, followed by serious obstructive pulmonary syndrome with impairment of alveolar capillary exchanges. No effects on the heart function were seen (although a slightly abnormal ECG was reported from a pre-exposure investigation). The man recovered within 20 days (ref. 45).

The effects associated with acute exposure to cyanuric chloride are irritation of the skin and of the mucosa of the eyes, naso-pharyncheal cavities and the respiratory tract. Inhalation of the dust or vapour causes respiratory irritation, which reaches with a certain delay also the lower respiratory tract (ref. 102, 103, 104).

Allergic contact dermatitis and asthmatic reactions are reported (ref. 103, 104).

After one minute exposure a concentration of 0.13 mg cyanuric chloride vapour/m³ did not yield symptoms in volunteers. The effect level was 0.3 mg/m^3 (stated in ref. 68).

Several reports on chronic intoxication after occupational exposure to cyanuric chloride are (ref. 82, 84, 102, 103, 104, 105). Concentrations in air were $> 0.1 \text{ mg/m}^3$ and during certain procedures exposure to 3 mg/m³ with peaks up to 9 mg/m³ were reported. During the high exposure workers worn gas masks. Effects seen included irritation of the eyes, burning and itching of the skin, nervous disturbances, headache, irritability, increased tiredness, poor memory, bad sleep and pain in the heart region. The CNS effects reported (ref. 84) were not confirmed by the results of any other studies and are therefore considered isolated findings.

All publications on human exposure and effects provided limited details. Only general information was available.

3.1.7 Existing guidelines

No exposure or emission limits for cyanuric chloride are known.

3.2 Initial Assessment for Human Health

For the acute effects tests are available. Cyanuric chloride is considered to be harmful after oral administration and not toxic after dermal application. The high acute inhalation toxicity of cyanuric chloride is likely to be secondary to its highly irritating/caustic properties.

The compound is highly irritating to the skin and the eyes.

The compound is sensitising.

The data on repeated dose are considered to be sufficient. From the available oral studies showing effects on body weight and erosion and ulceration of the stomach no NOAEL could be derived, due to limited reporting. Since the dermal and inhalatory route are expected to be the main route of worker exposure, no additional data are considered necessary. The LOAEL derived is 50 mg/kg bw for dermal exposure based on severe skin irritation. From a 90-day inhalation study a NOAEC of 0.25 mg/m³ for systemic toxicity was derived. The NOAEC for local effects in the respiratory tract of rats displaying intercurrent respiratory infection was found to be 0.05 mg/m³.

For teratogenic effects an oral study is available. The NOAEL for maternal toxicity is 25 mg/kg bw. For developmental effects a NOAEL of 25 mg/kg bw was derived. In the 90-day repeated dose study no effects on the gonads were reported. Since human exposure to cyanuric chloride is expected to be very low, this is for the time being considered sufficient to meet the requirements for effects on fertility.

Cyanuric chloride is found to be not mutagenic in the Ames test and the mouse micronucleus test.

The results of carcinogenicity testing are not adequate for evaluation.

In humans irritation was the main effect after acute exposure. No persisting effects were seen. In a Russian article effects on the arterial walls (viscosity) are reported.

4 HAZARDS TO THE ENVIRONMENT

4.1 Aquatic Effects

The aquatic toxicity of cyanuric chloride is not directly determinable due to its poor solubility and its hydrolytic properties. Only difficult to define hydrolytic mixtures, which are affected by pH value, the temperature, the amount added and the time period between production and the test run, can be studied. In order to transverse this boundary which applies for all studies of cyanuric chloride in aqueous systems, results of tests with hydrolytic products capable of isolation, such as 2-chloro-4,6-dihydroxy-1,3,5-triazine and cyanuric acid, were included here. Additionally QSAR calculations on acute toxicity towards fish, daphnia and algae were performed (see Table 2).

In view of the rapid hydrolysis of this compound it is expected that these organisms will be exposed to the reaction products found after hydrolysis, particularly 2-chloro-4,6-dihydroxy-s-triazine and cyanuric acid, rather than to the parent compound.

No toxicity was observed up to concentrations of 525 mg/L cyanuric chloride in a test with the golden orfe (*Leuciscus idus melanotus*) (ref. 21).

In a 96-hour test with guppies exposed to 2-chloro-4,6-dihydroxy-s-triazine no deaths or effects were reported at a concentration of 1000 mg/L (96-h $LC_{50} > 1000$ mg/L). In this test no analyses were performed, but in a range-finding test at the same concentration samples taken were between 94 and 97% of nominal values over a 96-hour period (ref. 49).

For cyanuric acid the 48-h LC_{50} in a test with the orange-red killifish (*Oryzias latipes*) was > 1000 mg/L. The report was available as an abstract without specification of test concentrations, loading rate, oxygen concentration and pH (ref. 20).

The 24-h EC₅₀ value of 2-chloro-4,6-dihydroxy-s-triazine for *Daphnia magna* was >1000 mg/L (ref. 47). The test was performed according to OECD 202. No analyses were done, but in other tests (see above) it was confirmed that the initial concentration was maintained. For cyanuric acid the 24-h EC₅₀ for *Daphnia magna* (age <72 h) was reported to be >1800 mg/L (ref. 69). For reproductive parameters no effects were seen at concentrations of 125, 250 and 500 mg/L cyanuric acid (ref. 69). The tests performed with the acid were not in accordance with OECD requirements and were poorly reported.

No direct information on the toxicity to algae is reported. An algae study with isocyanuric acid a NOEC of 62.5 mg/L was found (LC50 620 mg/L) (ref. 80) In a microcosm study, which was available in the public literature, no effects on algae were seen when exposed to a saturated cyanuric acid solution (ref. 69).

	Fish (LC50 mg/L)	Daphnia (EC50 mg/L)	Algae (EC50 mg/L)
Method	ECOSAR	ECOSAR	Log EC50 = -1.00 logKow -1.23 (ref. Van Leeuwen)
Cyanuric chloride	245	258	202
2-chloro-4,6-dihydroxy- 1,3,5-s-triazine	994	993	909
cyanuric acid	1940	1890	1866

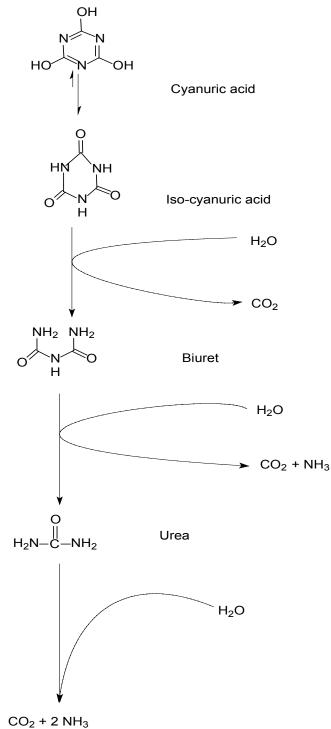
Table 2QSAR calculations

No effect of cyanuric chloride or its hydrolytic products on bacteria in sludge (dehydrogenase activity) was reported (tested concentrations 0.72-576 mg/L) (ref. 21).

Cyanuric acid was found to affect the viability of molluscs at concentrations of 250 mg/L and above, when tested over a 96-97 days period (ref. 25). Exposure of molluscs to 500 mg/L without aeration lead to survival up to 14 days. In a test with exposure to 1000 mg/L for 20 days under condition of aeration a longer survival time was seen (not quantified) (ref. 69).

Based on the chemical properties (very fast hydrolysis to cyanuric acid), it is not expected, that cyanuric chloride will be bioaccumulated. In a test with carps exposed to cyanuric acid, rather large fishes were used at a temperature of 25°C. The bioaccumulation factor was found to be <0.1 (at 10 mg/L) and <0.5 (at 1 mg/L). The information on the study design is limited (ref. 20).

Conclusion:


Due to low solubility and quick hydrolysis, the aquatic toxicity of cyanuric chloride cannot be determined directly. For some hydrolysis products tests are available.

The LC₅₀ for fish and daphnia was >1000 mg/L (ref. 20, 47 and 49) in tests with one of the hydrolysis products. No data on algal toxicity were available for cyanuric chloride. However, cyanuric acid was not toxic to algae at maximum saturable concentrations. Isocyanuric acid was found to have an EC50 for algae of 620 mg/L. Model calculations or acute effects on aquatic organisms were in general in good agreement with the measured values.

4.2 Terrestrial Effects

Cyanuric acid was reported not to affect nitrifying micro-organisms at 25°C over a 90 day period. However, at 20°C a transient effect was observed and at 10°C nitrification was inhibited during the whole observation period up to levels of 25% (ref. 55). In a poorly reported nitrification test cyanuric acid did not affect the CO_2 production by micro-organism (ref. 54). In fact several bacteria and fungi can use cyanuric acid as nitrogen source (ref. 56, 57, 58, 60, 61, 62, 63, 65, 66, 67).

Fig. 2 degradation pathway of cyanuric acid (bacteria)

The course of the degradation pathway (in bacteria) is via cleavage of the triazine-ring (ref. 60, 61, 63). For two strains of pseudomonas and one strain of Klebsiella pneumonia the degradation pathway of cyanuric acid was analysed. An enzymatic transformation to urea was identified. However, the report was limited and the analytical methods used were insufficiently specified (ref. 63, see fig. 2)

4.3 Other Environmental Effects

Birds

In an acute toxicity test an oral LD_{50} value of 192 mg/kg bw was found for the Japanese quail (ref. 64).

In Peking ducklings tested in an 8-day dietary test curved body position and sedative effects were observed at all tested concentrations (10-1000 mg/kg diet). No deaths were reported. Food intake was reduced in animals fed at concentrations of 200 and 1000 mg/kg diet (ref. 27).

4.4 Initial Assessment for the Environment

The manufacture of cyanuric chloride takes place in a continuous closed process. Worker exposure is therefore expected to be low. Calculations with the USES-model show very low PEC values (appendix B). Due to fast hydrolysis no residual cyanuric chloride is expected in the environment (see section on ecotoxicity).

All physico-chemical endpoints are sufficiently investigated.

Cyanuric chloride is considered to be photolytically stable based on the results of Epiwinmodelling.

The compound hydrolyses quickly to cyanuric acid in water via formation of 2,4-dichloro-6-hydroxy-s-triazine and 2-chloro-4,6-hydroxy-s-triazine.

The tests found on biodegradation of 2-chloro-4,6-hydroxy-s-triazine and cyanuric acid are considered to be less reliable. In view of the limited toxicity to aquatic organisms of both substances and the low bioaccumulating potential of cyanuric acid, it is not necessary to perform a biodegradation study.

From the EQC model and the USES model (version 2.0) it can be deduced that 97-98% of cyanuric chloride will end up in the surface water. Therefore it is considered not necessary to conduct an adsorption-desorption study in soil. Some micro-organisms are able to degrade cyanuric chloride. It is not clear whether or not "normal" soil micro-organisms are able to degrade cyanuric chloride. However in view of the low exposure that is expected for soil-micro-organisms, it is not necessary to conduct further testing.

Cyanuric chloride and its hydrolysis products are of low toxicity towards fishes. For Daphnia and fish no toxic effects were reported at concentrations of 500 mg 2-chloro-4,6-hydroxy-s-triazine/L.

Cyanuric acid was not toxic to algae at maximum saturable concentrations.

5 **RECOMMENDATIONS**

The chemical is currently of low priority for further work.

6 REFERENCES

Ref	Author	Year	Title	Source/performing laboratory
1	Grisley D.W., Gluesenkamp E.W. & Heininger S.A.	1958	Reactions of nucleophilic reagents with cyanuric fluoride and cyanuric chloride	J. Org. Chem. 23: 1802-1804
2	Matsui K. & Sakamoto I.	1960	On the hydrolysis of cyanuric chloride (japanese)	J. Synth. Org. Chem. Jap., 18: 175-183
3	Lonza AG	1992	Unpublished letter	Telefax of Lonza AG to Dr. W. Mayr of Degussa AG
4	Hoppe W. von, Lenne H.U. & Morandi G.	1957	Strukturbestimmung von Cyanursäuretrichlorid C ₃ N ₃ Cl ₃ mit Verwendung der diffusen Röntgenstreustrahlung zur Bestimmung der Molekülorienterungen	Zeischrift fur Kristallographie, Bd. 108:, 321-327
5.	Degussa AG	1985	Acute oral toxicity (LD50) study with cyanurchlorid in rats	Degussa, 85-0047-DKT
6	Bienert K., Klamt A., Krockenberger D., Nader F., Sewekow B. & Wittlinger R.	1993	Zum Bioakkumulationspotential von Chlororganika	UWSF – Z. Umweltchem. Ökotox. 5 (4), 228-234
7	Horrobin S.	1963	The hydrolysis of some chloro-1,3,5- triazines: Mechanism: Structure and reactivity	p 4130-4145
8	Jäckel H., Müller M., Nendza M., Klein W. & Gies-Reuschel A.	1993	Abschätzung des umweltchemischen und ökotoxikologischen Verhaltens von Stoffen durch computergestützte Analyse von Struktur und verhalten sowie von Struktur und Wirkung	UWSF – Z. Umweltchem. Ökotox. 5 (1): 11-18
9	Bacaloglu R. & Havlik J.	1983	Nucleophile Substitutionen in der 1,3,5- Triazinreihe. VIII. Zur Hydrolyse des Cyanurchloride in Dioxan-Wasser	Journal f. prakt. chemie. 325 (2): 309-318
10	James T.	1978	Chlorherbizide. 2,4-dichlor-6- isopropylamino-s-triazin, kinetische Untersuchung der Hydrolyse und Aminolyse mit Aethylamin in Abhängigkeit der wichtigsten Reaktionsparameter	Ciba-Geigy AG, Basel Switzerland; QF 2900/78/796 Nr. 34983
11	Degussa AG	1978	Hydrolytische Zersetzung von Cyanurchlorid und MDT	Degussa, 78-0007 DKO
12	Degussa AG	1985	Bestimmung der Geschwindigkeitskonstanten für die Bildung von Cyanursäure in Abhängigkeit von der Temperatur und dem pH-Wert	Degussa, 85-0045 DKO
13	Fierz-david H.E. & Matter M.	1937	Communication. Azo and anthraquinonoid dyes containing the cyanuric ring	Journal of the Society of Dyers and Colourists, Nov. 1937: 424-436
14	Kane P.F. & Gail Gillespie K.	1960	Determination of dyrene and cyanuric chloride in technical materials	Agricultural and food chemistry, 8 (1): 29-32
15	Rys P., Schmitz A. & Zollinger H.	1971	Der Mechanismus der Hydrolyse con Chlortriainen in protischen Lösungsmitteln	Helvetica Chimica Acta, 54/1 (14): 163-176
16	Scheinost & Mertschenk	1990	Brief: Hydrolyse von Cyanurchlorid	Letter of SKW Trostberg Aktiengesellschaft to Dr. W.

Ref	Author	Year	Title	Source/performing laboratory
	Mertschenk			Mayr of Degussa AG
17	Degussa AG	1993	Berechnung der Henrykonstante von Cyanurchlorid	Degussa AG, unpublished results
18	Fränzle O.	1993	Brief: Bodensorptionspotential	Letter of Geographisches Institut of the Christian- Albrechts-Universität zu Kiel to C. Jacobs of Degussa AG.
19	Hansch C. & Leo A.	1979	The FRAGMENT method of calculating partition coefficients	Substituent constants for correlation analysis in chemistry and biology, chapter IV, p. 18-37, Pomona College, New York.
20	Chemical inspection & Testing institute Japan (Ed.)	1992	Biodegradation and bioaccumulation. Data of existing chemicals based on the CSCL Japan	Japan Chemical Industry Ecology-Toxicology & Information Center
21	Degussa AG	1979	Bericht über die Überprüfung von 2,4,6- Trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des "Abwasserverhaltens"	Degussa, 79-0013 DKO
22	Wakabayashi K., Okuzu M.	1970	Hydroxy-s-triazines (Japanese)	Nippon Doj0-Hiryogaku Zasshi, 41: 237-245
23	Degussa AG	1986	Cyanurchlorid. Akute Toxizitat. Prufung der akuten Toxizitat nach einmaliger oraler Applikation an der Ratte	Degussa, 86-0063 DKT
24	Rydzyński K.	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the acute toxicity after single oral administration in rats	The Nofer intitute of occupational medicine, Lodz, Poland
25	Kugler-Laffont J. & Rouquier-Fourmaud A.	1988	Bio-accumulation de l'acide cyanurique chez les mollusques bivalves et conséquences histologiques de sa toxicité chez <i>Anodonta cygnea</i>	Bull. Soc. Hist. Nat., Toulouse, 124: 101-106
27	Kobel W.	1981	Report on 8-day feeding toxicity of technical GS 41'711 in Peking ducklings	CIBA-GEIGY Limited, Basle, Switzerland
28	Rydzyński K.	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the acute toxicity after single dermal administration in rats	The Nofer intitute of occupational medicine, Lodz, Poland
29	Degussa AG	1988	Cyanurchlorid. Akute Toxicität. Toxikologische Prüfung nach einmaliger dermaler Applikation am Kaninchen	Degussa, 88-0023 DKT
30	Degussa AG	1982	Bericht über die Prüfung der lokalen Reizwirkung von 2,4,6-trichlor-1,3,5- triazin (Cyanurchlorid) Nach einmaliger Applikation an der Haut des Kaninchens (Patch-Test)	Degussa, 82-0038 DKT
31	Potokar M., Grundler O.J., Heusener A., Jung R., Mürmann P., Schöbel C., Suberg H. & Zechler H.J.	1985	Studies on the design of animal tests for the corrosiveness of industrial chamicals	Fd. Chem. Toxic., 23 (6): 615- 617
32	Rydzyński K.	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5-	The Nofer intitute of

Ref	Author	Year	Title	Source/performing laboratory
			triazine). Testing the primary irritancy after single and repeated application to the skin of the rabbit	occupational medicine, Lodz, Poland
33	Kobel W.	1981	Report on eye irritation in the rabbit after single application of GS 41711	CIBA-GEIGY Limited, Basle, Switzerland
34	Rydzyński K.	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the primary irritancy after single application to the eye of the rabbit	The Nofer intitute of occupational medicine, Lodz, Poland
35	Rydzyński K.	1994	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the cutaneous sensitizing properties in the guinea pig (maximization test)	The Nofer intitute of occupational medicine, Lodz, Poland
36	Goldenthal E.I.	1983	Exploratory 5 day oral toxicity study in rats	International Research and Development Corporation, Mattawan, Michigan, USA
37	Goldenthal E.I.	1983	21-day dermal toxicity study in rabbits	International Research and Development Corporation, Mattawan, Michigan, USA
38	Janik-Spiechowicz E. & Rydzyński K.	1994	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing for mutagenic activity in the Ames test	The Nofer intitute of occupational medicine, Lodz, Poland
39	Degussa AG	1987	2,4,6-trichloro-1,3,5-triazine (cyanurchloride) Mouse Micronucleus test (Single oral administration)	Degussa, 87-0021-DGM
40	Schardein J.L.	1983	Teratology study in rats	International Research and Development Corporation, Mattawan, Michigan, USA
41	Rydzyński K.	1994	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the respiratory irritation in mice	The Nofer intitute of occupational medicine, Lodz, Poland
42	Blagodatin V.M.	1964	Problems of industrial hygiene in the production of cyanuric chloride (Russian article)	
43	Blagodatin V.M.	1964	Occupational hygiene in the manufacture of simazin	UDC 613.63:615.778.3, 1 st Moscow Medical Institute
44*	Blagodatin V.M., Dorofejewa E.D., Melnikova L.V. et al.	1971	Russian article	Gig. Tr. Prof. Zabol., 1: 45-47
45	Catenacci G.	1987	Su di un caso di intossicazione acuta professionale da 2,4,6- trichloro-1-triazine (cloruro di cianurile)	Med. Lav. 78 (2): 155-161
46	Soboleva L.P.	1987	Resilient-viscous properties of the arterial vessels in workers contacting with cyanourchloride (Russian article)	Vrach. Delo, 9: 103-105
47	Degussa AG	1990	Acute toxicity study in Daphnia magna with 2-chlor-4,6-dihydroxy-1,3,5-triazin, mononatriumsalz	Degussa, 90-0016 DGO
48	Degussa AG	1990	Ready biodegradability: "modified OECD screening test" for 2-chloro-4,6-dihydroxy-1,3,5-triazin, mononatriumsalt	Degussa, 90-0014 DGO

Ref	Author	Year	Title	Source/performing laboratory
49	Degussa AG	1990	96-hour acute toxicity study in the guppy with 2-chlor-4,6-dihydroxy-1,3,5-triazin, mononatriumsalz	Degussa, 90-0015 DGO
50	Degussa AG	1992	Bestimmung des Verteilungsgleichgewichts von Cyol nach der OECD-Richtlinie Testing of Chemicals Nr. 117 vom 03.03.1989 und 107 vom 12- 05-1981	Degussa, 92-0176 DKP
52	Saldick	1974	Biodegradation of cyanuric acid	Appl Microbiol 28 (6): 1004- 1008
54	Wolf D., Martin J.P.	1975	Microbial Decomposition of Ring- ¹⁴ C Atrazine, Cyanuric Acid, and 2-chloro-4,6- diamino- <i>s</i> -1,3,5-triazin,	J. Environm. Qual. 4(1):134- 139
55	Hauck R., Stephenson H.	1964	Nitrification of triazine nitrogen	Agr. Food Chem. 12(2): 147- 151
56	Jensen H.L., Abdel- Ghaffar A.S.	1969	Cyanuric acid as nitrogen source for micro-organisms	Arch. Mikrobiol 67:1-5
57	Zeyer J., Huetter R. & Mayer P.	1980	Decomposition of cyanuric acid by microbes	Chemical abstracts, 60 Sewage, Wastes 92:313-314
58	Zeyer J., Bodmer J., Hütter R.	1981	Rapid degradation of cyanuric acid by Sporothrix schenckii	Zbl. Bakt. Hyg., I. Abt. Orig. C 2: 99-110
60	Myskow W., Lasota T., Stachyra A.	1983	Cyanuric acid- a s-triazine derivative as a nitrogen source for some soil microorganisms	Acta Microbiol Pol 32(2): 177-183
61	Beilstein P., Hütter R.	1980	Enzymatic cleavage of cyanuric acid by a hydrolase	Experimentia 36: 1457
62	Cook A., Hütter R.	1981	s-Triazines as nitrogen sources for bacteria	J. Agr. Food Chem. 29: 1135- 1143
63	Cook A., Beilstein P., Grossenbacher H. & Hütter R.	1985	Ring cleavage and degradative pathway of cyanuric acid in bacteria	Biochem. J. 231:25-30
64	Kobel W.	1981	Report on the acute oral LD50 in the adult japanese quail of GS 41711	CIBA-GEIGY Limited, Basle, Switzerland
65	Jutzi K., Cook A., Hütter R.	1982	The degradative pathway of the <i>s</i> -triazine melamine	Biochem. J. 208: 679-684
66	Jessee J., Benoit R., Hendricks A.	1983	Anaerobic degradation of cyanuric acid, cysteine, and atrazine by a facultative anaerobic bacterium	Appl Environm Microbiol. 45(1): 97-102
67	Degussa AG	1989	Zahn-Wellens-Test zum biologischen Abbau von Cyanursaüre	Degussa, 89-0012 DKO
68	Blagodatin W.	1978	Zur Toxizität des Cyanurchlorids (translation from Russian)	Gig. Tr. Prof. zabol. 12(8):35- 39
69	Labat R. & Proteau J- P.	1979	Demande de brevet d'invention No 78 00488	Institut national de la propriété industrielle
70^{+}	German Chemical Society	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5- trazine	BUA report 125 (August 1993)
71	Lewis R.J. Sr.	1996		Sax's Dangerous properties of industrial materials, Ninth edition: 2051.

Ref	Author	Year	Title	Source/performing laboratory
72		1997	SIDS dossier on the OECD HPV chemical 2,4,6-trichloro-1,3,5-triazine CAS No. 108-77-0	
73	-	1989	Summary: Repeated dose oral toxicity - 28 days	The Nofer intitute of occupational medicine, Lodz, Poland
74	Jedrychowski R.	1994	Cyanuric chloride (2,4,6-trichloro-1,3,5- trazine 90-days repeated exposure inhalation toxicity study in rats	The Nofer intitute of occupational medicine, Lodz, Poland
75	Kimber I., Weisenberger C.	1989	A murine local lymph node assay for the identification of contact allergens	Arch. Toxicol 63: 274-282
76	Maurer T., Kimber I.	1991	Draining lymph node cell activation in guinea pigs: comparisons with the murine local lymph node assay	Toxicol 69: 209- 218
77	Rydzynski K., Stetkiewicz J., Jedrychowski R.	1993	Is cyanuric chloride an immunotoxicant?	Pharmacol Toxicol 73 (suppl II): 46
78	Pauluhn J.	1992	Cyanurchlorid Untersuchungen zur akuten Inhalationstoxizität an der Ratte nach OECD-No. 403	Bayer AG Fachbereich Toxicologie, Wuppertal, Germany
79	Mertschenk A., Burkhart-Reichl A., , Ergenzinger M., et al.	1998	Cyanurchlorid - Arbeitsmedizinische- toxikologische Bewertung der Exposition in der Produktion unter Aspekten der Arbeitssicherheit	Zbl Arbeitsmed 48:504-510
80		1996	Toxicity to algae	Environment Agency of Japan
81	American Cyanamid Company	1952	The chemistry of cyanuric chloride	New Products Bulletin Collective, Vol. 1, RE-ISED Ed. 1, Band 1
82	Goldblatt, M.	1945	Vesication and some vesicants	Brit. J. Ind. Med. 2, 183-201
83	Von Herlinger, H.	1964	Synthese von Halogenalkyl-dichlor- und bis-(halogenalkyl)-chlor-s-triazinen	Angew. Chem. 76(10), 437
84	Kaskevich, L. et al.	1984	Einwirkungen von Cyanurchlorid auf den menschlichen Organismus	Vrachebn. Delo 8, 109-112
85	Wallace, J.	1975	Acute oral toxicity study.	Bio-Toxicology Laboratories, Inc.
86	Ullmann, L.	1985	4-hour acute aerosol inhalation toxicity (LC50) study with cyanurchlorid in rats	RCC AG, Switzerland
87	Ullmann, L.	1986	4-hour vapour inhalation toxicity study with cyanurchloride in rats.	RCC AG, Switzerland
88	Duchosal, F.	1991	4-hour acute inhalation toxicity study with cyanuric chloride – non-micronized - aerosol in rats. Project 291172.	RCC AG, Switzerland
89	Duchosal, F.	1991	4-hour acute inhalation toxicity study with cyanuric chloride vapor in rats.	RCC AG, Switzerland
90	Duchosal, F.	1991	4-hour acute inhalation toxicity study with cyanuric chloride micronized aerosol in rats. Project 291161.	RCC AG, Switzerland
91	Stevens, J.	1981	Report on acute vapor inhalation toxicity in the rat of cyanuric chloride (GS-41711).	Ciba-Geigy Ltd. Switzerland

Ref	Author	Year	Title	Source/performing laboratory
92	Sarasin, G.	1981	Acute oral LD50 n the rat of technical GS 41'711	Ciba-Geigy Ltd. Switzerland
93	Cuddeback, B.	1983	Exploratory range-finding teratology study in rats with technical cyanuric chloride	Int. R&D Corp. Michigan USA
94	Paa, H.	1974	Acute oral toxicity study – female albino rats	Industrial Bio-Test Laboratories, Inc.
95	Boehm and Mertschenk	1992	BUA-Bericht "Cyanurchlorid" – Eintrag in die Umwelt.	SKW Trostberg Aktiengesellschaft
96	Marhold, J.	1972	Sbornik Vysledku Toxikologickeno Vysetreni Latek a Pripravku, Prag	p. 152
97	Pliss, G.	1966	Blastomogene Effekte von Cyanurchlorid (translation from Russian)	Vopr. Onkol. 12 (4), 78-82
98	Kriebitzsch, N.	1987	Cyanuric Acid and Cyanuric Chloride	In Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft, Weinheim, S. 191-200.
99		1981	Cyanuric Chloride	Patty's Industrial Hygiene and Toxicology, 3e ed., vol 2A, 2763-2765 (via personal communication with E. Flint)
100	Kegel, A.	1992	BUA-Bericht "cynurchlorid" – Producktionsmengen, Verarbeitung, Anwendung, Verbrauchsmengen.	Degussa AG, Internal letter 16-10-92
101	Haubrich	1992	BUA-Bericht "Cyanurchlorid" – Beschreibung des Herstellungsverfahrens und des Umwelteintrages	Degussa AG, Internal letter 28-09-92
102	Kulzer, R.	1991	Langzeitfolgen einer einmaligen (unfallmäβigen) Einwirkung von Cyanurchlorid auf Mitarbeiter des Betriebes	Degussa AG, Internal letter 29-07-91
103	Jacobs, K.	1982	Cyanurchlorid	Degussa AG, Internal letter 17-03-82, Wesseling
104	Mohr	1980	Eventuelle Gesundheitsschäden durch Umgang mit Cyol und MMA	Degussa AG, Internal letter 11-12-80
105		1979	Cyanurchlorid - MDT.	Degussa AG, Internal letter 11-05-79
106		1987	Cyanurchlorid (Degussa brochure).	Degussa AG
107	Häusler, A.	1989	Anaerober Abbau von Cyanursäure in diskontinuierlichen Suspensionsreaktoren und kontinuierlich betriebenen Festbett- Umlaufreaktoren	Diplomarbeit, Technischen Hochschule Darmstadt

* Not used because it was written in a language that we could not read.

⁺ The data from this reference were only used to complete the assessment if necessary.

ANNEX: SEARCH CRITERIA

The following data bases were searched under the CAS number 6386-38-5 and Metilox in September 2001: HSDB, Medline, Toxline, Healthstar, Kluwer-Verlagsdatenbank für Volltexte, Springer-Verlagsdatenbank für Volltexte and ZEBET.

No additional references were identified.

For environmental fate and ecotoxicology endpoints in addition the following databases were investigated: Embase, Biosis and Enviroline, . The search profile included the following search criteria: Environm? or ecotox? or fate; air or soil or water or aquatic? or sedim?; photo? or stab? or distribut? or degrad? or transp? or monitor? or BOD or COD or accumul?; solub? or partition? or Kow or Pow or Koc or hydrol?; fish? or invert? or daphn? or alg? or plant? or kinet? or acute or chronic?; vertebrat? or microorg? or micro-org? or bacter? or ?dwelling? or transform? or terrestr?

APPENDIX A

SMILES : n(c(nc(n1)CL)CL)clCL CHEM : 1,3,5-Triazine, 2,4,6-trichloro-CAS NUM: 000108-77-0 MOL FOR: C3 CL3 N3 MOL WT : 184.41 ----- EPI SUMMARY (v3.10) ------Physical Property Inputs: Water Solubility (mg/L): -----Vapor Pressure (mm Hg) : ____ Henry LC (atm-m3/mole) : ____ Log Kow (octanol-water): _____ Boiling Point (deg C) : ____ Melting Point (deg C) : ____ KOWWIN Program (v1.66) Results: _____ Log Kow(version 1.66 estimate): 1.73 SMILES : n(c(nc(n1)CL)CL)clCL CHEM : 1,3,5-Triazine, 2,4,6-trichloro-MOL FOR: C3 CL3 N3 MOL WT : 184.41 _____+ TYPE | NUM | LOGKOW FRAGMENT DESCRIPTION | COEFF | VALUE _____+ Frag | 3 | Aromatic Carbon | 0.2940 | 0.8820 Frag | 3 | Aromatic Nitrogen |-0.7324 | -2.1972 Frag | 3 | -CL [chlorine, aromatic attach] | 0.6445 | 1.9335 Factor| 1 | sym-Triazine ring correction | 0.8856 | 0.8856 Const | | Equation Constant | 0.2290 _____+ Log Kow = 1.7329MPBPWIN (v1.40) Program Results: _____ Experimental Database Structure Match: Name : CYANURIC CHLORIDE CAS Num : 000108-77-0 Exp MP (deg C): 154 Exp BP (deg C): 192 Exp VP (mm Hq): ---SMILES : n(c(nc(n1)CL)CL)c1CL CHEM : 1,3,5-Triazine, 2,4,6-trichloro-MOL FOR: C3 CL3 N3 MOL WT : 184.41 ----- SUMMARY MPBPWIN v1.40 -----Boiling Point: 234.02 deg C (Adapted Stein and Brown Method) Melting Point: 206.25 deg C (Adapted Joback Method) Melting Point: 22.98 deg C (Gold and Ogle Method) Mean Melt Pt : 114.62 deg C (Joback; Gold,Ogle Methods) Selected MP: 68.80 deg C (Weighted Value) Vapor Pressure Estimations (25 deg C):

(Using BP: 192.00 deg C (exp database))
(Using MP: 154.00 deg C (exp database))
VP: 0.0282 mm Hg (Antoine Method)
VP: 0.0236 mm Hg (Modified Grain Method)
VP: 0.0412 mm Hg (Mackay Method)
Selected VP: 0.0236 mm Hg (Modified Grain Method)

		+	
TYPE	NUM	BOIL DESCRIPTION COEFF	' VALUE
Group Group Group *	3 3 	-C (aromatic) 30.7 N (aromatic) 39.8 -Cl (to aromat) 36.7 Equation Constant	8 119.64 9 110.37 198.18
RESULT-1 RESULT-	uncorr		n 520.47
TYPE	NUM	MELT DESCRIPTION COEFF	' VALUE
Group Group Group *	3 3 3	-C (aromatic) 37.0 N (aromatic) 68.4 -Cl (to aromat) 13.5 Equation Constant	0 205.20 5 40.65 122.50
RESUI	+====+ 	MELTING POINT in deg Kelvi MELTING POINT in deg C MELTING POINT in deg C	

Water Sol from Kow (WSKOW v1.40) Results:

Water Sol: 1735 mg/L

SMILES : n(c(nc(n1)CL)CL)clCL CHEM : 1,3,5-Triazine, 2,4,6-trichloro-MOL FOR: C3 CL3 N3 MOL WT : 184.41 ----- WSKOW v1.40 Results -----Log Kow (estimated) : 1.73 Log Kow (experimental): not available from database Log Kow used by Water solubility estimates: 1.73 Equation Used to Make Water Sol estimate: Log S (mol/L) = 0.796 - 0.854 log Kow - 0.00728 MW + Correction (used when Melting Point NOT available) Correction(s): Value ----- -----No Applicable Correction Factors Log Water Solubility (in moles/L) : -2.026 Water Solubility at 25 deg C (mg/L): 1735

ECOSAR Program (v0.99g) Results:

```
SMILES : n(c(nc(n1)CL)CL)c1CL
CHEM : 1,3,5-Triazine, 2,4,6-trichloro-
CAS Num:
ChemID1:
ChemID2:
ChemID3:
MOL FOR: C3 CL3 N3
MOL WT : 184.41
Log Kow: 1.73 (KowWin estimate)
Melt Pt:
Wat Sol: 1546 mg/L (calculated)
ECOSAR v0.99g Class(es) Found
```

Triazines

ECOSAR Class	=	Organism ====================================	Duration	End Pt ======	Predicted mg/L (ppm) =========
Neutral Organic SAR (Baseline Toxicity)	:	Fish	14-day	LC50	425.559
Triazines Triazines Triazines Triazines Triazines Triazines	::	Fish Fish Daphnid Daphnid Fish Fish (SW)	96-hr 14-day 48-hr 16-day 96-hr	LC50 LC50 LC50 EC50 ChV LC50	245.239 425.559 257.923 11.754 30.248 49.305

Note: * = asterick designates: Chemical may not be soluble enough to measure this predicted effect. Fish and daphnid acute toxicity log Kow cutoff: 5.0 Green algal EC50 toxicity log Kow cutoff: 6.4 Chronic toxicity log Kow cutoff: 8.0 MW cutoff: 1000

```
HENRY (v3.10) Program Results:
```

Bond Est : 4.91E-007 atm-m3/mole Group Est: Incomplete

SMILES : n(c(nc(n1)CL)CL)clCL CHEM : 1,3,5-Triazine, 2,4,6-trichloro-

MOL FOR: C3 CL3 N3 MOL WT : 184.41

------ HENRYWIN v3.10 Results -----CLASS | BOND CONTRIBUTION DESCRIPTION | COMMENT | VALUE _____+ FRAGMENT | 3 Car-CL | -0.0723 FRAGMENT | 6 Car-Nar | 9.7693 FACTOR | 2 Additional aromatic nitrogen(s) 1 | -5.0000 _____+ RESULT | BOND ESTIMATION METHOD for LWAPC VALUE | TOTAL | 4.697 _____+ HENRYS LAW CONSTANT at 25 deg C = 4.91E-007 atm-m3/mole = 2.01E-005 unitless

	-+				+	+
	 _+	GROUP	CONTRIBUTION DESCRIPTIO		COMMENT +	•
		3	Nar (Car)(Car) MISSING Value for: Ca: MISSING Value for: Ca: MISSING Value for: Ca:	r (Nar)(CL) r (Nar)(CL)	(Nar)	9.18
RESULT	-+ GROU -+		ATION METHOD for LOG GAN	MMA VALUE		
HLC: VP:		E-006 at 86 mm Hg	imate using EPI values] tm-m3/mole /L	:		
			Results:			
SMILES :	: 1,3,5- : C3 CL3 : 184.41	c(n1)CL)(Triazine N3		1ts		
Ulti Prim MITI MITI	imate Bi mary Bi I Linear I Non-Li	odegrada odegrada Model 1 .near Mod	rediction: Does Not Bid ation Timeframe: Months ation Timeframe: Weeks Prediction : Does No del Prediction: Does No	s ot Biodegrad ot Biodegrad	de Fast de Fast -+	
TYPE +-	NUM +	B:	IOWIN FRAGMENT DESCRIPT:	ION 	COEFF -++	VALUE
Frag MolWt	3 *	Aromatic Molecula	e ring (symmetric) c chloride [-CL] ar Weight Parameter n Constant			-0.5473 -0.0878 0.7475
RESUL			AR BIODEGRADATION PROBA	BILITY	=+=====================================	0.1220
	+					-=======
+- TYPE	+ NUM	B	IOWIN FRAGMENT DESCRIPT	ION	-++ COEFF -++	VALUE
Frag MolWt	3 *	Aromatic Molecula	e ring (symmetric) c chloride [-CL] ar Weight Parameter		-5.7252 -2.0155 	-6.0465 -2.6187
RESUL	LT	NON-LII	NEAR BIODEGRADATION PRO	BABILITY		0.0000
	+==			======	====================================	
A Proba A Proba	ability	Greater Less Tha	Than or Equal to 0.5 in an 0.5 indicates> Doe	es NOT Biode	> Biodegrade egrade Fast	
A Proba A Proba	ability	Greater Less Tha		es NOT Biode	> Biodegrade egrade Fast -+	

Frag MolWt Const	*	Molecular Weight Parameter Equation Constant	-0.2066 	-0.4075 3.1992
RESU		+=====================================		+======= 1.9260
+			+	
'	NUM		COEFF	VALUE
Frag Frag MolWt Const	1 3 *	Triazine ring (symmetric) Aromatic chloride [-CL] Molecular Weight Parameter Equation Constant	 	-0.0575 -0.4960 -0.2661 3.8477
RESU		+=====================================	+======= 	3.0281
		•		
Result (Prin		sification: 5.00 -> hours 4.00 -> days Ultimate) 2.00 -> months 1.00 -> longe: BIOWIN FRAGMENT DESCRIPTION		weeks +
Result (Prin	nary & NUM 1 3 *	Ultimate) 2.00 -> months 1.00 -> longe:	r +	VALUE
Result (Prin TYPE Frag Frag MolWt Const	nary & NUM 1 3 * * JLT	Ultimate) 2.00 -> months 1.00 -> longe: BIOWIN FRAGMENT DESCRIPTION Triazine ring (symmetric) Aromatic chloride [-CL] Molecular Weight Parameter Equation Constant MITI LINEAR BIODEGRADATION PROBABILITY	r COEFF + 0.1168 0.0062 +	VALUE 0.1168 0.0185 -0.5486 0.7121
Result (Prin TYPE Frag Frag MolWt Const RESU	nary & NUM 1 3 * JLT JLT	Ultimate) 2.00 -> months 1.00 -> longe: BIOWIN FRAGMENT DESCRIPTION Triazine ring (symmetric) Aromatic chloride [-CL] Molecular Weight Parameter Equation Constant HERRIGHT BIODEGRADATION PROBABILITY	r COEFF + 0.1168 0.0062 +	VALUE 0.1168 0.0185 -0.5486 0.7121
Result (Prin TYPE Frag Frag MolWt Const RESU	nary & NUM 1 3 * JLT JLT	Ultimate) 2.00 -> months 1.00 -> longe: BIOWIN FRAGMENT DESCRIPTION Triazine ring (symmetric) Aromatic chloride [-CL] Molecular Weight Parameter Equation Constant HERRIGHT BIODEGRADATION PROBABILITY	r COEFF + 0.1168 0.0062 +	VALUE 0.1168 0.0185 -0.5486 0.7121
Result (Prin TYPE Frag Frag MolWt Const RESU	nary & NUM 1 3 * ULT NUM 1 NUM 1 3 * * * * * * * * * * * * * * * * * *	<pre>Ultimate) 2.00 -> months 1.00 -> longe: BIOWIN FRAGMENT DESCRIPTION Triazine ring (symmetric) Aromatic chloride [-CL] Molecular Weight Parameter Equation Constant BIOWIN FRAGMENT DESCRIPTION BIOWIN FRAGMENT DESCRIPTION BIOWIN FRAGMENT DESCRIPTION Triazine ring (symmetric) Aromatic chloride [-CL] Molecular Weight Parameter</pre>	r COEFF 0.1168 0.0062 +=================================	VALUE 0.1168 0.0185 -0.5486 0.7121 0.2988

A Probability Greater Than or Equal to 0.5 indicates --> Readily Degradable A Probability Less Than 0.5 indicates --> NOT Readily Degradable

OVERALL OH Rate Constant = 0.003733 E-12 cm3/molecule-sec

HALF-LIFE = 2864.910 Days (12-hr day; 1.5E6 OH/cm3) ----- SUMMARY (AOP v1.90): OZONE REACTION -----***** NO OZONE REACTION ESTIMATION ***** (ONLY Olefins and Acetylenes are Estimated) Experimental Database: NO Structure Matches PCKOC Program (v1.66) Results: _____ Koc (estimated): 124 Koc may be sensitive to pH! SMILES : n(c(nc(n1)CL)CL)c1CL CHEM : 1,3,5-Triazine, 2,4,6-trichloro-MOL FOR: C3 CL3 N3 MOL WT : 184.41 ----- PCKOCWIN v1.66 Results -----First Order Molecular Connectivity Index : 4.182 Non-Corrected Log Koc : 2.8469 Fragment Correction(s): Triazine ring : -0.7521 1 Corrected Log Koc 2.0948 Estimated Koc: 124.4 NOTE: The Koc of this structure may be sensitive to pH! The estimated Koc represents a best-fit to the majority of experimental values; however, the Koc may vary significantly with pH. HYDROWIN Program (v1.67) Results: _____ SMILES : n(c(nc(n1)CL)CL)c1CL CHEM : 1,3,5-Triazine, 2,4,6-trichloro-MOL FOR: C3 CL3 N3 MOL WT : 184.41 ----- HYDROWIN v1.67 Results -----Currently, this program can NOT estimate a hydrolysis rate constant for the type of chemical structure entered !! ONLY Esters, Carbamates, Epoxides, Halomethanes (containing 1-3 halogens) and Specific Alkyl Halides can be estimated !! For more information, (Click OVERVIEW in Help or see the User's Guide) ***** CALCULATION NOT PERFORMED **** BCF Program (v2.14) Results: _____ SMILES : n(c(nc(n1)CL)CL)c1CL CHEM : 1,3,5-Triazine, 2,4,6-trichloro-MOL FOR: C3 CL3 N3 MOL WT : 184.41

Log Kow (estimated) : 1.73 Log Kow (experimental): not available from database Log Kow used by BCF estimates: 1.73 Equation Used to Make BCF estimate: Log BCF = $0.77 \log Kow - 0.70 + Correction$ Correction(s): Value -0.320 Aromatic sym-triazine ring Estimated Log BCF = 0.314 (BCF = 2.062) Volatization From Water _____ Chemical Name: 1,3,5-Triazine, 2,4,6-trichloro-Molecular Weight : 184.41 g/mole Water Solubility : -----Vapor Pressure : -----Henry's Law Constant: 4.91E-007 atm-m3/mole (estimated by Bond SAR Method) RIVER LAKE _____ -----Water Depth (meters): 1 Wind Velocity (m/sec): 5 1 0.5 Current Velocity (m/sec): 1 0.05 1.779E+004 741 ^ HALF-LIFE (hours) : 1621 HALF-LIFE (days) : 67.53 HALF-LIFE (years) : 0.1849 2.03 STP Fugacity Model: Predicted Fate in a Wastewater Treatment Facility PROPERTIES OF: 1,3,5-Triazine, 2,4,6-trichloro-_____ Molecular weight (g/mol) 184.41 Aqueous solubility (mg/l) 0 Vapour pressure (Pa) 0 0 (atm) (mm Hg) 0 Henry 's law constant (Atm-m3/mol) 4.91E-007 Air-water partition coefficient 2.00804E-005 53.7032 Octanol-water partition coefficient (Kow) 1.73 Log Kow Biomass to water partition coefficient 11.5406 Temperature [deg C] 25 Biodeg rate constants (h^{-1}) , half life in biomass (h) and in 2000 mg/L MLSS (h): -Primary tank0.00225.6110000.00-Aeration tank0.00225.6110000.00-Settling tank0.00225.6110000.00 STP Overall Chemical Mass Balance: _____ mol/h percent g/h Influent 1.00E+001 5.4E-002 100.00

----- Bcfwin v2.14 -----

Primary sludge	3.78E-002	2.0E-004	0.38
Waste sludge	1.59E-001	8.6E-004	1.59
Primary volatilization	2.67E-004	1.4E-006	0.00
Settling volatilization	7.26E-004	3.9E-006	0.01
Aeration off gas	1.79E-003	9.7E-006	0.02
Primary biodegradation	1.79E-003	9.7E-006	0.02
Settling biodegradation	5.36E-004	2.9E-006	0.01
Aeration biodegradation	7.06E-003	3.8E-005	0.07
Final water effluent	9.79E+000	5.3E-002	97.91
Total removal	2.09E-001	1.1E-003	2.09
Total biodegradation	9.39E-003	5.1E-005	0.09

Level III Fugacity Model (Full-Output):

Chem Name : 1,3,5-Triazine, 2,4,6-trichloro-Molecular Wt: 184.41 Henry's LC : 4.91e-007 atm-m3/mole (Henrywin program) Vapor Press : 0.0236 mm Hg (Mpbpwin program) Liquid VP : 0.064 mm Hg (super-cooled) Melting Pt : 68.8 deg C (Mpbpwin program) Log Kow : 1.73 (Kowwin program) Soil Koc : 22 (calc by model)

	Mass Amount	Half-Life	Emissions	
	(percent)	(hr)	(kg/hr)	
Air	0.032	6.88e+004	0	
Water	99.5	1.44e+003	1000	
Soil	0.187	1.44e+003	0	
Sedimen	t 0.288	5.76e+003	0	

	Fugacity	Reaction	Advection	Reaction	Advection
	(atm)	(kg/hr)	(kg/hr)	(percent)	(percent)
Air	2.87e-013	0.00218	2.17	0.000218	0.217
Water	8.96e-012	324	673	32.4	67.3
Soil	2.26e-013	0.608	0	0.0608	0
Sediment	8.49e-012	0.235	0.039	0.0235	0.0039

Persistence Time: 676 hr Reaction Time: 2.08e+003 hr Advection Time: 1e+003 hr Percent Reacted: 32.5 Percent Advected: 67.5

Half-Lives (hr), (based upon Biowin (Ultimate) and Aopwin): Air: 6.876e+004 Water: 1440 Soil: 1440

Sediment: 5760 Biowin estimate: 1.926 (months

Advection Times (hr): Air: 100 Water: 1000 Sediment: 5e+004

)

APPENDIX B1 'CYANURIC ACID'

USES 3.0

Input parameters/assumptions

Fysico-chemical data taken from section in this report Changes in default: Hydrolysis set to 5 minutes (for abiotic degradation in waste water treatment plants)

High Production Volume:	Yes, production > 1000 tonnes/year
Tonnage used for assessment:	50.000 tonnes/year
Regional production of substance:	10% of total amount i.e. 5000 tonnes/year
Industry category:	1. Agricultural Chemicals
Use category:	33. Intermediates
Life-cycle steps chosen:	1. Production (III Multi purpose equipment)
	3. Processing (III Non-dispersive use)

According to USES3.0 the following emissions will occur:

Production (fraction of tonnage)	
Fraction released to air	1E-04
Fraction released to waste water	3E-03
Fraction released to surface water	0
Fraction released to industrial soil	1E-04
Fraction of main local source	1
Number of emission days	300/year
Which gives a release during production of	50 kg/day (USES 3.0 prediction)

Processing (fraction of tonnage)

Fraction released to air	0.1
Fraction released to waste water	0
Fraction released to surface water	0.1
Fraction released to industrial soil	0
Fraction of main local source	0
Number of emission days	1/year
	1 1 .

Since the fraction of local source is 0, the release during processing is 0 kg/day (USES 3.0 prediction)

Additional parameter

A rate constant for hydrolysis in water has been added: DT₅₀ is 5 minutes (ref. 7)

Outcome (production only)	DT ₅₀ 5 minutes
Concentration in waste water treatment plant during production:	25 mg/L
Emission to waste water from waste water treatment plant:	1.72%
Concentration in effluent:	0.42 mg/L
Dilution factor to surface water:	about 10
Concentration surface water during emissions:	0.042 mg/L
Annual average:	0.035 mg/L
Concentration in waste water treatment plant during production:	25 mg/L
Emission to sludge from waste water treatment plant:	0.03%
Concentration in sludge:	18.8 mg/kg
Concentration agricultural soil 30 days:	0.023 mg/kg _{wwt}
Concentration agricultural soil 180 days:	0.011 mg/kg _{wwt}

USES Compact report	Single substance					
Printed on	9/17/01 11:29:47 AM					
Study	new					
Substance	Cyanuric Chloride					
Defaults	Standard					
Assessment types	1A, 1B, 2, 3A, 3B, 5					
Base set complete	No					
Explanation status column	'O' = Output; 'D' = Default; 'S' = Set; 'l' = Imported					
Name	Reference	Value	Units	Status		
STUDY						
STUDY IDENTIFICATION						
Study name	new	new		D		
Study description				D		
Author				D		
nstitute				D		
Address				D		
Zip code				D		
City				D		
Country				D		
Telephone				D		
Telefax				D		
Email				D		
Calculations checksum	DC580245	DC580245		S		

USES 3.0

9/17/01 11:29:47 AM

Page: 1

USES Compact report	Single substance				
Printed on	9/17/01 11:29:47 AM				
Study	new				
Substance	Cyanuric Chloride				
Defaults	Standard				
Assessment types	1A, 1B, 2, 3A, 3B, 5				
Base set complete	No				
Name	Reference	Value	Units	Status	
DEFAULTS					
DEGRADATION AND TRANSFORMATION RATES					
DEGRADATION AND TRANSFORMATION RATES					

USES 3.0

9/17/01 11:29:47 AM

Page: 2

USES Compact report	Single substance					
Printed on	9/17/01 11:29:47	AM				
Study	new					
Substance	Cyanuric Chloric	le				
Defaults	Standard					
Assessment types	1A, 1B, 2, 3A, 3B, 5					
Base set complete	No					
Name	Reference	Value	Units	Status		
SUBSTANCE						
SUBSTANCE IDENTIFICATION						
General name	Cyanuric Chloride	Cyanuric Chloride	•	S		
Description	unknown	unknown		S		
CAS-No	108-77-0	108-77-0		S		
EC-notification no.	n.a.	n.a.		S		
EINECS no.	203-614-9	203-614-9		S		
PHYSICO-CHEMICAL PROPERTIES						
Molecular weight	184.41	184.41	[g.mol-1]	S		
Melting point	154	154	[oC]	S		
Boiling point	190	190	[oC]	s		
Vapour pressure at 25 [oC]	2.5	2.5	[Pa]	S		
Octanol-water partition coefficient.	0.512	0.512	[log10]	S		
Water solubility	440	440	[mg.l-1]	S		

9/17/01 11:29:47 AM

USES Compact report	Single substance					
Printed on Study Substance	9/17/01 11:29:47 AM new Cyanuric Chloride Standard					
Defaults						
Assessment types	1A, 1B, 2, 3A, 3B, 5					
Base set complete	No	5, 0				
Name	Reference	Value	Units	Status		
RELEASE ESTIMATION						
CHARACTERIZATION AND TONNAGE						
High Production Volume Chemical	Yes	Yes		S		
Production volume of chemical in EU	5E+04	5E+04	[tonnes.yr-1]	S		
/olume of chemical imported to EU	0	0	[tonnes.yr-1]	D		
/olume of chemical exported from EU	0	0	[tonnes.yr-1]	D		
ntermittent release	No	No		D		
JSE PATTERNS						
EMISSION INPUT DATA						
ndustry category	1 Agricultural	1 Agricultural		S		
	chemicals	chemicals				
Jse category	33 Intermediates	33 Intermediates		S		
Êmission scenario document available	No	No		0		
Extra details on use category	No extra details necessary	No extra details necessary		D		
Extra details on use category	No extra details necessary	No extra details necessary		D		
Fraction of tonnage for application	1	1	[-]	0		
Fraction of chemical in formulation	1	1	[-]	D		
Production	Yes	Yes		D		
Formulation	No	No		S		
Processing	Yes	Yes		s		
Private use	No	No		s		
Recovery	No	No		s		
Main category production	III Multi-purpose	III Multi-purpose		D		
	equipment	equipment		0		
Main category formulation	III Multi-purpose	III Multi-purpose		D		
• /	equipment	equipment		5		
Main category processing	III Non-dispersive	III Non-dispersive		s		
	use	use		5		

9/17/01 11:29:47 AM

USES Compact report	Single substance				
Printed on	9/17/01 11:29:47	7 AM			
Study	new				
Substance	Cyanuric Chlorid	le			
Defaults	Standard				
Assessment types	1A, 1B, 2, 3A, 3I	B. 5			
Base set complete	No				
Name	Reference	Value	Units	Status	
RELEASE ESTIMATION					
HARACTERIZATION AND TONNAGE					
ligh Production Volume Chemical	Yes	Yes		S	
Production volume of chemical in EU	5E+04	5E+04	[tonnes.yr-1]	S	
olume of chemical imported to EU	0	0	[tonnes.yr-1]	D	
olume of chemical exported from EU	0	0	[tonnes.yr-1]	D	
ntermittent release	No	No		D	
JSE PATTERNS					
MISSION INPUT DATA					
ndustry category	1 Agricultural	1 Agricultural		S	
	chemicals	chemicals			
Jse category	33 Intermediates	33 Intermediates		S	
mission scenario document available	No	No		0	
extra details on use category	No extra details	No extra details		D	
	necessary	necessary			
xtra details on use category	No extra details	No extra details		D	
	necessary	necessary			
raction of tonnage for application	1	1	[-]	0	
raction of chemical in formulation	1	1	E	D	
roduction	Yes	Yes		D	
ormulation	No	No		s	
rocessing	Yes	Yes		S	
rivate use	No	No		s	
lecovery	No	No		S	
fain category production	III Multi-purpose	III Multi-purpose		D	
	equipment	equipment			
lain category formulation	III Multi-purpose	III Multi-purpose		D	
	equipment	equipment			
fain category processing	III Non-dispersive	III Non-dispersive		S	
	use	use		-	

9/17/01 11:29:47 AM

USES Compact report	Single substance				
Printed on	9/17/01 11:29:47	7 AM			
Study	new				
Substance	Cyanuric Chlorid	le			
Defaults	Standard				
Assessment types	1A, 1B, 2, 3A, 3I	B. 5			
Base set complete	No				
Name	Reference	Value	Units	Status	
RELEASE ESTIMATION					
HARACTERIZATION AND TONNAGE					
ligh Production Volume Chemical	Yes	Yes		S	
Production volume of chemical in EU	5E+04	5E+04	[tonnes.yr-1]	S	
olume of chemical imported to EU	0	0	[tonnes.yr-1]	D	
olume of chemical exported from EU	0	0	[tonnes.yr-1]	D	
ntermittent release	No	No		D	
JSE PATTERNS					
MISSION INPUT DATA					
ndustry category	1 Agricultural	1 Agricultural		S	
	chemicals	chemicals			
Jse category	33 Intermediates	33 Intermediates		S	
mission scenario document available	No	No		0	
extra details on use category	No extra details	No extra details		D	
	necessary	necessary			
xtra details on use category	No extra details	No extra details		D	
	necessary	necessary			
raction of tonnage for application	1	1	[-]	0	
raction of chemical in formulation	1	1	E	D	
roduction	Yes	Yes		D	
ormulation	No	No		s	
rocessing	Yes	Yes		S	
rivate use	No	No		s	
lecovery	No	No		S	
fain category production	III Multi-purpose	III Multi-purpose		D	
	equipment	equipment			
lain category formulation	III Multi-purpose	III Multi-purpose		D	
	equipment	equipment			
fain category processing	III Non-dispersive	III Non-dispersive		S	
	use	use		-	

9/17/01 11:29:47 AM

USES Compact report	Single substance				
Printed on	9/17/01 11:29:47	AM			
Study	new				
Substance	Cyanuric Chloride	e			
Defaults	Standard				
Assessment types	1A, 1B, 2, 3A, 3B	, 5			
Base set complete	No				
Name	Reference	Value	Units	Status	
DISTRIBUTION					
DEGRADATION AND TRANSFORMATION RATES					
AIR/WATER					
Rate constant for hydrolysis in surface water	5.27292E+05	0.208	[d] (DT50,20[oC])	S	
SEWAGE TREATMENT					
LOCAL					
[PRODUCTION]					
INPUT AND CONFIGURATION [PRODUCTION]					
Type of local STP	With primary settler	With primary settler		s	
	(9-box)	(9-box)		-	
CONTINENTAL AND REGIONAL					
CONTINENTAL					
Continental PEC in surface water (total)	1.82E-03	2.29E-05	[mg.l-1]	0	
Continental PEC in sea water (total)	??	??	[mg.l-1]	D	
Continental PEC in surface water (dissolved)	1.82E-03	2.29E-05	[mg.l-1]	0	
Continental PEC in sea water (dissolved)	??	??	[mg.l-1]	D	
Continental PEC in air (total)	4.19E-05	2.41E-05	[mg.m-3]	0	
Continental PEC in agricultural soil (total)	2.97E-05	1.71E-05	[mg.kgwwt-1]	0	
Continental PEC in pore water of agricultural soils	1.69E-04	9.74E-05	[mg.l-1]	0	
Continental PEC in natural soil (total)	2.97E-05	1.71E-05	[mg.kgwwt-1]	0	
Continental PEC in industrial soil (total)	3.48E-05	2.21E-05	[mg.kgwwt-1]	0	
Continental PEC in sediment (total)	1.19E-03	1.5E-05	[mg.kgwwt-1]	0	
Continental PEC in sea water sediment (total)	??	??	[mg.kgwwt-1]	D	
REGIONAL					
Regional PEC in surface water (total)	0.0101	2.15E-04	[mg.l-1]	0	
Regional PEC in sea water (total)	??	??	[mg.l-1]	D	
Regional PEC in surface water (dissolved)	0.0101	2.15E-04	[mg.l-1]	0	
Regional PEC in sea water (dissolved)	??	??	[mg.l-1]	D	
Regional PEC in air (total)	7.55E-05	4.75E-05	[mg.m-3]	0	
Regional PEC in agricultural soil (total)	5.36E-05	3.38E-05	[mg.kgwwt-1]	0	
Regional PEC in pore water of agricultural soils	3.06E-04	1.93E-04	[mg.l-1]	0	
Regional PEC in natural soil (total)	5.35E-05	3.37E-05	[mg.kgwwt-1]	0	
Regional PEC in industrial soil (total)	1.03E-04	8.3E-05	[mg.kgwwt-1]	0	
Regional PEC in sediment (total)	6.67E-03	1.43E-04	[mg.kgwwt-1]	0	
Regional PEC in sea water sediment (total)	??	??	[mg.kgwwt-1]	D	
LOCAL PECS [PRODUCTION]					
Annual average local PEC in air (total)	4.56E-04	4.28E-04	[mg.m-3]	0	
Local PEC in surface water during emission episode	0.0524	0.0426	[mg.l-1]	0	
Annual average local PEC in surface water (dissolved)	0.0449	0.035	[mg.l-1]	0	
Local PEC in sediment during emission episode	0.0448	0.0363	[mg.kgwwt-1]	0	
Local PEC in agric. soil (total) averaged over 30 days	0.0235	0.0235	[mg.kgwwt-1]	0	

USES Compact report	Single substance					
Printed on	9/17/01 11:29	9:47 AM				
Study	new					
Substance	Cyanuric Chloride					
Defaults	Standard					
Assessment types	1A, 1B, 2, 3A, 3B, 5					
Base set complete	No					
Name	Reference	Value	Units	Status		
LOCAL PECS [PRODUCTION] (Continued)						
Local PEC in agric. soil (total) averaged over 180 days	0.0114	0.0113	[mg.kgwwt-1]	0		
Local PEC in grassland (total) averaged over 180 days	2.64E-03	2.62E-03	[mg.kgwwt-1]	0		
Local PEC in pore water of agricultural soil	0.0647	0.0646	[mg.l-1]	0		
Local PEC in pore water of grassland	0.015	0.0149	[mg.l-1]	0		
Local PEC in groundwater under agricultural soil	64.7	64.6	[ug.i-1]	0		

9/17/01 11:29:47 AM

JSES Compact report	Single substance					
Printed on	9/17/01 11:29:47 AM					
Study	new					
Substance	Cyanuric Chloride					
Defaults	Standard					
Assessment types	1A, 1B, 2, 3A, 3B,	5				
Base set complete	No					
Name	Reference	Value	Units	Status		
EXPOSURE						
HUMAN EXPOSURE AT THE WORKPLACE						
SUBSTANCE DATA AND PATTERN OF USE						
UBSTANCE PROPERTIES						
hysical state of a substance	Solid	Solid		0		
rocess temperature	25	25	[oC]	S		
Determination of Vapour Pressure	Measured at process	Measured at process		D		
	temperature	temperature				
apour pressure at the process temperature	2.5	2.5	[Pa]	0		
verosol formed	No	No		D		
nhalation exposure to dust particles	Yes	Yes		s		
Particle size of the substance	Respirable	Respirable		S		
ype of dust	Non-Fibrous	Non-Fibrous		s		
bility of fibrous dust to become airborne	Low	Low		S		
Oust particles aggregates readily	No	No		D		
PATTERN OF USE						
Pattern of use	Closed system	Closed system		S		
s closed system (considered to be) breached	No	No		S		
attern of control applied to the process	Local Exhaust	Local Exhaust		S		
	Ventilation (LEV)	Ventilation (LEV)				
ype of process operations	Low dust techniques	Low dust techniques		S		
ocal Exhaust Ventilation (LEV) present	Yes	Yes		S		
DERMAL DATA						
Amount of dermal contact between worker and substance	Incidental	Incidental		S		
Area of contact between substance and skin	0.114	0.114	[m2]	0		
hickness of layer of product on skin	0.01	0.01	[cm]	D		
lean number of events	2	2	[d-1]	S		
Pattern of control applied to the process	Not direct handling	Not direct handling		0		
NTERMEDIATE RESULTS						
NHALATION						
apour concentration in air for workers	0 - 0.1	0 - 0.1	[ppm]	0		
apour concentration in air for workers	0 - 0.767	0 - 0.767	[mg.m-3]	0		
ibre concentration in air for workers	0 - 0	0 - 0	[fibres.m-3]	0		
Dust concentration in air for workers	0 - 1	0 - 1	[mg.m-3]	0		
DERMAL						
ermal weight of substance on the skin of workers	0 - 0	0 - 0	[mg.cm-2.d-1]	0		
otential dermal uptake for workers	0 - 0	0 - 0		0		

9/17/01 11:29:47 AM

USES Compact report	Single substa	nce		
Printed on	9/17/01 11:29	:47 AM		
Study	new			
Substance	Cyanuric Chlo	oride		
Defaults	Standard			
Assessment types	1A, 1B, 2, 3A	, 3B, 5		
Base set complete	No			
Name	Reference	Value	Units	Status
EFFECTS				
INPUT OF EFFECTS DATA				
MICRO-ORGANISMS				
EC50 for micro-organisms in a STP	??	??	[mg.l-1]	D
Specific bacterial population?	No	No		D
EC10 for micro-organisms in a STP	??	??	[mg.l-1]	D
Specific bacterial population?	No	No		D
NOEC for micro-organisms in a STP	??	??	[mg.i-1]	D
Specific bacterial population?	No	No		D
AQUATIC ORGANISMS				
LC50 for fish	??	??	[mg.l-1]	D
L(E)C50 for Daphnia	??	??	[mg.l-1]	D
EC50 for algae	??	??	[mg.l-1]	D
LC50 for other aquatic species	??	??	[mg.l-1]	D
Species	other	other		D
NOEC for fish	??	??	[mg.i-1]	D
NOEC for Daphnia	??	??	[mg.i-1]	D
NOEC for algae	??	??	[mg.l-1]	D
NOEC for other aquatic species	??	??	[mg.l-1]	D
Additional aquatic NOEC	??	??	[mg.l-1]	D
Additional aquatic NOEC	??	??	[mg.l-1]	D
Additional aquatic NOEC	??	??	[mg.l-1]	D
Additional aquatic NOEC	??	??	[mg.i-1]	D
Additional aquatic NOEC	??	??	[mg.I-1]	D
Additional aquatic NOEC	??	??	[mg.i-1]	D
TERRESTRIAL ORGANISMS				
LC50 for plants	??	??	[mg.kgdwt-1]	D
LC50 for earthworms	??	??	[mg.kgdwt-1]	D
EC50 for microorganisms	??	??	[mg.kgdwt-1]	D
LC50 for other terrestrial species	??	??	[mg.kgdwt-1]	D
Species	other	other		D
NOEC for plants	??	??	[mg.kgdwt-1]	D
NOEC for earthworms	??	??	[mg.kgdwt-1]	D
NOEC for microorganisms	??	??	[mg.kgdwt-1]	D
NOEC for other terrestrial species	??	??	[mg.kgdwt-1]	D
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]	D
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]	D
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]	D
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]	D
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]	D
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]	D
BIRDS				
LC50 in avian dietary study (5 days)	??	??	[mg.kgfd-1]	D
LD50 for birds	??	??	[mg.kgbw-1]	D
USES 3.0	9/17/01 11:29:47			Page: 8

USES Compact report	Single substance					
Printed on	9/17/01 11:29:47	' AM				
Study	new					
Substance	Cyanuric Chloric	le				
Defaults	Standard					
Assessment types	1A, 1B, 2, 3A, 38	3, 5				
Base set complete	No					
Name	Reference	Value	Units	Status		
BIRDS (Continued)						
NOAEL for birds	??	??	[mg.kgbw-1.d-1]	D		
NOEC via food	??	??	[mg.kgfd-1]	ō		
Duration of (sub-)chronic oral test	Chronic	Chronic	[mg.kgid=1]	D		
Conversion factor NOAEL to NOEC	8	8	[kg.d.kg-1]	D		
			10 0 1			
MAMMALS						
ACUTE						
Oral LD50	??	??	[mg.kgbw-1]	D		
Oral Discriminatory Dose	??	??	[mg.kg-1]	D		
Dermal LD50	??	??	[mg.kgbw-1]	0		
Inhalatory LC50	??	??	[mg.m-3]	0		
(SUB)CHRONIC						
Oral NOAEL	??	??	[mg.kgbw-1.d-1]	D		
Oral LOAEL	??	??	[mg.kgbw-1.d-1]	õ		
Inhalatory NOAEL	??	??	[mg.m-3]	õ		
Inhalatory LOAEL	??	??	[mg.m-3]	0		
Dermal NOAEL	??	??	[mg.kgbw-1.d-1]	õ		
Dermal LOAEL	??	??	[mg.kgbw-1.d-1]	0		
Inhalatory (fibre) NOAEL	??	??	[fibres.m-3]	D		
inhalatory (fibre) NOALL	??	??	[fibres.m-3]	ם		
			. ,			
FOOD						
NOEC via food	??	??	[mg.kg-1]	0		
LOEC via food	??	??	[mg.kg-1]	D		
Duration of (sub-)chronic oral test	28 days	28 days		D		
Species for conversion of NOAEL to NOEC	Rattus norvegicus (<6 weeks)	Rattus norvegicus (<6 weeks)		D		
Conversion factor NOAEL to NOEC	(<0 weeks) 10	(<0 weeks) 10	[kg.d.kg-1]	0		
Test duration for mammalian toxicity test	28	28		D		
Mammalian species of concern	20 Dutch standard	20 Dutch standard	[d]	D		
nammanan opedea or concern	mammal	mammal		U		
Mean bodyweight of mammalian species of concern	??	??	[a]	D		
	??	?? ??	[g]	D		
Daily food intake for mammalian species of concern Daily water intake of mammalian species of choice	?? ??	?? ??	[gdwt.d-1] [ml.d-1]	D		
HUMANS SUB)CHRONIC						
Oral NOAEL	??	??	[mg.kgbw-1.d-1]	D		
Dral LOAEL	??	??		D		
Dermal NOEC in a medium	??	?? ??	[mg.kgbw-1.d-1]	-		
Dermal LOEC in a medium			[mg.cm-3]	D		
Dermal LOEC in a medium Dermal LOAEL	??	??	[mg.cm-3]	D		
	??	??	[mg.kgbw-1.d-1]	0		
Dermal NOAEL	??	??	[mg.kgbw-1.d-1]	0		
Inhalatory LOAEL	??	??	[mg.m-3]	0		
nhalatory NOAEL JSES 3.0	?? 9/17/01 11:29:47 AM	??	[mg.m-3]	0		

USES Compact report	Single substa	nce		
Printed on	9/17/01 11:29	:47 AM		
Study	new			
Substance	Cyanuric Chlo	oride		
Defaults	Standard			
Assessment types	1A, 1B, 2, 3A	3B, 5		
Base set complete	No			
Name	Reference	Value	Units	Status
HUMANS (Continued)				
(SUB)CHRONIC				
Inhalatory (fibre) NOAEL	??	??	[fibres.m-3]	D
Inhalatory (fibre) LOAEL	??	??	[fibres.m-3]	D
CURRENT CLASSIFICATION				
Corrosive (C, R34 or R35)	No	No		D
Irritating to skin (Xi, R38)	No	No		D
Irritating to eyes (Xi, R36)	No	No		D
Risk of serious damage to eyes (Xi, R41)	No	No		D
Irritating to respiratory system (Xi, R37)	No	No		D
May cause sensitisation by inhalation (Xn, R42)	No	No		D
May cause sensitisation by skin contact (Xi, R43)	No	No		D
May cause cancer (T, R45)	No	No		D
May cause cancer by inhalation (T, R49)	No	No		D
Possible risk of irreversible effects (Xn, R40)	No	No		D
ENVIRONMENTAL EFFECTS ASSESSMENT				
INTERMEDIATE RESULTS AQUATIC ORGANISMS, M	ICRO-ORGANISMS	AND PREDATORS		
Toxicological data used for extrapolation to PNEC Aqua	??	??	[mg.l-1]	0
Assessment factor applied in extrapolation to PNEC Aqua	??	??	[-]	0
Toxicological data used for extrapolation to PNEC Aqua	??	??	[mg.l-1]	0
Assessment factor applied in extrapolation to PNEC Aqua	??	??	[-]	0
Toxicological data used for extrapolation to PNEC micro	??	??	[mg.l-1]	0
Assessment factor applied in extrapolation to PNEC micro	??	??	[-]	0
Toxicological data used for extrapolation to PNEC oral	??	??	[mg.kg-1]	0
Assessment factor applied in extrapolation to PNEC oral	??	??	[-]	0
INTERMEDIATE RESULTS TERRESTRIAL AND SEDI	MENT ORGANISMS			
Toxicological data used for extrapolation to PNEC Terr	??	??	[mg.kgdwt-1]	0
Assessment factor applied in extrapolation to PNEC Terr	??	??	[-]	0
Equilibrium partitioning used for PNEC in soil?	Yes	Yes		0
Equilibrium partitioning used for PNEC in sediment?	Yes	Yes		õ
PNECS FOR AQUATIC ORGANISMS, MICRO-ORGAN	SMS AND PREDAT	ORS		
PNEC for aquatic organisms	??	??	[mg.l-1]	0
PNEC for aquatic organisms, intermittent releases	??	??	[mg.l-1]	0
USES 3.0	9/17/01 11:29:47	AM		Page: 1

USES Compact report	Single substance					
Printed on	9/17/01 11:29	9:47 AM				
Study	new					
Substance	Cyanuric Chloride					
Defaults	Standard					
Assessment types	1A, 1B, 2, 3A	, 3B, 5				
Base set complete	No					
Name	Reference	Value	Units	Status		
PNECS FOR AQUATIC ORGANISMS, MICRO-ORGAN	ISMS AND PREDAT	ORS (Continued)				
PNEC for micro-organisms in a STP	??	??	[mg.l-1]	0		
PNEC for secondary poisoning of birds and mammals	??	??	[mg.kg-1]	0		
PNEC for aquatic organisms with statistical method	??	??	[mg.l-1]	0		
PNECS FOR TERRESTRIAL AND SEDIMENT ORGAN	ISMS					
PNEC for terrestrial organisms	??	??	[mg.kgdwt-1]	0		
PNEC for terrestrial organisms with statistical method	??	??	[mg.kgdwt-1]	0		
PNEC for sediment-dwelling organisms	??	22	[mg.kgdwt-1]	0		

9/17/01 11:29:47 AM

JSES Compact report	Single substance					
Printed on	9/17/01 11:29	:47 AM				
Study	new					
Substance	Cyanuric Chle	oride				
Defaults	Standard					
Assessment types	1A, 1B, 2, 3A	, 3B, 5				
Base set complete	No					
lame	Reference	Value	Units	Status		
NSK CHARACTERIZATION						
NVIRONMENTAL EXPOSURE						
OCAL						
RISK CHARACTERIZATION OF [PRODUCTION]						
NVIRONMENTAL						
CR for the local water compartment	??	??	[-]	0		
ntermittent release	No	No		D		
CR for the local soil compartment	??	??	[-]	0		
xtra factor 10 applied to PEC	No	No		0		
CR for the local sediment compartment	??	??	[-]	0		
xtra factor 10 applied to PEC	No	No		0		
CR for the sewage treatment plant	??	??	[-]	0		
REDATORS						
CR for fish-eating birds and mammals	??	??	[-]	0		
CR for worm-eating birds and mammals	??	??	[-]	0		
UMANS						
IOS local, total exposure via all media	??	??	[-]	0		
IOS local, exposure via air	??	??	[-]	0		
EGIONAL						
NVIRONMENT						
CR for the regional water compartment	??	??	[-]	0		
CR for the regional soil compartment	??	??	[-]	0		
xtra factor 10 applied to PEC	No	No		0		
CR for the regional sediment compartment	??	??	[-]	0		
xtra factor 10 applied to PEC	No	No		0		
UMANS						
IOS regional, total exposure via all media	??	??	[-]	0		
IOS regional, exposure via air	??	??	[-]	0		
XPOSURE AT THE WORKPLACE						
IOS for worker, vapour inhalation	?? - ??	?? - ??	[-]	0		
OS for worker, fibres inhalation	?? - ??	?? - ??	[-]	0		
IOS for worker, dust inhalation	?? - ??	?? - ??	[-]	0		
IOS for worker, dermal (Uptake / N(L)OAEL)	?? - ??	?? - ??	[-]	0		
IOS for worker, dermal (Conc / N(L)OEC)	?? - ??	?? - ??	[-]	0		

9/17/01 11:29:47 AM

APPENDIX B2 '2-CHLORO-4,6-DIHYDROXY-S-TRIAZINE'

USES 3.0

Input parameters/assumptions

Fysico-chemical data taken from section in this report Changes in default: Hydrolysis set to 5 hours (for abiotic degradation in waste water treatment plants)

High Production Volume:	Yes, production > 1000 tonnes/year
Tonnage used for assessment:	50.000 tonnes/year
Regional production of substance:	10% of total amount i.e. 5000 tonnes/year
Industry category:	1. Agricultural Chemicals
Use category:	33. Intermediates
Life-cycle steps chosen:	1. Production (III Multi purpose equipment)
	3. Processing (III Non-dispersive use)

According to USES3.0 the following emissions will occur:

Production (fraction of tonnage)	
Fraction released to air	1E-04
Fraction released to waste water	3E-03
Fraction released to surface water	0
Fraction released to industrial soil	1E-04
Fraction of main local source	1
Number of emission days	300/year
Which gives a release during production of	50 kg/day (USES 3.0 prediction)

Processing (fraction of tonnage)

Fraction released to air	0.1
Fraction released to waste water	0
Fraction released to surface water	0.1
Fraction released to industrial soil	0
Fraction of main local source	0
Number of emission days	1/year
Since the fraction of local source is 0, the re-	elease during processing is 0 kg/day (USES 3.0 prediction)

Additional parameter

A rate constant for hydrolysis in water has been added: DT_{50} is 5 hours (ref. 12) (additionally a worst case estimate was calculated based on based on ref. 11 (DT_{50} 4 days)) for the hydrolysis of 2-chloro-4,6-dihydroxy-s-triazine to cyanuric acid. The substance itself will be totally hydrolysed within 1 hour (DT_{50} 5 min).

Outcome (production only)	DT ₅₀ 4 days	DT ₅₀ 5 hrs
Concentration in waste water treatment plant during production:	25 mg/L	25 mg/L
Emission to waste water from waste water treatment plant:	93.3%	50.3%
Concentration in effluent:	23.3 mg/L	12.6 mg/L
Dilution factor to surface water:	about 10	about 10
Concentration surface water during emissions:	2.33 mg/L	1.26 mg/L
Annual average:	1.92 mg/L	1.03 mg/L
Concentration in waste water treatment plant during production:	25 mg/L	25 mg/L
Emission to sludge from waste water treatment plant:	0.04%	0.04%
Concentration in sludge:	25.5 mg/kg	22.3 mg/kg
Concentration agricultural soil 30 days:	0.0318 mg/kg _{wwt}	0.028 mg/kg _{wwt}
Concentration agricultural soil 180 days:	0.015 mg/kg _{wwt}	0.014 mg/kg _{wwt}

USES Compact report	Single substance			
Printed on	8/23/01 3:09:22 PM			
Study	new			
Substance	Cyanuric Chlo	oride		
Defaults	Standard			
Assessment types	1A, 1B, 2, 3A	3B, 5		
Base set complete	No			
Explanation status column	'O' = Output; 'D' = Default; 'S' = Set; 'l' = Imported			
Name	Reference	Value	Units	Status
STUDY				
STUDY IDENTIFICATION				
Study name	new	new		D
Study description				D
Author				D
Institute				D
Address				D
Zip code				D
City				D
Country				D
Telephone				D
Telefax				D
Email				D
Calculations checksum	767E20EA	767E20EA		S

8/23/01 3:09:22 PM

USES Compact report	Single substance				
Printed on	8/23/01 3:09:22 PM				
Study	new				
Substance	Cyanuric Chloride Standard 1A, 1B, 2, 3A, 3B, 5				
Defaults					
Assessment types					
Base set complete	No				
Name	Reference	Units	Status		
DEFAULTS					
DEGRADATION AND TRANSFORMATION RATES					
Rate constant for abiotic degradation in STP	5	5	[hr] (DT50)	S	

8/23/01 3:09:22 PM

USES Compact report	Single substance				
Printed on	8/23/01 3:09:22 PM				
Study	new				
Substance	Cyanuric Chloric	e			
Defaults	Standard				
Assessment types	1A, 1B, 2, 3A, 3I	3. 5			
Base set complete	No				
Name	Reference	Value	Units	Status	
SUBSTANCE					
SUBSTANCE IDENTIFICATION					
General name	Cyanuric Chloride	Cyanuric Chloride		S	
Description	unknown	unknown		S	
CAS-No	108-77-0	108-77-0		S	
EC-notification no.	n.a.	n.a.		S	
EINECS no.	203-614-9	203-614-9		S	
PHYSICO-CHEMICAL PROPERTIES					
Molecular weight	184.41	184.41	[g.mol-1]	S	
Melting point	154	154	[oC]	S	
Boiling point	190	190	[oC]	S	
Vapour pressure at 25 [oC]	2.5	2.5	[Pa]	S	
Octanol-water partition coefficient.	0.512	0.512	[log10]	S	
Water solubility	440	440	[mg.l-1]	s	

8/23/01 3:09:22 PM

USES Compact report	Single substance				
Printed on	8/23/01 3:09:22 PM new Cyanuric Chloride Standard				
Study Substance					
Assessment types					
Base set complete	No	-,-			
Name	Reference	Value	Units	Status	
RELEASE ESTIMATION					
CHARACTERIZATION AND TONNAGE					
High Production Volume Chemical	Yes	Yes		S	
Production volume of chemical in EU	5E+04	5E+04	[tonnes.yr-1]	S	
Volume of chemical imported to EU	0	0	[tonnes.yr-1]	D	
Volume of chemical exported from EU	0	0	[tonnes.yr-1]	D	
Intermittent release	No	No		D	
USE PATTERNS					
EMISSION INPUT DATA					
Industry category	1 Agricultural	1 Agricultural		S	
	chemicals	chemicals			
Use category	33 Intermediates	33 Intermediates		S	
Emission scenario document available	No	No		0	
Extra details on use category	No extra details necessary	No extra details necessary		D	
Extra details on use category	No extra details necessary	No extra details necessary		D	
Fraction of tonnage for application	1	1	[-]	0	
Fraction of chemical in formulation	1	1	[-]	D	
Production	Yes	Yes		D	
Formulation	No	No		S	
Processing	Yes	Yes		S	
Private use	No	No		S	
Recovery	No	No		S	
Main category production	III Multi-purpose	III Multi-purpose		D	
	equipment	equipment			
Main category formulation	III Multi-purpose	III Multi-purpose		D	
	equipment	equipment			
Main category processing	III Non-dispersive	III Non-dispersive		s	
	use	use			

8/23/01 3:09:22 PM

USES Compact report	Single substance				
Printed on Study Substance Defaults Assessment types Base set complete	8/23/01 3:09:22 PM new Cyanuric Chloride Standard 1A, 1B, 2, 3A, 3B, 5 No				
Name	Reference	Value	Units	Status	
DISTRIBUTION DEGRADATION AND TRANSFORMATION RATES ARWATER					
Rate constant for hydrolysis in surface water	5.27292E+05	0.208	[d] (DT50,20[oC])	S	
SEWAGE TREATMENT LOCAL [PRODUCTION] INPUT AND CONFIGURATION [PRODUCTION] Type of local STP	With primary settler	With primary settler		S	
	(9-box)	(9-box)			
CONTINENTAL AND REGIONAL CONTINENTAL					
Continental PEC in surface water (total)	1.84E-03	2.31E-05	[mg.i-1]	0	
Continental PEC in sea water (total)	??	??	[mg.l-1]	D	
Continental PEC in surface water (dissolved)	1.84E-03	2.31E-05	[mg.l-1]	Ō	
Continental PEC in sea water (dissolved)	??	??	[mg.l-1]	D	
Continental PEC in air (total)	4.21E-05	2.41E-05	[mg.m-3]	0	
Continental PEC in agricultural soil (total)	2.99E-05	1.71E-05	[mg.kgwwt-1]	õ	
Continental PEC in pore water of agricultural soils	1.7E-04	9.74E-05	[mg.i-1]	õ	
Continental PEC in natural soil (total)	2.99E-05	1.71E-05	[mg.kgwwt-1]	õ	
Continental PEC in industrial soil (total)	3.49E-05	2.21E-05	[mg.kgwwt-1]	õ	
Continental PEC in sediment (total)	1.2E-03	1.51E-05	[mg.kgwwt-1]	õ	
Continental PEC in sea water sediment (total)	??	??	[mg.kgwwt-1]	D	
REGIONAL					
Regional PEC in surface water (total)	0.0102	2.18E-04	[mg.l-1]	0	
Regional PEC in sea water (total)	??	??	[mg.l-1]	D	
Regional PEC in surface water (dissolved)	0.0102	2.18E-04	[mg.l-1]	0	
Regional PEC in sea water (dissolved)	??	??	[mg.l-1]	D	
Regional PEC in air (total)	7.58E-05	4.75E-05	[mg.m-3]	0	
Regional PEC in agricultural soil (total)	5.39E-05	3.38E-05	[mg.kgwwt-1]	0	
Regional PEC in pore water of agricultural soils	3.07E-04	1.93E-04	[mg.I-1]	0	
Regional PEC in natural soil (total)	5.37E-05	3.37E-05	[mg.kgwwt-1]	0	
Regional PEC in industrial soil (total)	1.03E-04	8.3E-05	[mg.kgwwt-1]	0	
Regional PEC in sediment (total)	6.74 E- 03	1.44E-04	[mg.kgwwt-1]	0	
Regional PEC in sea water sediment (total)	??	??	[mg.kgwwt-1]	D	
Annual average local PEC in air (total)	4.57E-04	4.28E-04	[mg.m-3]	0	
Local PEC in surface water during emission episode	1.27	1.26	[mg.l-1]	0	
Annual average local PEC in surface water (dissolved) Local PEC in sediment during emission episode	1.04	1.03	[mg.l-1]	0	
Local PEC in sediment during emission episode	1.08	1.07	[mg.kgwwt-1]	0	
Local PEC in agric. soil (total) averaged over 30 days	0.028	0.0279	[mg.kgwwt-1]	0	
days	0.0135	0.0135	[mg.kgwwt-1]	0	
Local PEC in grassland (total) averaged over 180 days	3.14E-03	3.12E-03	[mg.kgwwt-1]	0	
Local PEC in pore water of agricultural soil	0.077	0.0769	[mg _1]	0	
JSES 3.0	8/23/01 3:09:22 PM	0.0709	[mg.l-1]	O Page:	

USES Compact report	Single substance				
Printed on	8/23/01 3:09:22 PM				
Study	new				
Substance	Cyanuric Chl	oride			
Defaults	Standard				
Assessment types	1A, 1B, 2, 3A, 3B, 5				
Base set complete	No				
Name	Reference Value Units				
LOCAL PECS [PRODUCTION] (Continued)					
Local PEC in pore water of grassland	0.0179	0.0178	[mg.i-1]	0	
Local PEC in groundwater under agricultural soil	77	76.9	[ug.l-1]	0	

8/23/01 3:09:22 PM

USES Compact report	Single substance				
Printed on	8/23/01 3:09:22 PM				
Study	new Cyanuric Chloride Standard 1A, 1B, 2, 3A, 3B, 5				
Substance					
Defaults					
Assessment types					
Base set complete	No	5			
Name	Reference	Value	Units	Status	
EXPOSURE					
HUMAN EXPOSURE AT THE WORKPLACE					
SUBSTANCE DATA AND PATTERN OF USE					
SUBSTANCE PROPERTIES					
Physical state of a substance	Solid	Solid		0	
Process temperature	25	25	[oC]	S	
Determination of Vapour Pressure	Measured at process	Measured at process		D	
	temperature	temperature			
apour pressure at the process temperature	2.5	2.5	[Pa]	0	
Aerosol formed	No	No		D	
nhalation exposure to dust particles	Yes	Yes		s	
Particle size of the substance	Respirable	Respirable		S	
Гуре of dust	Non-Fibrous	Non-Fibrous		S	
Ability of fibrous dust to become airborne	Low	Low		S	
Dust particles aggregates readily	No	No		D	
PATTERN OF USE					
Pattern of use	Closed system	Closed system		S	
s closed system (considered to be) breached	No	No		S	
Pattern of control applied to the process	Local Exhaust	Local Exhaust		S	
	Ventilation (LEV)	Ventilation (LEV)			
Type of process operations	Low dust techniques	Low dust techniques		S	
ocal Exhaust Ventilation (LEV) present	Yes	Yes		S	
DERMAL DATA					
Amount of dermal contact between worker and	Incidental	Incidental		S	
substance					
Area of contact between substance and skin	0.114	0.114	[m2]	0	
Thickness of layer of product on skin	0.01	0.01	[cm]	D	
Mean number of events	2	2	[d-1]	S	
Pattern of control applied to the process	Not direct handling	Not direct handling		0	
NTERMEDIATE RESULTS					
NHALATION					
apour concentration in air for workers	0 - 0.1	0 - 0.1	[ppm]	0	
apour concentration in air for workers	0 - 0.767	0 - 0.767	[mg.m-3]	0	
fibre concentration in air for workers	0 - 0	0 - 0	[fibres.m-3]	0	
Dust concentration in air for workers	0 - 1	0 - 1	[mg.m-3]	0	
DERMAL					
Dermal weight of substance on the skin of workers	0 - 0	0 - 0	[mg.cm-2.d-1]	0	
Potential dermal uptake for workers	0 - 0	0-0		0	

8/23/01 3:09:22 PM

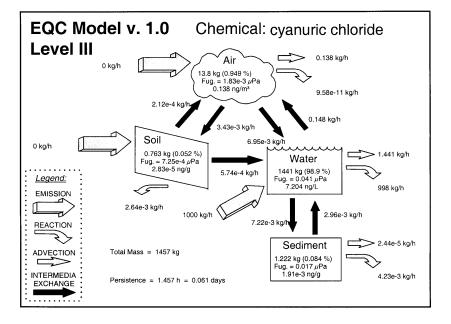
USES Compact report	Single substance					
Printed on	8/23/01 3:09	:22 PM				
Study	new					
Substance	Cyanuric Ch	oride				
Defaults	Standard					
Assessment types	1A, 1B, 2, 3A, 3B, 5					
Base set complete	No	, 00, 0				
	INU					
Name	Reference	Value	Units	Status		
EFFECTS						
INPUT OF EFFECTS DATA						
MICRO-ORGANISMS						
EC50 for micro-organisms in a STP	??	??	[mg.l-1]	D		
Specific bacterial population?	No	No		D		
EC10 for micro-organisms in a STP	??	??	[mg.l-1]	D		
Specific bacterial population?	No	No		D		
NOEC for micro-organisms in a STP	??	??	[mg.l-1]	D		
Specific bacterial population?	No	No		D		
AQUATIC ORGANISMS						
LC50 for fish	??	??	[mail_1]	D		
L(E)C50 for Daphnia	??	??	[mg.l-1]			
			[mg.l-1]	D		
EC50 for algae	??	??	[mg.l-1]	D		
LC50 for other aquatic species	??	??	[mg.l-1]	D		
Species	other	other		D		
NOEC for fish	??	??	[mg.l-1]	D		
NOEC for Daphnia	??	??	[mg.l-1]	D		
NOEC for algae	??	??	[mg.l-1]	D		
NOEC for other aquatic species	??	??	[mg.l-1]	D		
Additional aquatic NOEC	??	??	[mg.l-1]	D		
Additional aquatic NOEC	??	??	[mg.I-1]	D		
Additional aquatic NOEC	??	??	[mg.l-1]	D		
Additional aquatic NOEC	??	??	[mg.l-1]	D		
Additional aquatic NOEC	??	??	[mg.l-1]	D		
Additional aquatic NOEC	??	??	[mg.l-1]	D		
TERRESTRIAL ORGANISMS						
LC50 for plants	??	??	[mg.kgdwt-1]	D		
LC50 for earthworms	??	??	[mg.kgdwt-1]	D		
EC50 for microorganisms	??	??	[mg.kgdwt-1]	D		
LC50 for other terrestrial species	??	??	[mg.kgdwt-1]	D		
Species	other	other	[D		
NOEC for plants	??	??	[mg.kgdwt-1]	D		
NOEC for earthworms	??	??	[mg.kgdwt-1]	D		
NOEC for microorganisms	??	??	[mg.kgdwt-1]	D		
NOEC for other terrestrial species	??	??		D		
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]			
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]	D		
Additional terrestrial NOEC	??		[mg.kgdwt-1]	D		
Additional terrestrial NOEC		??	[mg.kgdwt-1]	D		
Additional terrestrial NOEC	??	??	[mg.kgdwt-1]	D		
Additional terrestrial NOEC	?? ??	?? ??	[mg.kgdwt-1] [mg.kgdwt-1]	D D		
			f 9 9 1	-		
BIRDS LC50 in avian dietary study (5 days)	20	22	Inter the first of the	-		
LD50 for birds	??	??	[mg.kgfd-1]	D		
NOAEL for birds	??	??	[mg.kgbw-1]	D		
	??	??	[mg.kgbw-1.d-1]	D		
NOEC via food	??	??	[mg.kgfd-1]	0		
Duration of (sub-)chronic oral test	Chronic	Chronic	1 11 41	D		
Conversion factor NOAEL to NOEC	8	8	[kg.d.kg-1]	D		

USES Compact report	Single substance			
Printed on	8/23/01 3:09:22	PM		
Study	new			
Substance	Cyanuric Chloric	le		
Defaults	Standard			
Assessment types	1A, 1B, 2, 3A, 3B	3, 5		
Base set complete	No			
Name	Reference	Value	Units	Status
MAMMALS				
ACUTE				_
Oral LD50	??	??	[mg.kgbw-1]	D
Oral Discriminatory Dose	??	??	[mg.kg-1]	D
Dermal LD50	??	??	[mg.kgbw-1]	0
Inhalatory LC50	??	??	[mg.m-3]	0
(SUB)CHRONIC				
Oral NOAEL	??	??	[mg.kgbw-1.d-1]	D
Oral LOAEL	??	??	[mg.kgbw-1.d-1]	0
Inhalatory NOAEL	??	??	[mg.m-3]	0
Inhalatory LOAEL	??	??	[mg.m-3]	0
Dermal NOAEL	??	??	[mg.kgbw-1.d-1]	0
Dermal LOAEL	??	??	[mg.kgbw-1.d-1]	0
Inhalatory (fibre) NOAEL	??	??	[fibres.m-3]	D
inhalatory (fibre) LOAEL	??	??	[fibres.m-3]	D
FOOD				
NOEC via food	??	??	[mg.kg-1]	0
_OEC via food	??	??	[mg.kg-1]	D
Duration of (sub-)chronic oral test	28 days	28 days		D
Species for conversion of NOAEL to NOEC	Rattus norvegicus (<6 weeks)	Rattus norvegicus (<6 weeks)		D
Conversion factor NOAEL to NOEC	10	10	[kg.d.kg-1]	0
Fest duration for mammalian toxicity test	28	28	[d]	D
Mammalian species of concern	Dutch standard	Dutch standard		D
	mammal	mammal		
Mean bodyweight of mammalian species of concern	??	??	[g]	D
Daily food intake for mammalian species of concern	??	??	[gdwt.d-1]	D
Daily water intake of mammalian species of choice	??	??	[ml.d-1]	D
HUMANS				
(SUB)CHRONIC				
Dral NOAEL	??	??	[mg.kgbw-1.d-1]	D
Dral LOAEL	??	??	[mg.kgbw-1.d-1]	D
Dermal NOEC in a medium	??	??	[mg.cm-3]	D
Dermal LOEC in a medium	??	??	[mg.cm-3]	D
Dermal LOAEL	??	??	[mg.kgbw-1.d-1]	0
Dermal NOAEL	??	??	[mg.kgbw-1.d-1]	0
nhalatory LOAEL	??	??	[mg.m-3]	0
nhalatory NOAEL	??	??	[mg.m-3]	0
nhalatory (fibre) NOAEL	??	??	[fibres.m-3]	D
nhalatory (fibre) LOAEL	??	??	[fibres.m-3]	D
CURRENT CLASSIFICATION				
Corrosive (C, R34 or R35)	No	No		D
rritating to skin (Xi, R38)	No	No		D
rritating to eyes (Xi, R36)	No	No		D
Risk of serious damage to eyes (Xi, R41)	No	No		D
rritating to respiratory system (Xi, R37)	No	No		D
May cause sensitisation by inhalation (Xn, R42)	No	No		D
JSES 3.0				

JSES Compact report	Single substa	nce		
Printed on Study	8/23/01 3:09:2 new			
Substance	Cyanuric Chlo	bride		
Defaults	Standard	<u></u>		
Assessment types	1A, 1B, 2, 3A	, 3B, 5		
Base set complete	No			
Name	Reference	Value	Units	Status
CURRENT CLASSIFICATION (Continued)				
May cause sensitisation by skin contact (Xi, R43)	No	No		D
May cause cancer (T, R45)	No	No		D
May cause cancer by inhalation (T, R49)	No	No		D
Possible risk of irreversible effects (Xn, R40)	No	No		D
ENVIRONMENTAL EFFECTS ASSESSMENT				
NTERMEDIATE RESULTS AQUATIC ORGANISMS, N				_
Foxicological data used for extrapolation to PNEC	??	??	[mg.l-1]	0
Assessment factor applied in extrapolation to PNEC	??	??	[-]	0
Aqua				
Foxicological data used for extrapolation to PNEC	??	??	[mg.I-1]	0
Assessment factor applied in extrapolation to PNEC	??	??	[-]	0
Aqua				
Foxicological data used for extrapolation to PNEC nicro	??	??	[mg.l-1]	0
	00	00		0
Assessment factor applied in extrapolation to PNEC nicro	??	??	[-]	0
Foxicological data used for extrapolation to PNEC	??	??	Ima ka 11	0
oral		<i></i>	[mg.kg-1]	0
Assessment factor applied in extrapolation to PNEC	??	??	[-]	0
oral		••	[]	Ū
NTERMEDIATE RESULTS TERRESTRIAL AND SEDI	MENT OBGANISMS			
Foxicological data used for extrapolation to PNEC	??	??	[mg.kgdwt-1]	0
Ferr			[Ŭ
Assessment factor applied in extrapolation to PNEC	??	??	[•]	0
Ferr Equilibrium partitioning used for PNEC in soil?	Vee	Vaa		0
Equilibrium partitioning used for PNEC in soil?	Yes	Yes		0
equilibrium partitioning used for PNEC in sediment?	Yes	Yes		0
PNECS FOR AQUATIC ORGANISMS, MICRO-ORGAN	ISMS AND PREDAT	ORS		
PNEC for aquatic organisms	??	??	[mg.l-1]	0
PNEC for aquatic organisms, intermittent releases	??	??	[mg.l-1]	ō
PNEC for micro-organisms in a STP	??	??	[mg.l-1]	0
PNEC for secondary poisoning of birds and	??	??	[mg.kg-1]	0
nammals				
NEC for aquatic organisms with statistical method	??	??	[mg.l-1]	0
	ISMS			
NECS FOR TERRESTRIAL AND SEDIMENT ORGAN				
	??	??	[ma.kadwt-1]	0
PNECS FOR TERRESTRIAL AND SEDIMENT ORGAN PNEC for terrestrial organisms PNEC for terrestrial organisms with statistical method		?? ??	[mg.kgdwt-1] [mg.kgdwt-1]	0 0

8/23/01 3:09:22 PM

USES Compact report	Single substance 8/23/01 3:09:22 PM new Cyanuric Chloride Standard 1A, 1B, 2, 3A, 3B, 5 No				
Printed on Study Substance Defaults Assessment types Base set complete					
Name	Reference	Value	Units	Status	
RISK CHARACTERIZATION					
ENVIRONMENTAL EXPOSURE					
LOCAL					
RISK CHARACTERIZATION OF [PRODUCTION]					
ENVIRONMENTAL					
RCR for the local water compartment	??	??	[-]	0	
Intermittent release	No	No		D	
RCR for the local soil compartment	??	??	[-]	0	
Extra factor 10 applied to PEC	No	No		0	
RCR for the local sediment compartment	??	??	[-]	0	
Extra factor 10 applied to PEC	No	No		0	
RCR for the sewage treatment plant	??	??	[-]	0	
PREDATORS					
RCR for fish-eating birds and mammals	??	??	[-]	0	
RCR for worm-eating birds and mammals	??	??	[-]	0	
HUMANS					
MOS local, total exposure via all media	??	??	[-]	0	
MOS local, exposure via air	??	??	[-]	0	
REGIONAL					
ENVIRONMENT					
RCR for the regional water compartment	??	??	[-]	0	
RCR for the regional soil compartment	??	??	[-]	0	
Extra factor 10 applied to PEC	No	No		0	
RCR for the regional sediment compartment	??	??	[-]	0	
Extra factor 10 applied to PEC	No	No		0	
HUMANS					
MOS regional, total exposure via all media	??	??	[-]	0	
MOS regional, exposure via air	??	??	[-]	0	
EXPOSURE AT THE WORKPLACE					
MOS for worker, vapour inhalation	?? - ??	?? - ??	[-]	0	
MOS for worker, fibres inhalation	?? - ??	?? - ??	[-]	0	
MOS for worker, dust inhalation	?? - ??	?? - ??	[-]	0	
MOS for worker, dermal (Uptake / N(L)OAEL)	?? - ??	?? - ??	[-]	0	
MOS for worker, dermal (Conc / N(L)OEC)	?? - ??	?? - ??	[-]	0	

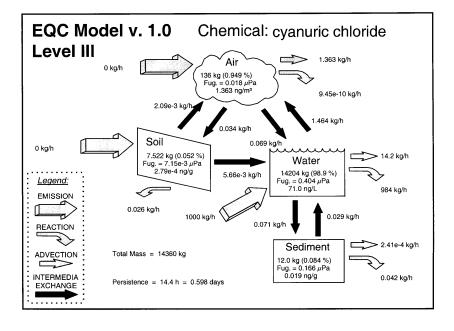

8/23/01 3:09:22 PM

APPENDIX C1

EQC-model

Input parameters

Molecular weight	184.41
Temperature	20°C
Water solubility	440 mg/L
Vapour pessure	2.5 Pa
Log Kow	0.51
Melting point	146°C
Half-life air	1E11 hours
Half-life water	0.1 hours
Half-life soil/sediment	200 hours


١M

APPENDIX C2

EQC-model

Input parameters

Molecular weight	184.41
Temperature	20°C
Water solubility	440 mg/L
Vapour pessure	2.5 Pa
Log Kow	0.51
Melting point	146°C
Half-life air	1E11 hours
Half-life water	10 hours
Half-life soil/sediment	200 hours

۶М

SIDS Dossier on the HPV Chemical Cyanuric Chloride

CAS No. 108-77-0

Sponsor Country: Switzerland

List of Abbreviations

а	Absolute to body weight
-	Absent
+	Present
a.i.	Active ingredient
ALP	Alkaline phosphatase
BCF	Bioconcentration factor
CFU	Colony forming units
d	Decrease
dc	Decrease (significant)
DOC	Dissolved organic carbon
DR	Dose related
F	Female
FID	Flame ionisation detection
GC	Gas chromatography
i	Increase
ic	Increase (significant)
LC	Liquid chromatopraphy
LOD	Limit of detection
М	Male
MCV	Mean corpuscular volume
MS	Massa spectronomy
N/A	Not applicable
QC	Quality control
r	Relative to body weight
TLC	Thin layer chromatography
UV	Ultra violet
WHC	Water holding capacity

1.01. Chemical identity

CAS No.	:	108-77-0
OECD name	:	Cyanuric chloride
Chemical/IUPAC name	:	2,4,6-trichloro-1,3,5-triazine
EINECS number	:	203-614-9
Molecular formula	:	$C_3CI_3N_3$
Molecular weight	:	184.41
Structural formula	:	Cl N Cl

1.02. OECD information

Sponsor country	:	Switzerland
Lead organisation	:	Dr Urs Staempfli, Swiss Agency for the Environment, Forests and Landscape
Name of responder (leader of consortium)	:	Dr Werner Bourgeois, Syngenta Crop Protection Ltd, Basel

1.1. General substance information

Type of substance	:	Organic
Physical state	:	Solid

1.2. Impurities

1.3. Additives

1.4. Synonyms

Chlorotriazine, cyanuric acid chloride, s-triazine trichloride, 2,4,6-trichlorotriazine

1.5. Quantity

Yearly more than 100000 tonnes of cyanuric chloride are produced.

1.6. Use pattern

The compound is used exclusively as an intermediate in the production of pesticides (herbicides), optical brighteners, dyes and plastic additives.

1.7. Sources of exposure

Occupational exposure during loading and sampling.

1.8. Additional information

Title	Bericht über die Überprüfung von 2,4,6-trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des "Abwasserverhaltens"
Date of report GLP Reference Test substance Melting point Reliability	January 16, 1979. No. 21. Cyanuric chloride, purity not indicated. 146-7°C. 4 Secondary literature (MSDS).
Title Date of report GLP Reference Test substance Test method Melting point Rev. note Reliability	Synthese von Halogenalkyl-dichlor- und bis-(halogenalkyl)-chlor-s-triazinen. 1964. No. 83. Cyanuric chloride, purity not indicated. Not applicable. 146 °C The article consisted of a prescription for the synthesis of a.o. cyanuric chloride. 4
Title Date of report GLP Reference Test substance Test method Stat. method Melting point Reliability	The chemistry of cyanuric chloride, In New Products Bulletin Collective, Vol. 1 1952. No. 81. Cyanuric chloride, purity not indicated. Not indicated. Not applicable. 145.75 \pm 0.05 °C 4
Title Date of report GLP Reference Test substance Test method Melting point Rev. note Reliability	Reactions of nucleophilic reagents with cyanuric fluoride and cyanuric chloride. 1958. No. 1. Cyanuric chloride, purity not indicated. Not applicable. 145-146 °C The article consisted of a prescription for the reaction of nucleophilic agents with cyanuric chloride. 4
Title Date of report GLP Reference Test substance Test method Melting point Rev. note	Hydroxy-s-triazines (Japanese) 1970. No. 22. Cyanuric chloride, purity not clear from the report. Not clear from the report. 145-146°C. Japanese article without English abstract.

2.1. Melting point

Reliability 4 Japanese article.

2.2. Boiling point

Title	Unpublished letter.
Date of report	September 3, 1992.
GLP	No.
Reference	3.
Test substance	Cyanuric chloride, purity not indicated.
Boiling point	193°C.
Reliability	4
Title Date of report GLP Reference Test substance Boiling point Reliability	Bericht über die Überprüfung von 2,4,6-trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des "Abwasserverhaltens" January 16, 1979. No. 21. Cyanuric chloride, purity not indicated. 190°C. 4 Secondary literature (MSDS).
Title	Synthese von Halogenalkyl-dichlor- und bis-(halogenalkyl)-chlor-s-triazinen.
Date of report	1964.
GLP	No.
Reference	83.
Test substance	Cyanuric chloride, purity not indicated.
Test method	Not applicable.
Boiling point	198 °C.
Rev. note	The article consisted of a prescription for the synthesis of a.o. cyanuric chloride.
Reliability	4
Title	Synthese von Halogenalkyl-dichlor- und bis-(halogenalkyl)-chlor-s-triazinen.
Date of report	1964.
GLP	No.
Reference	83.
Test substance	Cyanuric chloride, purity not indicated.
Test method	Not applicable.
Boiling point	198 °C.
Rev. note	The article consisted of a prescription for the synthesis of a.o. cyanuric chloride.
Reliability	4
2.3. Relative der	nsity
Title	2,4,6-Trichlorotriazine in Sax's Dangerous properties of industrial materials.
Date of report	1996.
GLP	No.
Reference	71.
Test substance	Cyanuric chloride, purity not indicated.
Specific gravity	1.32 at 20°C
Reliability	4
Title	The chemistry of cyanuric chloride, In New Products Bulletin Collective, Vol. 1
Date of report	1952.
GLP	No.
Reference	81.

2.11115100 01	
Test substance Test method Stat. method Specific gravity Reliability	Cyanuric chloride, purity not indicated. Not applicable. Not applicable. 1.32 4
2.4. Vapour pres	sure
Title Date of report GLP Reference Test substance Vapour pressure Reliability	Berechnung der Henrykonstante von Cyanurchlorid 1993. No. 17. Cyanuric chloride, purity not indicated. 1.2 Pa. 4
Title Date of report GLP Reference Test substance Vapour pressure Reliability	Su di un caso di intossicazione acuta professionale da 2,4,6- trichloro-1-triazine (cloruro di cianurile) 1987. No. 45. Cyanuric chloride, purity not indicated. 2.5 Pa at 20 °C; 267 Pa at 70 °C 4
Title Date of report GLP Reference Test substance Vapour pressure Reliability	 Bericht über die Überprüfung von 2,4,6-trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des "Abwasserverhaltens" January 16, 1979. No. 21. Cyanuric chloride, purity not indicated. 270 Pa at 70°C; 2000 Pa at 100°C. 4 Secondary literature (MSDS).
Title Date of report GLP Reference Test substance Test method Stat. method Vapour pressure Reliability	The chemistry of cyanuric chloride, In New Products Bulletin Collective, Vol. 1 1952. No. 81. Cyanuric chloride, purity not indicated. Not applicable. Not applicable. 2 mm Hg at 70 °C.
2.5. Partition coe	efficient
Title	Zum Bioakkumulationspotential von Chlororganika
Date of report GLP Reference Test substance Test method	1993. No. 6. Cyanuric chloride. Not indicated.

OECD SIDS 2. PHYSICO-CHEMICAL DATA

2.11115100-0	
Procedure Findings	Overview of influence on lipophilic character of organic chloro compounds by substitution of chloro-atoms by other groups. For 2,4,6-trichlortriazin information was available of the following substitutes: methyl-, tertbutyl-, methoxy-, methylthio-, acetoxy, acetyl, nitro-, hydroxy-, and amino-group. P _{ow} values were calculated by the CLOGP-program (Leo and Hansch, 1991). Through substitution of chlor-atom with methyl-, acetoxy-, acetyl-, nitro-, hydroxy-(hydrolysis pathway) or amino-group the log Pow is decreased.
Conclusion	log P _{ow} cyanuric chloride: 0.51
Rev. note	Information is limited to what is included in the above summary. It is not clear from which
Reliability	source the log(P_{ow}) for cyanuric chloride was derived. 4
Title Date of report	Substituent constants for correlation analysis in chemistry and biology; Chapter IV: The FRAGMENT method of calculating partition coefficients 1979.
GLP	No.
Reference Procedure	 A description of the FRAGMENT method of calculating partition coefficients is included in the report. Partition coefficients (observed and calculated) of some substances are included.
Conclusion	No data on cyanuric chloride.
Rev. note Reliability	Report contains no data on (degradates of) cyanuric chloride and subsequently is not relevant in this case. 4 Not relevant.
Title	Bestimmung des Verteilungsgleichgewichts von Cyol nach der OECD-Richtlinie Testing of Chemicals Nr. 117 vom 03.03.1989 und 107 vom 12-05-1981
Date of report GLP	December 15, 1992. No.
Reference	50.
Test substance Test method	Cyanuric acid OECD 117, OECD 107.
Procedure	A HPLC/UV method [mobile phase (water/acetonitrile, 53/47)] was used to correlate log P_{ow} and retention time on two different columns. Seven substances were used in this test of which three were recommended reference compounds of OECD 117 with known log P_{ow} . The dead time (T ₀) of the system was determined; chromatography was performed at 25°C. All compounds, except cyanuric acid, were dissolved in acetonitrile. The corrected retention time (T _c) for each reference substance and the test substance was calculated as $T_c = (T_r - T_0)$. There T_r was the measured retention time.
Conclusion	Probably log P_{ow} of cyanuricacid < 1.1.
Rev. note	 Log P_{ow} cyanuric chloride >1.7. No reliable conclusion about the exact log P_{ow} of cyanuric acid and cyanuric chloride can be drawn from this test, because extrapolation is necessary. For cyanuric acid also another liquid was used for the preparation of the solution. Cyanuric acid was reported to be soluted in "LM", which probably stands "Lösungsmittel" (mobile phase; water/acetonitrile).
Reliability	 No calibration curve for the method used was presented. Different solvents (note 1), no calibration curve (note 2).

2.6. Water solubility and dissociation constant

Title	The hydrolysis of some chloro-1,3,5-triazines: Mechanism: Structure and reactivity.
Date of report	1963.
GLP	No.
Reference	7.
Test substance	Cyanuric chloride, purity not indicated.
Water solubility	440 mg/L at 20 °C.
Reliability	4
Title	Berechnung der Henrykonstante von Cyanurchlorid.
Date of report	1993.
GLP	No.
Reference	17.
Test substance	Cyanuric chloride, purity not indicated.
Water solubility	440 mg/L at 20 °C.
Reliability	4
Title Date of report GLP Reference Test substance Water solubility Reliability	Bericht über die Überprüfung von 2,4,6-trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des "Abwasserverhaltens" January 16, 1979. No. 21. Cyanuric chloride, purity not indicated. Insoluble at 20°C; hydrolysis to water-soluble cyanuric acid from 10°C. 4 Secondary literature (MSDS).
Title	The chemistry of cyanuric chloride, In New Products Bulletin Collective, Vol. 1
Date of report	1952.
GLP	No.
Reference	81.
Test substance	Cyanuric chloride, purity not indicated.
Test method	Not applicable.
Stat. method	Not applicable.
Water solubility	practically insoluble
Reliability	4
2.7. Flash point	
Title	Cyanurchlorid (Degussa brochure).
Date of report	1987.
GLP	No.
Reference	106.
Test substance	Cyanuric chloride, purity not indicated.
Flash point	> 190 °C.
Reliability	4
2.8. Auto flamm	ability
Title Date of report GLP Reference	Cyanurchlorid (Degussa brochure). 1987. No. 106. Cyanuria ablarida, purity pat indicated

Ignition temp.> 650 °C.Reliability4

2.9. Flammability

2.10. Explosive properties

2.11. Oxidising properties

2.12. Oxidation/reduction potential

Not applicable.

2.13. Adsorption/desorption to soil

2.14. Additional information

Title Date of report GLP Reference Test substance Test method Stat. method Stability on heating Reliability	The chemistry of cyanuric chloride, In New Products Bulletin Collective, Vol. 1 1952. No. 81. Cyanuric chloride, purity not indicated. Not applicable. Not applicable. No depolymerisation occurs when cyanuric chloride is heated to 190 °C. Cyanuric chloride has been refluxed without decomposition. 4					
Title	Reactions of	f nucleophilic reage	ents with cy	anuric fluoride and cyanuric chloride	e	
Date of report GLP Reference Test substance Procedure	Nucleophilic	No.				
Nucleophilic agent	Cynanuric chloride (mmol)	Solvent	Reaction time (h)	Product	Product (mmol)	
Ammonia	20	Ether	1	2,4-dichloro-6-amino-s-triazine	15	
Diethylamine	10	Chloroform	~1.5	2,4-bis(diethyl-amino)-6-chloro-s- triazine	10	
Aniline	10	Tetrahydrofuran	~2	2,4-bis(phenylamino)-6-chloro-s- triazine	10	
Water	20	Tetrahydrofuran	0.17	Cyanuric chlorid/cyanuric acid	-	
Methanol	20	Tetrahydrofuran/ potassium carbonate/ methanol	~2	2,4,6-tris(methoxy)-s-triazine	12	
Conclusion Reliability	Cyanuric ch 4	loride reacts readily	y with nucle	ophilic agents.		

OECD SIDS 2. PHYSICO-C	HEMICAL DATA CYANURIC CHLORIDE ID: 108-77-0
Title	Strukturbestimmung von Cyanursäuretrichlorid C ₃ N ₃ Cl ₃ mit Verwendung der diffusen Röntgenstreustrahlung zur Bestimmung der Molekülorientierungen
Date of report GLP Reference Test substance Procedure Rev. note Reliability	 1957. No. 4. Cyanuric chloride. Determination of crystal structure of cyanuric chloride by Röntgen-diffraction. Information on structure of test substance. 4 Structure information
Title	Abschätzung des umweltchemischen und ökotoxikologischen Verhaltens von Stoffen durch computergestützte Analyse von Struktur und Verhalten sowie von Struktur und Wirkung
Date of report GLP Reference Procedure Rev. note Reliability	 1993. No. 8. Information about a software system for the determination of ecotoxicological and physico-chemical data based on quantitative structure-activity relationships. No information on cyanuric chloride available in the report. 4 No test substance related information

3.1.1. Photodegradation

Title	Epiwin vs 3.10.
Date of report Test substance Test method	2002. Cyanuric chloride. Calculation with AOPWIN vs1.9, based on: SMILES : n(c(nc(n1)CL)CL)c1CL CHEM : 1,3,5-Triazine, 2,4,6-trichloro- CAS NUM: 000108-77-0 MOL FOR: C3 CL3 N3 MOL WT : 184.41 AOP Program (v1.90) Results:
	SMILES : $n(c(nc(n1)CL)CL)c1CL$ CHEM : 1,3,5-Triazine, 2,4,6-trichloro- MOL FOR: C3 CL3 N3 MOL WT : 184.41
Reliability	HALF-LIFE = 2864.910 Days (12-hr day; 1.5E6 OH/cm3) 4

3.1.2. Stability in water

Title	On the hydrolysis of cyanuric chloride
Date of report GLP Reference Test substance Test method Procedure Findings	 1960. No. 2. Cyanuric chloride. Not clear from the report. Hydrolysis was tested in NaHCO₃, Na₂CO₃ or NaOH. Hydrolysis of cyanuric chloride gives the sodium salt of 2,4 dichloro-6-hydroxy-s-triazine in NaOH (at low temperature), NaHCO₃ and Na₂CO₃ or the sodium salt of 2-chloro-4,6-dihydroxy-s-triazine with an excess NaOH at room temperature. Both products are stable under alkaline conditions, but under acidic conditions they were decomposed to cyanuric acid.
Conclusion Rev. note Reliability	 Hydrolysis of cyanuric chloride gives 2,4 dichloro-6-hydroxy-s-triazine, 2-chloro-4,6-dihydroxy-s-triazine and/or cyanuric acid. Japanese article with English abstract, readable information limited. Japanese article
Title Date of report GLP Reference	The hydrolysis of some chloro-1,3,5-triazines: mechanism: structure and reactivity November 9, 1962. No. 7.
Test substance Test method	Cyanuric chloride. Not specified.

OECD SIDS		CYANURIC CHLORIDE	
3. ENVIRONN	MENTAL FATE AND PATHWAYS	ID: 108-77-0	
Procedure	A. 1.85 g cyanuric chloride in 12 mL acetone was added t This mixture was stirred and titrated continuously with 20°C.		
Findings	 B. 3-5 g cyanuric chlorid was dissolved in 14-140 mL acetone and added to 700 mL water or nitric acid (0.001 N or 0.1 N) at 0-25°C. This mixture was vigorously stirred and 50 mL samples (≥4) were taken at 2 min. intervals, acidified and hydrolysed for 2 h at 100°C and titrated with silver nitrate. Titration curves were made, from which solubility and hydrolysis constants were deduced. Water solubility and hydrolysis were comparable between water, 0.001 and 0.1 M nitric acid (not buffered). 		
	 DT₅₀ was calculated for the transformation of cyanuric dichlorohydroxytriazine (see table below, formula used DT₅₀ for hydrolysis of dichlorohydroxytriazine to chlorod alkaline solution (pH 9.2-11.2) was 1.6-90 days; in acid was 5-15 min. DT₅₀ for hydrolysis of chlorodihydroxytriazine to cyanur solution (pH 11-13) was 29-76 days; in acid solutions (At pH 7 no degradation was seen after one month. 	: DT50=ln2/k). dihydroxytriazine at 25°C in l solutions (pH 1.1-1.6) DT ₅₀ ric acid at 25°C in alkaline	
	Water solubility of cyanuric chloride	at temperature	

		Water solubility of cyanuric chloride at temperature					
Temperature (°C)	0	5	10	15	20	25	
Concentration (g/L)	0.32	0.35	0.38	0.41	0.44	0.49	

		DT ₅₀	[min] hyd	drolysis of	cyanur	ric chlorid	le at temp	perature [°C]:
рН		0	5	7	10	15	20	25
	Water, nitric acid (pH 3 and pH 1)		30	2.5-9.2	18	11	7.0	4.5
4			17	2.5-9.2				
7			11					
9			3.7					
Conclusion	Rate of hvdrolvsis	increase	-	aher tempe	ı rature a	nd in alka	line/acid s	olution.
Rev. note	 Rate of hydrolysis increased with higher temperature and in alkaline/acid solution. Cyanurchlorid hydrolyses fast (in the order of minutes-hours). Solubility in water is 0.49 g/L (25°C). 1. Water solubility may be overestimated due to supersaturation. 2. DT50 was not determined under sterile conditions and was not reported to be tested in the dark. Degradation is probably not completely attributable to hydrolysis, but also to other degradation pathways. DT50 values for hydrolysis may be underestimated. 3. In the report only the reaction constant (=k) was available. The reviewer calculated the DT50 with the following formula: DT50: ln2/k. 							
Reliability	2 Water solubil					erestimate	ed (note 2)
Title	Nucleophile Subst			3,5-Triazinr	eihe. VI	II. Zur Hyd	drolyse de	S
Date of report GLP	1983. No.	1983.						
Reference	9.							
Test substance Test method	Cyanuric chloride, Not specified.	purity 9	9%.					
Procedure	Measurement of the reaction rate for the hydrolysis of cyanuric chloride (0.6-1.3 mM) in water with 1-70% dioxan at 19, 35 and 44°C.							
Findings	 Reaction constant (k) for complete hydrolysis decreased with increasing conversion of Cl-atoms, due to nucleophilic substitution of three different Cl-atoms in the molecule. Reaction constant (k) increased with decreasing concentrations of dioxan. At dioxan concentrations >30-40%: constant k at 35 and 44°C, decrease in k at 19°C. 							
								se in k at 19°C. [.] o-6-hydroxy-s-
Conclusion Rev. note	DT ₅₀ (44°C): 1.3 n 1. Report concern		eaction m	echanism i	nvolved	in the hyd	trolysis of	cyanuric

Reliability	 chlorid. Information about test conditions was essentially confined to what is included in the above summary. 2. In the report only the reaction constant (=k) was available. The reviewer calculated the DT50 with the following formula: DT50: ln2/k. 4 Reaction mechanism study. 			
Title		-isopropylamino-s-triazin, kinet it Aethlyamin in Abhängigkeit o		
Date of report GLP Reference	June 30, 1978. No. 10.			
Test substance	2,4-dichloride-6-isopropylam	nino-s-triazin (purity 97.8%).		
Test method	Not indicated.			
Procedure		s study is included in this sumn ater (50/50) at pH 10 and 50°C		
		ide-6-isopropylamino-s-triazin v		
	M) and diluted with water (er	nd volume 1 Ľ). The pH was ke	ept at pH 10 with the addition of	
		mL were taken from the water		
		s measured by the NaOH adde		
	LC/UV.	I with AgNO ₃ . The hydrolysis-p	roducis were analysed by	
Findings		l-dichloride-6-isopropylamino-s	-triazin (A) were 2-chloride-4-	
Ū	hydroxy-6-isopropylamino-s		-6-isopropylamino-s-triazin (C).	
	See table below.			
Time [min]	A _t [mMol]	B _t [mMol]	C _t [mMol]	
0	250.00	0	0	
3	250.00	0	0	
10	249.48	0.52	0	
24	248.23	1.48	0.29	
45 60	246.26 244.80	3.16 4.64	0.58 0.56	
75	242.90	6.11	0.99	
90	242.41	6.43	1.16	
116	239.80	8.72	1.48	
140	237.18	11.59	1.23	
167	238.92	9.72	1.36	
Conclusion		,4-dichloride-6-isopropylamino	-s-triazin was hydrolysed. The	
Rev. note	DT ₅₀ calculated by the revie 1. The tested substance is			
Rev. note		not a hydrolysis product of cya sts of a hydrolysis and an amin		
		1. Only the separate hydrolysis		
		n be a relevant endpoint.	, ,	
		used, but the pH was adjusted		
		H-level is not reported, neither		
	during the study. Variation	ons in pH are very important fo	or the hydrolysis rate of a	
		d assuming that the only produ	cts formed were 2-chloride-4-	
			S-isopropylamino-s-triazin. This	
	is acceptable in a worst	case approach.		
		line was drawn by the reviewer		
		e only data were available of th		
		est substance was hydrolysed ne DT ₅₀ . Extrapolation makes t		
Reliability	3 Extrapolated value (note			
		• /		
Title	Hydrolytische Zersetzung vo	on Cyanurchlorid und MDT		
Date of report	February 22, 1978.			

GLP	No.
Reference	11.
Test substance	Cyanuric chloride.
Test method	Not specified.
Procedure	In 300 mL flasks a suspense of 5 g cyanurchlorid in 200 mL water was prepared. The flasks were sealed and incubated at 22°C. Once a day the flasks were shaken. Samples were removed for analysis after 1, 2, 3, 4, 5, 8, 15 and 25 days. Samples were filtrated and analysed on hydrochlorid acid.
Findings	The table below shows the hydrolysis of cyanurchlorid. Maximum hydrolysis of cyanurchloride after 25 days. Italic values are theoretical; actually they cannot be >100%.

Day	Formation HCI [%} based on				
	1 free CI	2 free CI	3 free Cl		
1	3.3	1.7	1.1		
2	66	33	22		
3	90	45	30		
4	136	68	46		
5	189	96	63		
8	252	126	84		
15	297	199	99		
25	300	200	100		

25	300	200	100			
Conclusion	At 22°C: DT ₅₀ for total hydrolysis 4 days.					
Rev. note	1. The method of analysis was specified only to a limited extent. No recovery or					
	specificity was available for the analytical method.					
	 The DT50 should be measured at two different temperatures and at minimal 3 different pH values. The acidity of the solution was not given in this report. pH is an 					
			bride. Further it is not clear whether			
	the temperature was kept constant. There were also no reference substances (aspirin or diazinon) included to provide the calibration of the used method.					
	3. The reviewer determined the DT50 value graphically (graph was available in the					
	report.	STOC Value graphical	iy (graph was available in the			
Reliability	3 Incomplete description and I	imited test (note 1 an	ld 2)			
,		, , , , , , , , , , , , , , , , , , ,	,			
Title	Kinetische Untersuchungen zur H	vdrolvse von Cvanur	chlorid			
Date of report	September 26, 1985.					
GLP	No.					
Reference	12.					
Test substance	Cyanuric chloride.					
Test method	Not indicated.					
Procedure			r, for pH 2 additional 0.1 M NaOH;			
	· · ·	2), 40°C (pH 3, 4 and	d 12), 20, 25, 30, 35 and 40°C (pH			
	7).					
			was blended in 400 mL water and			
	continuously stirred during the stu		vele			
Findings	Samples were analysed by HPLC					
rindings	<i>Metabolites</i> : 2,4-dichlor-6-hydroxy-1,3,5-triazin (first product, M1); 2-chlor-4,6-dihydroxy-1,3,5-triazin (second product, M2), cyanuric acid (endproduct, E).					
	,	•				
			for the disappearance of cyanuric			
			ues for transformation of the test			
			eed 5 hours except the DT50 at pH			
			own for all three transformations: M1 to M2 and reaction 3 from M2			
	to E.					

1		Reacti	Reaction rate k _x {1/min) DT50 [min] for transformation of						
рΗ	т	k ₁	k ₂	k ₃	Cyanuric chlorid to M				
-	[°C]			-	-				
2	25	5.8 E-1	4 E-2	6.2 E-3	1.2	112			
	30	9.5 E-1	6.7 E-2	9.3 E-3	0.73	75			
	40	2.5	1.5 E-1	2.2 E-2	0.28	32			
3	40	9.8 E-1	2.1 E-2	3.7 E-3	0.71	187			
4	40	4.2 E-1	2.1 E-3	-	1.7	_			
7	20	1.5 E-1	1.2 E-2	-	4.6	-			
-	25	2 E-1	2.2 E-2	2.9 E-3	3.5	239			
	30	3.4 E-1	3.2 E-2	5.1 E-3	2.0	136			
	35	5.7 E-1	6.3 E-2	6.5 E-3	1.2	107			
	40	8.9 E-1	7.8 E-2	1.1 E-2	0.78	63			
12	40	>1.5	1.4 E-2	~ 2 E-4	<0.46	~3466			
	lusion				uric chlorid) <5 min (all test				
						°C and pH 12, DT ₅₀ ~2.5 d).			
Rev.	note				was specified only to a limit				
					e for the analytical method.				
						is based on the rate limiting			
						f M2 to E (= cyanuric acid).			
) or extracted from the report			
				d also In2/k					
Relia	bility	2			,. t specified (note 1).				
. conta	<i>Sincy</i>	-	, and y actu						
		-							
Title		Com	nunication.	Azo and An	thraquinoid dyes containing	the cyanuric ring			
Date	of repo	rt Nove	November 1937.						
GLP	orropo	No.							
Refer	rence	13.							
	substar	-	Cyanuric chloride.						
	method		Not indicated.						
	edure		In a four-necked flask was placed in a water bath and fitted with a stirrer, thermometer						
			and a gas delivery and gas exit tube. At 10°C 5.1 g cyanuric chloride, 7 g CaCO3 and 190 mL water, at 21°C 4.2 g cyanuric chloride, 12 g CaCO3 and 175 mL water and at						
			nl water a	t 21°C 4 2 a	cvanuric chloride 12 g Ca	CO3 and 175 mL water and at			
		190 r							
		190 n 36°C	2.7 g cyan	uric chloride	, 10 g CaCO3 and 220 mL v	water were placed in the flask.			
		190 r 36°C The f	2.7 g cyan lasks was a	uric chloride aerated with	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcor	water were placed in the flask. ming gas was dried on sulphuric			
		190 n 36°C The f acid a	2.7 g cyanı lasks was a and calcium	uric chloride aerated with achloride and	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcor	water were placed in the flask.			
Findi	nas	190 n 36°C The f acid a soda	2.7 g cyant lasks was a and calcium lime was m	uric chloride aerated with achloride and aeasured.	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcor d then absorbed in soda lim	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the			
Findi	ngs	190 r 36°C The f acid a soda At 0°	2.7 g cyant lasks was a and calcium lime was m C after 12 h	uric chloride aerated with achloride and aeasured. a no hydrolys	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress of	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyant lasks was a and calcium lime was m C after 12 h ated in the	uric chloride aerated with achloride and neasured. n no hydrolys table below	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress of	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro	uric chloride aerated with achloride and neasured. n no hydrolys table below oup.	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress o . 100% hydrolysis equals to	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is o the replacement of 1 Cl-atom by			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro	uric chloride herated with hchloride and heasured. h no hydrolys table below bup.	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min)	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is o the replacement of 1 Cl-atom by % Hydrolysis			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (°C 10	uric chloride herated with hchloride and heasured. h no hydrolys table below bup.	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is o the replacement of 1 Cl-atom by <u>% Hydrolysis</u> 2.3			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10	uric chloride aerated with achloride and neasured. a no hydrolys table below bup.	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcon d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is o the replacement of 1 Cl-atom by <u>% Hydrolysis</u> 2.3 4.9			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10	uric chloride aerated with inchloride and ineasured. in no hydrolys table below bup. C)	, 10 g CaCO3 and 220 mL on itrogen gas and the outcon d then absorbed in soda limes of the outcord of the solution of the solu	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is o the replacement of 1 Cl-atom by <u>% Hydrolysis</u> 2.3 4.9 7.4			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10	uric chloride aerated with achloride and aeasured. a no hydrolys table below bup.	, 10 g CaCO3 and 220 mL o nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress o . 100% hydrolysis equals to <u>Time (min)</u> 20 40 60 90	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is o the replacement of 1 Cl-atom by <u>% Hydrolysis</u> 2.3 4.9 7.4 11			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10 10 10	uric chloride aerated with achloride and neasured. a no hydrolys table below bup.	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcon d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10 10 10 10	uric chloride aerated with hchloride and heasured. h no hydrolys table below bup. C)	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcon d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10 10 10 10 10 10 10	uric chloride aerated with hchloride and heasured. h no hydrolys table below bup. C)	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcon d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10 10 10 10 10 10 10 10	uric chloride aerated with hchloride and heasured. h no hydrolys table below bup. C)	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcon d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196 232	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25 40			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10 10 10 10 10 10 21	uric chloride aerated with hchloride and heasured. h no hydrolys table below pup. C)	, 10 g CaCO3 and 220 mL on nitrogen gas and the outcon d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196 232 11	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is to the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25 40 2.5			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10 10 10 10 10 21 21 21	uric chloride aerated with hchloride and heasured. h no hydrolys table below oup. C)	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcon d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196 232 11 20	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is to the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25 40 2.5 6.5			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10 10 10 10 21 21 21 21	uric chloride aerated with hchloride and heasured. h no hydrolys table below pup. C)	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcon d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196 232 11 20 33	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is to the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25 40 2.5 6.5 13			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the droxide-gro T (% 10 10 10 10 10 10 10 21 21 21 21 21	uric chloride aerated with hchloride and heasured. h no hydrolys table below pup. C)	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196 232 11 20 33 60	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is to the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25 40 2.5 6.5 13 26			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the rdroxide-gro T (° 10 10 10 10 10 10 10 10 21 21 21 21 21 21	uric chloride aerated with hchloride and neasured. n no hydrolys table below pup. C)	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196 232 11 20 33 60 90	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is to the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25 40 2.5 6.5 13 26 40			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the rdroxide-gro T (° 10 10 10 10 10 10 10 10 21 21 21 21 21 21 21	uric chloride aerated with hchloride and neasured. n no hydrolys table below pup. C)	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196 232 11 20 33 60 90 113	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is to the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25 40 2.5 6.5 13 26			
Findi	ngs	190 r 36°C The f acid a soda At 0° ⁱ illustr	2.7 g cyani lasks was a and calcium lime was m C after 12 h ated in the rdroxide-gro T (° 10 10 10 10 10 10 10 10 21 21 21 21 21 21	uric chloride aerated with achloride and neasured. n no hydrolys table below oup. C)	, 10 g CaCO3 and 220 mL v nitrogen gas and the outcor d then absorbed in soda lim sis occurred. The progress of . 100% hydrolysis equals to Time (min) 20 40 60 90 134 160 196 232 11 20 33 60 90	water were placed in the flask. ming gas was dried on sulphuric e. The change in weight of the of hydrolysis at 10, 21 and 36°C is to the replacement of 1 Cl-atom by % Hydrolysis 2.3 4.9 7.4 11 17 20 25 40 2.5 6.5 13 26 40			

CYANURIC CHLORIDE ID: 108-77-0

J. EINVIKUINIVI	ENTAL FAT	LANDIAIIIV	VAIS			ID. 100-77-0
	1	36	24	1	1	9
		36	30		25	
			35		30	
		36				
		36	50		45	
		36	60			5
		36	70			5
Conclusion	DT50 hydroly	ses of cyanuric ch	loride at 10,	21 and 36°	C is >3.9 h, ~2 h a	and ~1 h. At 0°C
	no hydrolytic	degradation.				
Rev. note		f test solutions is i	not determine	ed during the	e test. DT50 hydro	olysis should be
		ed at pH 4, 7 and 9			,	,
		test was not perfe			sterile conditions	the degradation
		t substance may b				
		wer deduced the				
			DI JU Values	nom me tai		; i munys
Dellahilitu		f this summary.			una datiana (mata O)	
Reliability	3 pH (note	1) and hydrolysis	not only path	way for deg	radation (note 2).	
Title	Determination	n of Dyrene and C	vanuric chlor	ida in tachn	ical materials	
			yanunc chior		ical materials	
Date of report	January-Febr	uary 1960.				
GLP	No.					
Reference	14.					
Test substance	Cyanuric chlo					
Test method	Not specified.					
Procedure	The rate of (c	omplete) hydrolys	is of cyanurio	chloride w	as investigated in	1M Sodium
	hydroxide (pH	14), 1 M hydroch	nloric acid (pł	10) and wa	ter by determining	g the chloride.
		entration was 6 g/				
	50°C and at r	-				,
Findings	See table bel					
i mangs				a/ ==		
	nU	Tomporaturo	Timo [h]	0/ TC		DT50 [min]
	рН	Temperature	Time [h]		completely	DT50 [min]
	-	[°C]			drolysed	DT50 [min]
	0	[° C] 15	1		drolysed 10	DT50 [min]
	0	[° C] 15 25	1		drolysed 10 15	-
	0 0 0	[°C] 15 25 50	1 1 1		drolysed 10 15 70	50
	0	[° C] 15 25 50 reflux	1		drolysed 10 15	
	0 0 0	[°C] 15 25 50	1 1 1		drolysed 10 15 70	50
	0 0 0 0	[° C] 15 25 50 reflux	1 1 1 1		drolysed 10 15 70 100	50
	0 0 0 0 water	[°C] 15 25 50 reflux 15	1 1 1 1 1		drolysed 10 15 70 100 4	50
	0 0 0 0 water water water	[°C] 15 25 50 reflux 15 25 50	1 1 1 1 1 1		drolysed 10 15 70 100 4 5 30	- - 50 <1 - - -
	0 0 0 water water water water water water	[°C] 15 25 50 reflux 15 25 50 reflux	1 1 1 1 1 1 1 1 1		drolysed 10 15 70 100 4 5 30 100	- - 50 <1 - - - <5
	0 0 0 water water water water water 14	[°C] 15 25 50 reflux 15 25 50 reflux 15	1 1 1 1 1 1 1 1		drolysed 10 15 70 100 4 5 30 100 85	- - 50 <1 - - - <5 <10
Conclusion	0 0 0 water water water water water 14 14	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux	1 1 1 1 1 1 1 1 1 1 1	hy	drolysed 10 15 70 100 4 5 30 100 85 100	- - 50 <1 - - - - - - - - - - - - - - - - - -
Conclusion	0 0 0 water water water water 14 14 14 Rate of hydro	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hyv perature ar	drolysed 10 15 70 100 4 5 30 100 85 100 ad in alkaline or ad	- - 50 <1 - - - - - - - - - - - - - - - - - -
Conclusion Rev. note	0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatio	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the	1 1 1 1 1 1 1 1 1 th higher tem report is limi	hyo perature ar ted to what	drolysed 10 15 70 100 4 5 30 100 85 100 at in alkaline or action is included above	- - 50 <1 - - - - - - - - - - - - - - - - - -
	0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatio determine	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and	hyo perature ar ted to what was not rep	drolysed 10 15 70 100 4 5 30 100 85 100 ad in alkaline or ad is included above ported to be tested	- - 50 <1 - - - - - - - - - - - - - - - - - -
	0 0 0 water water water water 14 14 14 . Information determine Degradat	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and t completely a	hyo perature ar ted to what was not rep attributable	drolysed 10 15 70 100 4 5 30 100 85 100 nd in alkaline or action is included above ported to be tested to hydrolysis, but	- - 50 <1 - - - - - - - - - - - - - - - - - -
	0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatio determine Degradat and photo	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and t completely 50 values for	perature ar ted to what was not rep attributable hydrolysis n	drolysed 10 15 70 100 4 5 30 100 85 100 nd in alkaline or action is included above ported to be tested to hydrolysis, but nay be underestin	- - 50 <1 - - - - - - - - - - - - - - - - - -
	0 0 0 water water water water 14 14 14 . Information determine Degradati and photo the pH va	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no bodegradation. DTS lues used in the to	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and t completely a 50 values for est were very	perature an ted to what was not rep attributable hydrolysis n	drolysed 10 15 70 100 4 5 30 100 85 100 nd in alkaline or action is included above ported to be tested to hydrolysis, but may be underesting not specified (wat	- - - 50 <1 - - - - - - - - - - - - - - - - - -
	0 0 0 water water water water 14 14 14 . Information determine Degradati and photo the pH va 2. The DT50	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS lues used in the to 0 was estimated b	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and t completely to values for est were very y the reviewe	hydrolysis n extreme or extreme or extreme or extreme or	drolysed 10 15 70 100 4 5 30 100 85 100 nd in alkaline or action is included above ported to be tested to hydrolysis, but may be underesting not specified (wat hs showing the period	- - 50 <1 - - - - - - - - - - - - - - - - - -
	0 0 0 water water water water 14 14 14 . Information determine Degradati and photo the pH va 2. The DT50	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no bodegradation. DTS lues used in the to	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and t completely to values for est were very y the reviewe	hydrolysis n extreme or extreme or extreme or extreme or	drolysed 10 15 70 100 4 5 30 100 85 100 nd in alkaline or action is included above ported to be tested to hydrolysis, but may be underesting not specified (wat hs showing the period	- - 50 <1 - - - - - - - - - - - - - - - - - -
	0 0 0 water water water water 14 14 14 Rate of hydro 1. Information determine Degradati and photo the pH va 2. The DT50 cyanuric of	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS lues used in the to 0 was estimated b	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and t completely to values for est were very y the reviewe	hydrolysis n extreme or extreme or extreme or extreme or	drolysed 10 15 70 100 4 5 30 100 85 100 nd in alkaline or action is included above ported to be tested to hydrolysis, but may be underesting not specified (wat hs showing the period	- - 50 <1 - - - - - - - - - - - - - - - - - -
Rev. note	0 0 0 water water water water 14 14 14 Rate of hydro 1. Information determine Degradati and photo the pH va 2. The DT50 cyanuric of	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS lues used in the to 0 was estimated b chloride in the solu	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and t completely to values for est were very y the reviewe	hydrolysis n extreme or extreme or extreme or extreme or	drolysed 10 15 70 100 4 5 30 100 85 100 nd in alkaline or action is included above ported to be tested to hydrolysis, but may be underesting not specified (wat hs showing the period	- - 50 <1 - - - - - - - - - - - - - - - - - -
Rev. note	0 0 0 water water water water 14 14 14 Rate of hydro 1. Information determine Degradati and photo the pH va 2. The DT50 cyanuric of	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS lues used in the to 0 was estimated b chloride in the solu	1 1 1 1 1 1 1 1 th higher tem report is limi onditions and t completely to values for est were very y the reviewe	hydrolysis n extreme or extreme or extreme or extreme or	drolysed 10 15 70 100 4 5 30 100 85 100 nd in alkaline or action is included above ported to be tested to hydrolysis, but may be underesting not specified (wat hs showing the period	- - 50 <1 - - - - - - - - - - - - - - - - - -
Rev. note Reliability	0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatic determine Degradat and photo the pH va 2. The DT50 cyanuric of 4 Extreme of	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS lues used in the to 0 was estimated b chloride in the solu r unspecified pH.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hydrolysis n extreme or extreme or extreme or er from grap ent time poi	drolysed 10 15 70 100 4 5 30 100 85 100 100 85 100 100 85 100 100 100 100 100 100 100 10	- - 50 <1 - - - - - - - - - - - - -
Rev. note Reliability Title	0 0 0 0 water water water water 14 14 14 Rate of hydro 1. Information determine Degradat and photo the pH va 2. The DT50 cyanuric of 4 Extreme of Der Mechanis	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS lues used in the to 0 was estimated b chloride in the solu	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hydrolysis n extreme or extreme or extreme or er from grap ent time poi	drolysed 10 15 70 100 4 5 30 100 85 100 100 85 100 100 85 100 100 100 100 100 100 100 10	- - 50 <1 - - - - - - - - - - - - -
Rev. note Reliability Title Date of report	0 0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatic determine Degradat and photo the pH va 2. The DT50 cyanuric of 4 Extreme of Der Mechanis 1971.	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS lues used in the to 0 was estimated b chloride in the solu r unspecified pH.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hydrolysis n extreme or extreme or extreme or er from grap ent time poi	drolysed 10 15 70 100 4 5 30 100 85 100 100 85 100 100 85 100 100 100 100 100 100 100 10	- - 50 <1 - - - - - - - - - - - - -
Rev. note Reliability Title Date of report GLP	0 0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatic determine Degradat and photo the pH va 2. The DT50 cyanuric of 4 Extreme o Der Mechanis 1971. No.	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile co ion is probably no odegradation. DTS lues used in the to 0 was estimated b chloride in the solu r unspecified pH.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hydrolysis n extreme or extreme or extreme or er from grap ent time poi	drolysed 10 15 70 100 4 5 30 100 85 100 100 85 100 100 85 100 100 100 100 100 100 100 10	- - 50 <1 - - - - - - - - - - - - -
Rev. note Reliability Title Date of report GLP Reference	0 0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatic determine Degradat and photo the pH va 2. The DT50 cyanuric of 4 Extreme of Der Mechanis 1971. No. 15.	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile cc ion is probably no odegradation. DTS lues used in the to 0 was estimated b chloride in the solu r unspecified pH. smus der Hydrolys	1 1 1 1 1 1 1 1 1 th higher tem report is limi orditions and t completely to values for est were very y the reviewe ution at difference se von Chlorte	hydrolysis n extreme or extreme or extreme or er from grap ent time poi	drolysed 10 15 70 100 4 5 30 100 85 100 100 85 100 100 85 100 100 100 100 100 100 100 10	- - 50 <1 - - - - - - - - - - - - -
Rev. note Reliability Title Date of report GLP Reference Test substance	0 0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatic determine Degradat and photo the pH va 2. The DT50 cyanuric of 4 Extreme o Der Mechanis 1971. No. 15. Cyanuric chlo	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile cc ion is probably no odegradation. DTS ilues used in the to 0 was estimated b chloride in the solution r unspecified pH. smus der Hydrolys	1 1 1 1 1 1 1 1 1 th higher tem report is limi orditions and t completely to values for est were very y the reviewe ution at difference se von Chlorte	hydrolysis n extreme or extreme or extreme or er from grap ent time poi	drolysed 10 15 70 100 4 5 30 100 85 100 100 85 100 100 85 100 100 100 100 100 100 100 10	- - 50 <1 - - - - - - - - - - - - -
Rev. note Reliability Title Date of report GLP Reference	0 0 0 0 water water water water 14 14 14 Rate of hydro 1. Informatic determine Degradat and photo the pH va 2. The DT50 cyanuric of 4 Extreme of Der Mechanis 1971. No. 15.	[°C] 15 25 50 reflux 15 25 50 reflux 15 25, 50, reflux lysis increased wi on available in the ed under sterile cc ion is probably no odegradation. DTS ilues used in the to 0 was estimated b chloride in the solution r unspecified pH. smus der Hydrolys	1 1 1 1 1 1 1 1 1 th higher tem report is limi orditions and t completely to values for est were very y the reviewe ution at difference se von Chlorte	hydrolysis n extreme or extreme or extreme or er from grap ent time poi	drolysed 10 15 70 100 4 5 30 100 85 100 100 85 100 100 85 100 100 100 100 100 100 100 10	- - 50 <1 - - - - - - - - - - - - -

OECD SIDS 3. ENVIRONM	IENTAL FATE AND PATHWAYS ID: 108-77-
Procedure	Design: testing at pH 8.0, 9.0, 9.3, 9.7 and 10 in an aquatic solution of $0-1 \times 10^{-2}$ M NaCH ₃ COO and 0.1 M NaNO ₃ at 10.0±0.1°C.
Conclusion	2 mL of a cyanuric chloride solution (3.7 mg/mL acetone) was added to 20 mL of the aquatic solution mentioned above. The pH was kept constant by the addition of 0.1 M NaOH. The reaction was followed by the measurement of the NaOH added during the test. The reaction products were analysed by NMR and UV-measurements. Cyanuric chloride degrades eventually to cyanuric acid under influence of water. The reaction constants are also dependent on the CH ₃ COO ⁻ -concentration in the test solution and so the test cannot be used to determine the DT ₅₀ hydrolysis.
Rev. note Reliability	The test was set up to determine the reaction mechanism of cyanuric chlorid in a solution of water at different pH-levels. The water was set at pH 8-10 using the acetate-ion. During the test it became clear that the acetate ion was involved in the hydrolysis-reaction. Because of this the test cannot be used to determine a reliable DT_{50} hydrolysis. 3 Acetate-ion influences reaction rate.
-	
Title	Brief, Hydrolyse von Cyanurchlorid, SKW Trostberg
Date of report GLP Reference Test substance	August 8, 1990. No. 16. Cyanuric chloride.
Results	 100% hydrolysis at 40°C in aqueous solution (unbuffered) within 6 h; endproduct cyanuric acid. At pH >8.5 the dihydroxychlorotriazine will persist some time.
Conclusion	It is considered unlikely that cyanuric chloride will persist in aqueous solutions at room temperature, even at slightly basic pH.
Rev. note Reliability	No report on the effects of pH and temperature on hydrolysis and reaction products. 4
Title	Bericht über die Überprüfung von 2,4,6-trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des "Abwasserverhaltens"
Date of report GLP	January 16, 1979. No.
Reference Test substance Hydrolysis Reliability	 21. Cyanuric chloride, purity not indicated. Completely hydrolysed (1 g/L at 20±2°C) within 2 hours. 4 Secondary literature (MSDS).
3.1.3. Stability in	n soil
Title Date of report GLP Reference Test substance Conclusion Rev. note	 Brief, Geographisches Institut, Kiel August 23, 1993. No. 18. Cyanuric chloride and hydrolysis products. Statement that based on the log Pow calculated by Hansch & Leo sorption to soil is expected to be low. It is expected that the DT50 is very low and that almost all cyanuric chloride and its products will be mainly found in the watery phase of the soil. No adsorption-desorption study is available to support this hypothesis.
Reliability	4

3.2. Monitoring data

3.3. Transport and distribution between environmental compartments

Title Date of report GLP Reference Test substance Procedure	Notiz, Berechnung der Henrykonstante von Cyanurchlorid June 17, 1993. No. 17. Cyanuric chloride. Recalculation of the Henry constant with a correction for the vapour pressure of water: $p_{cyanuric chloride} = p_{total} - p_{water}$ Assuming that above the solubility limit of cyanuric chloride the total vapour pressure is almost equal to the vapour pressure of water the following formula was derived: $H = \frac{P_{(0)water} - P_{(0)water} (1-x)}{s}$
Conclusion Rev. note Reliability	x = solubility limit (mol/mol) s = solubility in water (mol/m ³) 0.04 Pa.m ³ /mol. The method of calculation is acceptable. 1
Title	Epiwin vs 3.10.
Date of report Test substance Test method	 2002. Cyanuric chloride. Calculation with Epiwin vs 3.10, based on: Chem Name : 1,3,5-Triazine, 2,4,6-trichloro- Molecular Wt: 184.41 Henry's LC : 4.91e-007 atm-m3/mole (Henrywin program) Vapor Press : 0.0236 mm Hg (Mpbpwin program) Liquid VP : 0.064 mm Hg (super-cooled) Melting Pt : 68.8 deg C (Mpbpwin program) Log Kow : 1.73 (Kowwin program) Soil Koc : 22 (calc by model)
	Emission to water only.

Result

Level III Fugacity Model (Full-Output):

=				=======	=	
	Air Water Soil Sediment	Mass Amoun (percent) 0.032 99.5 0.187 0.288	t Half-Life (hr) 6.88e+00 1.44e+00 1.44e+00 5.76e+00	(kg/hr) 04 0 03 1000 03 0	IS	
	Air Water Soil Sediment	Fugacity (atm) 2.87e-013 8.96e-012 2.26e-013 8.49e-012	Reaction (kg/hr) 0.00218 324 0.608 0.235	Advection (kg/hr) 2.17 673 0 0.039	Reaction (percent) 0.000218 32.4 0.0608 0.0235	Advection (percent) 0.217 67.3 0 0.0039
	Reaction T Advection Percent Re	e Time: 676 h ime: 2.08e- Time: 1e+00 eacted: 32.5 lvected: 67.5	⊦003 hr			
	Air: 6. Water: Soil: 1 [.] Sedimen	876e+004 1440 440		(Ultimate) an)	d Aopwin):	
	Water: Sedimen	Times (hr): 00 1000 t: 5e+004				
Reliability 4	ŀ					
3.4. Biodegradatio	'n					

3.5. BOD-5, COD or ration BOD-5/COD

3.6. Bioaccumulation

Title		de l'acide cyanurique chez les mollusques bivalves et conséquences sa toxicité chez <i>Anodonta cygnea</i>
Date of report GLP Reference Test substance	1988. No. 25.	ure and crude without further specification).
Guideline	Not applicable.	
Test system		Anodonta cygnea (bivalve mollusc).
	No. of animals	Not indicated.
	Concentrations	250 and 500 mg/L (crude), 500 and 2000 mg/L (pure)
	Test conditions	Exposure for maximum 96-97 days in 5-10 L aquaria (aerated) at 20°C with renewal frequency not indicated); substances were stirred vigourously.
	Observations	Mortality several times during exposure time.
		Histology of digestive glands and kidneys (organs of Bojanus).
Results	Accumulation of 1000 mg/L).	cyanuric acid mainly in the kidney (test performed at a concentration of

Concentration [mg/L] \ effect	250	500 (crude)	500 (pure)	2000
50% mortality on day			70	39
Symptoms ^(A)	+	+	+	+
Histopathology ^(B)		+	+	+

(A) Loss of closure strength and fragile valves.

(B) Effects on membranes and increased density of granules in the digestive gland; yellow granules (accumulating) in the kidney.

Conclusions	Both crude and pure cyanuric acid have effects on molluscs.
Rev. note	The reduced toxicity observed at 2000 mg/L is caused by closure of the valves during a
	strong attack by the toxicant.
Reliability	4.

3.7. Additional information

Title	Microbial decomposition of ring- ¹⁴ C atrazine, cyanuric acid, and 2-chloro-4,6-diamino- <i>s</i> - triazine
Date of report	1975.
GLP	No.
Reference	54.
Test	¹⁴ C-cyanuric acid, purity >98%.
substance	
Test method	Not specified.
Test system	Procedure Batches of the sieved (2 mm) soil (Greenfield sandy loam, 65/29/6%
,	sand/silt/clay, pH 7.1, 1.1% om) were collected from the field, air-dried and
	adjusted to 60% WHC or 120% WHC. Aliguots of 500 g (d.w.) were then
	dispensed into $4x1$ L Erlenmeyer flasks and treated with 1.25 mg ¹⁴ C-cyanuric
	acid (rate 2.5 mg/kg). Two flasks were amended with lima bean straw (0.5%
	d.w. \Leftrightarrow 55 mg N/kg soil). The soil was aerated with CO ₂ -free air and the
	outcoming air was passed through a CO ₂ -trap containing 25 mL 3 N KOH. The
	traps were sampled after 16, 32, 66, 192 days for 60% WHC-soil and after 32,
	66, 192, 264 and 375 days for 120% WHC-soil. The total amount of CO_2 in the
	traps was determined by backtitration with HCI, the ¹⁴ CO ₂ was determined by
	LSC. The amount of ¹⁴ C in solids was determined by combustion/LSC.
Findings	Recovery ¹⁴ C in CO ₂ and soil was 91-103%. No treatment related effects on total amount of
-	CO ₂ evolved during the test.
soil 6	

	soil 60% WHC [% of	soil 60% WHC [% of	soil 120% WHC [% of	soil 120% WHC [% of
	applied]	applied] + bean straw	applied]	applied] + bean straw
day	¹⁴ CO ₂	¹⁴ CO ₂	¹⁴ CO ₂	¹⁴ CO ₂
16	87	96	nd	nd
32	96	98	57	76
66	98	99	83	87
192	99	99	97	93
264	nd	nd	98	93
375	nd	nd	99	94
	DT ₅₀ a.i.: 8.3 d	DT ₅₀ a.i.: 7.5 d	DT ₅₀ a.i.: 27 d	DT₅₀ a.i.: 19 d

nd: not detected.

Rev. note

Conclusion DT₅

 DT_{50} -soil (aerobe): 8.3 d (note 3). Cyanuric acid had no effect on the activity of micro-organisms in the soil.

- The report gives no information about light regime, temperature, maximum water holding capacity of the soil. All of these are important factors in the determination of the degradation rate of a test substance in soil. Further only one soil is tested in this study (OECD guidelines require 3 soils). Since the degradation rate can be sensitive for type of soil, light regime, temperature and water amount, the study reliability is lowered.
 - There is only limited information about the microbial biomass. Since microbial degradation is tested in this type of studies, the amount of biomass is a very important factor to know. What has been reported in this study is that the amount of fungi, bacteria and actinomycetes increases with elevating levels of bean straw.
 - 3. The DT₅₀ values were graphically determined by the reviewer, assuming all ¹⁴C not

recovered as ¹⁴CO₂ to be present as cyanuric acid in the soil. Actually an intermediate is involved in the transformation from cyanuric acid to CO₂, so the actual DT_{50} can be even lower. DT_{50} -values are considered acceptable in a worst case approach.

Also a test with fungal incubation (*S. chartarum & H. toruloidea*) was included in the report. Cyanuric acid degraded almost completely to CO₂ after 28 days by *S. chartarum. H. toruloidea* degraded only 15% of cyanuric acid to CO₂ after 8 weeks of incubation. This test was not included in the above summary, because it gives no additional useful information.

Reliability

Title Date of report GLP Reference Test substance	Nitrification of triazine nitrogen March-April, 1964. No. 55. Cyanuric acid.					
Test method Test system	Not specifie Test soils		ilty clay loam (Iowa), pH 8.2.			
,		Hartsells fi The soils a <u>Test 1:</u> bat in 500 mL batches (2 performed <u>Test 2:</u> bat cyanuric a 125 mL sq soil batche performed <u>Test 3:</u> ba and 14.4 n applied in a 20° and 30 90 days. <u>Test 4:</u> A cyanuric a continuous treated We	ine sandy loam (Alabama), pH 5.2. adjusted to 60% FC and used in three separate tests. tches of 100 g Webster soil were mixed with 200 mg cyanuric acid Erlenmeyer flasks (2 g a.i./kg soil). Following treatment the soil //treatment) were incubated aerobically at 32°C. Analyses were after 10 and 28 weeks. A control was included. tches of 30 g Webster and Harttsells soil were mixed with 70 mg cid (for Webster soil in duplo, one as solution and one as powder) in uare milk-dilution bottles (2.3 g a.i./kg soil). Following treatment the es (2/treatment) were incubated aerobically at 32°C. Analyses were after 6, 12, 18 and 24 weeks. atches of 200 g Harttsells soil were put into 500 mL waxed cartons ing cyanuric acid and 20.0 mg ammonium sulfate ((NH ₄) ₂ SO ₄) were a single spot 1.3 cm below the surface and incubated at either 10°, 0°C up to 90 days. Analyses were performed after 15, 30, 60 and perfusion experiment was included in which a dilute solution of cid (rate 1.0 mg a.i./kg) with or without 10 mg NH ₄ -N was sly circulated in an aerated closed system containing 30 g "Krilium"- ebster soil. After 60, 116 and 144 days additional 2-4 mg NH ₄ -N was			
		added to thup to 165 d	he ammonium-treated systems. Incubation was performed at 25°C days.			
Findings	Test 1 Test 2	N found as	s \dot{NO}_3^- in week 10 and 28 was respectively 35 and 73%.			
			% cyanuric acid-N nitrified in weeks:			

	% cyanuric acid-N nitrified in weeks:						
test substance - form	6	12	18	24			
		Nebster silty cla	ay loam	·			
cyanuric acid - solution	6.9	69	84	86			
cyanuric acid - powder	6.9	66	89	92			
	H	artsells fine sar	ndy loam				
cyanuric acid – powder ¹	15	64	55	70			

¹ duplicate samples were not reproducible

Test 3 Nitrification was inhibited for 90 days at 10°C (max. ~25%) and for ~50 days (max 30%) at 20°C. At 30°C no inhibition occurred. After 90 days at 20° and 30°C, respectively 12.5 and 15.3% of cyanuric acid was recovered as nitrate, assuming 100% oxidation of added ammonium.

J. LIVIROIN			111, 11	ID. 100-77-0
	Test 4		on for about 4 weeks. No effect on for degradation of ammonium to niti	
Conclusion	Degradat			
Conclusion			g, 32°C); DT₅₀ 306 d at 20°C.	
			soil (2.3 g a.i./kg, 32°C); DT ₅₀ 183	d at 20°C. maximum
	degradatio	on after 18 weeks.		
	Nitrificati			
			20°C only transient effect ≥25% till	
			s) with maximum inhibition at the er	nd (~25%).
			g micro-organisms at 25 °C.	m water halding conceits
			rmation about light regime, maximu history of the soil. All of these are in	
			radation and nitrification rate of the	
	lowere			
	2. There	is only limited info	prmation about the soil characteristi	cs: only pH and soil classes
		ven in the report.		
			v determined DT ₅₀ values. No DT ₅₀	
			est 2 because of the large difference	
			s value. It should be kept in mind th in this report was nitrification of cya	
			overed, was present as the original	
			cyanuric acid is transformed to inte	
	values	s could have been	overestimated, because of this. DT	
		table in a worst ca	ise approach.	
Reliability	3			
Title			dified OECD screening test" for 2-c	hloro-4,6-dihydroxy-1,3,5-
Data of you and		onosodiumsalt		
Date of report GLP	May 10, 1 Yes.	990.		
Reference	48.			
Test		.6-dihydroxy-1,3,5	-triazin (Na-salt); purity 97.5%.	
substance				
Test method			ECD 301 E (1981).	
Procedure	Aliquots o	f a stock solution of	of the test substance (tested conc. 2	2.9 g/L ⇔ 31 mg DOC/L),
			ewage plant (final conc. 0.5 mL/L) a give a total volume of 1 L. Duplicate	
			20-21°C in the dark for 28 days. Th	
	included:	Saled (Shaken) at		
		thout test substan	ce but with inoculum (1flask).	
	Positive c	ontrol, aniline (19-2	20 mg DOC/L) with inoculum (2 flas	sks).
	Aliquete	ware remained from	n aach flack an day 0, 7, 14, 21	27 and 20 contrifused and
		for DOC using a ca	n each flask on day 0, 7, 14, 21, arbon analyser	27 and 26, centinuged and
	anaryoca			
Findings			% degradation [% o	f day 0 yalyos1
	day		test substance with inoculum	aniline with inoculum
	0		0	0
	7		-19	95
	14		19	100
	21		8	101
	27 28		5 8	100 101
Conclusion		y biodegradable.		
Rev. note			ng the test should be aerobic. Durin	g the test the flasks were
			s the uptake of oxygen. It is not cle	
	shakir	ng was adequate to	o maintain the aerobic conditions. T	he dissolved oxygen during
			neasured. Since the reference subs	tance gave an adequate
	reeno	nee there was no	effect on the test validity	

response, there was no effect on the test validity.

OECD SIDS 3. ENVIRON	MENTAL FA	ATE AND PATHWA	AYS		СҮА	NURIC CHLORIDE ID: 108-77-0			
Reliability	adsorpti	rption and toxicity cont on is believed to be min st substance may be a ols (note 2).	nimal (re	ef. 18), but the	observed la	ack of biodegradation			
Title	Biodegradation of Cyanuric Acid								
Date of report GLP	December 1 No.	mber 1974.							
Reference	52.								
Test		acid, radio chemical p	urity ≥9	9%					
substance									
Test system	Design	Design Tests 1 and 2 were performed in 1.5 L activated sludge unit (sludge from domestic sewage) which was refilled (two-third) with new sludge every hour; temperature 23 °C; CO ₂ was trapped in 0.5 N NaOH and precipitated with BaCO ₃ .; radioactivity determined with LSC; nitrogen with method of Kjeldal c conversion to ammonium.							
	Procedure	Test 1 10 μ L/mL test s of aeration followed by Test 2 10 μ g/mL test s (anaerobe) for 96 h; ni sewage (3 weeks at 20	substan / period: substan itrogen l	s of Nitrogen a ce was added t	ir. to settled do	mestic sewage feed			
		Test 3 1 mL test substance was added to 1 L of mixed liquor containing 2 g activated sludge (starved overnight and subsequently made anaerobic); $^{14}CO_2$ evolved was determined at several time points.							
	Test 4 0.44 ng/ml and 40 μ g/mL test substance was added to 250 ml nutrient broth with an inoculum of a sewage plant effluent (incubated aerobically for 48 h at 23 °C) in a 500 mL flask (dissolved oxygen < 0.5 μ g/ml; evolved CO ₂ was determined after 1.5, 3, 24 and 72 h. Test 5 Soil or mud was treated with 18 μ g test substance/20 g at 23 °C in 250								
Results	Test 1 (two i	ml open flasks during eplicates with different	8-23 d.		St Substante	e/20 g at 25 °C in 250			
noouno	Duration	Aeration	. ciuugo		yanuric aci	id (μg/ml)			
				Within system	n In e	ffluent			
	A								
	Days* 16 h	+		9.6 7.7	8.3 <1.0	<u>^</u>			
	B	- (N ₂)		1.1	×1.0	0			
	24 h	+		10.5	7.4				
	16 h	- (N ₂)		9.4	<1				
	3 d	+		6.8	6.7	6.7			
	disappearan Test 3 ¹⁴ CO ₂ evolve	-50% reduction of cya	fter 17 d	days was 4%, ⁻	11% and 82 [°]	% (total), resp			
	Concentrati	on/	Eve	olved ¹⁴ CO ₂ (%	of ¹⁴ C add	ed)			
	Time (h)	1.5	3	24		48			
	0.44 ng/ml	0.49	1.20	25.		95.0			
	40 μg/ml	0.11	0.47	4.1		98.0			
Conclusion Rev. note	Biodegradab 1. Limited i	D ₂ ranged from 1-100 ⁹ ility of cyanuric acid in nformation available al e not in accordance wit	creases bout the	under anaerol performed tes		ances.			
Reliability	4.			- garaonnoo.					

Title Date of report GLP Reference Test substance Test method Test system Findings Conclusion Rev. note	Zahn-Wellens-Test zum biologischen Abbau von Cyanursäure 1989. No. 67. Cyanuric acid, purity >98%. Zahn-Wellens test (1974). 14-day Zahn-Wellens test with 1 g cyanuric acid and sludge of a sewage treatment plant as inoculum. No degradation after 14 days. Not inherently biodegradable. Only a summary of the test is available confined to the above mentioned information. There is no information about the validity of the test; there is no information about a reference compound tested, or about the probable inhibition of bacteria by the test substance. No information about the possible adaptation phase of the system. 4 Only summary available.					
Title Date of report GLP Reference Test	Anaerober Abbau von Cyanursäure in diskontinuierlichen Suspensionsreaktoren und kontinuierlich betriebenen Festbett-Umlaufreaktoren. 1989. No. 107. Cyanuric acid, purity not indicated.					
substance Test system	 Design In two similar continuous reactors (3.5 L solid-bed circulating reactor with 2.9 L liquid volume) with inoculum from two domestic waste plants (6 L from Hanau-Stadt and Hanau-Erlensee (1:1) + 2 L pre-adapted sludge; organic dry weight 4.5 g/kg = 1.6 g/L) and ca. 100 mL mineral medium, 2.8 g/L cyanuric acid and 0.4 g/L ammonium chloride under anaerobic conditions and at a static pH; temperature 38 °C. Cyanuric acid and ammonium concentration and COD were determined once a week and from week 12 onwards twice a week. Analysis Cyanuric acid: ion-exchange liquid chromatography with UV-detection (205 nm). Nitrogen: Kjeldahl-method. Ammonium: Kjeldahl-method or photometrically (Berthelot's Reaction). COD: photometrically according to DIN 38409 (H4). TOC: week 14-19 once a week. 					
Result	In week 9 in reactor 1 for the first time a 100% degradation of cyanuric acid was observed and from week 11 onwards the degradation rate in both reactors was constantly 100%.					
Rev. note	 The aim of the study was to develop an anaerobic treatment of industrial wastewater. Non-GLP study. 					
Reliability	4					

4.1. Acute toxicity to fish

Title Date of report GLP Reference Test substance	Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan October, 1992. No. 20. Cyanuric acid, purity not indicated.							
Test method Stat. method Test system	Not indicated (only according to Japanese guideline JIS K 0102-1986-71).Doudoroff method or Probit method.SpeciesOrange-red killifish (<i>Oryzias latipes</i>).No. of fish10/vessel.Test48-h static test or semi-static test with renewals every 8-16 hours at 25±2°C in glass vessels containing 4 L test water.							
Conclusion Rev. note	48-h LC ₅₀ >1000 mg/L. nformation is confined to what is included in the above summary. In the description of the test the test substance is not specified, further no specifications are available of pH, O_2 , concentration test substance, loading rate.							
Reliability	L .							
Title	Bericht über die Überprüfung von 2,4,6-trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des Abwasserverhaltens"							
Date of report GLP Reference	January 16, 1979. No. 21.							
	21. Cyanuric chloride, purity not indicated. DIN 38421/15. Not applicable.							
Test system	SpeciesGoldorfe (Leuciscus idus melanotus), length 50-60 mm.No. of fish10/vessel, 1 vessel/treatment.ConcentrationsNominal: 17.5, 35, 70, 140, 280, 350 and 525 mg/L.Test conditions48-h test at $20\pm1^{\circ}$ C in test vessels containing 10 L water (pH 7-8; hardness 255 mg/L CaCO ₃).Phys. meas.O ₂ ≥64%; temperature $20\pm1^{\circ}$ C.							
Results Conclusions	Biological No toxic effects in fish.							
Conclusions Rev. note	 48-h LC₅₀ >525 mg/L (note 2). Only an abstract of the test is available. The information is essentially confined to what included in the above summary. During the test cyanuric chlorid is expected to be transformed to cyanuric acid and HCI by hydrolysis. 							
Reliability	4							

Title Date of report GLP Reference Test	96-hour acute toxicity study in the guppy with 2-chlor-4,6-dihydroxy-1,3,5-triazin, mononatriumsalz March 12, 1990. Yes. 49. 2-chlor-4,6-dihydroxy-1,3,5-triazin, mononatriumsalz, purity 97.5%.								
substance		94/440/0 4							
Test method Stat. method	OECD 203, EEC 8 Not applicable.	84/449/C.1.							
Test system	Species	Guppy (<i>Poecilia reticulata</i>), length 20±10 mm.							
2	No. of fish	10/vessel, 3 vessels/treatment and 1 vessel/control.							
	Concentrations	Nominal: 1000 mg/L, untreated control.							
	Test conditions		-30°C in 1 L glass vessels containing test water						
	Analyses	Analyses were perfo	$CaCO_3$); 16 h light; unfed; loading <1 g/L. prmed during the range finding test for 0 and 1000						
	Phys. meas.		δ h by dilution/HPLC. s: overall ranges for pH 8.0-8.4; O_2 88-147%;						
	i njel medel		C (one control vessel).						
	Observations	Mortality/symptoms	at 7, 24, 48, 72 and 96 h.						
Results	Ref. product		with the reference substance pentachlorophenol,						
		performed one month earlier, was included. The 96 h-EC ₅₀ of							
		pentachlorophenol calculated by the reviewer using untrimmed SPK was 0.67 mg/L.							
	Analytical	The measured concentration was 94-97% of nominal.							
5	Biological	Biological results se	e 1 st table below.						
Biological result	iological results. Nominal concentration [mg/L]								
	Parameter	Time [h]							
	Mortality [%]	96	None						
	Symptoms	0-96	No treatment related effects						
Conclusion Rev. note	96-h LC50 >1000		definitive test. Since the analytical results during						
Rev. note	No analyses were performed during the definitive test. Since the analytical results during								
	the rang-finding te		of the test concentration and the test solution was						
Reliability	the rang-finding te	st show the stability of	of the test concentration and the test solution was						
Reliability	the rang-finding te	st show the stability of	of the test concentration and the test solution was						
Reliability Title	the rang-finding te prepared correctly 1	st show the stability c , the study reliability i	of the test concentration and the test solution was s not lowered.						
-	the rang-finding te prepared correctly 1	st show the stability c , the study reliability i	of the test concentration and the test solution was						
Title Date of report GLP	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No.	st show the stability c , the study reliability i	of the test concentration and the test solution was s not lowered.						
Title Date of report GLP Reference	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20.	st show the stability of , the study reliability i	of the test concentration and the test solution was s not lowered.						
Title Date of report GLP Reference Test	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No.	st show the stability of , the study reliability i	of the test concentration and the test solution was s not lowered.						
Title Date of report GLP Reference	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20.	st show the stability of , the study reliability in d bioaccumulation da ity not indicated.	of the test concentration and the test solution was s not lowered.						
Title Date of report GLP Reference Test substance Test method Stat. method	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated.	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1).	of the test concentration and the test solution was s not lowered. Ita of existing chemicals based on the CSCL Japan						
Title Date of report GLP Reference Test substance Test method	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (1987 Not indicated. The carp (<i>Cyprinu</i>	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1). <i>s carpio</i>) had a weigh	of the test concentration and the test solution was s not lowered. Ita of existing chemicals based on the CSCL Japan t of ~30 g and a length of ~10 cm. They were						
Title Date of report GLP Reference Test substance Test method Stat. method	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1). <i>s carpio</i>) had a weigh 10 mg/L cyanuric acid	of the test concentration and the test solution was s not lowered. It a of existing chemicals based on the CSCL Japan It of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants						
Title Date of report GLP Reference Test substance Test method Stat. method	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1). s <i>carpio</i>) had a weigh 10 mg/L cyanuric acid ry low toxicity to red k	of the test concentration and the test solution was s not lowered. It a of existing chemicals based on the CSCL Japan t of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants cillifish (48-h $LC_{50} \ge 1000$ mg/L). The test was						
Title Date of report GLP Reference Test substance Test method Stat. method	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1). s <i>carpio</i>) had a weigh 10 mg/L cyanuric acio ry low toxicity to red k low-through (3-12 cha	of the test concentration and the test solution was s not lowered. It a of existing chemicals based on the CSCL Japan It of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants						
Title Date of report GLP Reference Test substance Test method Stat. method	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f vessels containing (loading 0.4-2 g fis	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1). <i>s carpio</i>) had a weigh 10 mg/L cyanuric acid ry low toxicity to red k low-through (3-12 cha g 100 L of water. The sh/L/24 h). Fish were	of the test concentration and the test solution was s not lowered. At a of existing chemicals based on the CSCL Japan at a of existing chemicals based on the CSCL Japan t of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants stillifish (48-h $LC_{50} \ge 1000 \text{ mg/L}$). The test was anges/24 h) at 25±2°C and 69-99% O ₂ in glass treatment was performed with initially 15-20 carps fed twice daily. Twice a week a water sample was						
Title Date of report GLP Reference Test substance Test method Stat. method	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f vessels containing (loading 0.4-2 g fis removed for analy	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1). s <i>carpio</i>) had a weigh 10 mg/L cyanuric acid ry low toxicity to red k low-through (3-12 cha g 100 L of water. The sh/L/24 h). Fish were sis. Two fish samples	of the test concentration and the test solution was s not lowered. At a of existing chemicals based on the CSCL Japan t of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants stillifish (48-h $LC_{50} \ge 1000 \text{ mg/L}$). The test was anges/24 h) at $25\pm2^{\circ}$ C and $69-99\% O_2$ in glass treatment was performed with initially 15-20 carps fed twice daily. Twice a week a water sample was a were removed every two weeks for test fish and at						
Title Date of report GLP Reference Test substance Test method Stat. method Procedure	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f vessels containing (loading 0.4-2 g fis removed for analy start and end of ex	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1). s <i>carpio</i>) had a weigh 10 mg/L cyanuric acid ry low toxicity to red k low-through (3-12 cha 100 L of water. The sh/L/24 h). Fish were sis. Two fish samples (posure for control fis	of the test concentration and the test solution was s not lowered. At a of existing chemicals based on the CSCL Japan t of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants stillifish (48-h $LC_{50} \ge 1000 \text{ mg/L}$). The test was anges/24 h) at $25\pm2^{\circ}$ C and $69-99\% O_2$ in glass treatment was performed with initially 15-20 carps fed twice daily. Twice a week a water sample was a were removed every two weeks for test fish and at						
Title Date of report GLP Reference Test substance Test method Stat. method	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f vessels containing (loading 0.4-2 g fis removed for analy start and end of ex BCF < 0.1 (10 mg.	st show the stability of the study reliability i d bioaccumulation da ity not indicated. 1). s <i>carpio</i>) had a weigh 10 mg/L cyanuric acid y low toxicity to red k low-through (3-12 cha y 100 L of water. The sh/L/24 h). Fish were sis. Two fish samples (posure for control fis (L); < 0.5 (1 mg/L).	of the test concentration and the test solution was s not lowered. At a of existing chemicals based on the CSCL Japan t of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants tillifish (48-h $LC_{50} \ge 1000 \text{ mg/L}$). The test was anges/24 h) at $25\pm2^{\circ}$ C and $69-99\%$ O ₂ in glass treatment was performed with initially 15-20 carps fed twice daily. Twice a week a water sample was a were removed every two weeks for test fish and at h.						
Title Date of report GLP Reference Test substance Test method Stat. method Procedure	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f vessels containing (loading 0.4-2 g fis removed for analy start and end of ex BCF < 0.1 (10 mg. 1. Deviations fro	st show the stability of the study reliability i d bioaccumulation da ity not indicated. 1). s carpio) had a weigh 10 mg/L cyanuric acid y low toxicity to red k low-through (3-12 cha y lou L of water. The sh/L/24 h). Fish were sis. Two fish samples (posure for control fis /L); < 0.5 (1 mg/L). m the guideline: large	of the test concentration and the test solution was s not lowered. At a of existing chemicals based on the CSCL Japan t of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants stillifish (48-h $LC_{50} \ge 1000 \text{ mg/L}$). The test was anges/24 h) at $25\pm2^{\circ}$ C and $69-99\% O_2$ in glass treatment was performed with initially 15-20 carps fed twice daily. Twice a week a water sample was a were removed every two weeks for test fish and at						
Title Date of report GLP Reference Test substance Test method Stat. method Procedure	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (198 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f vessels containing (loading 0.4-2 g fis removed for analy start and end of ex BCF < 0.1 (10 mg 1. Deviations fro loading rate (0 temperatures	st show the stability of , the study reliability i d bioaccumulation da ity not indicated. 1). s carpio) had a weigh 10 mg/L cyanuric acid ry low toxicity to red k low-through (3-12 cha g 100 L of water. The sh/L/24 h). Fish were sis. Two fish samples (posure for control fis /L); < 0.5 (1 mg/L). m the guideline: large 0.4-2.0 g fish/L/day, C (25±2°C, OECD 305:	of the test concentration and the test solution was is not lowered. It of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants tillifish (48-h LC ₅₀ \geq 1000 mg/L). The test was anges/24 h) at 25±2°C and 69-99% O ₂ in glass treatment was performed with initially 15-20 carps fed twice daily. Twice a week a water sample was a were removed every two weeks for test fish and at h. fish used (10 cm, OECD 305: 5.0±3.0 cm); large ECD 305: 0.1-1 g fish/L/d); rather high 20-25°C).						
Title Date of report GLP Reference Test substance Test method Stat. method Procedure	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (1987 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f vessels containing (loading 0.4-2 g fis removed for analy start and end of ex BCF < 0.1 (10 mg. 1. Deviations fro loading rate (0 temperatures 2. There is only I	st show the stability of the study reliability in d bioaccumulation da ity not indicated. 1). s carpio) had a weigh 10 mg/L cyanuric acid ry low toxicity to red k low-through (3-12 cha g 100 L of water. The sh/L/24 h). Fish were sis. Two fish samples (A) the guideline: large (L); < 0.5 (1 mg/L). m the guideline: large (25±2°C, OECD 305: imited information on	of the test concentration and the test solution was s not lowered. It a of existing chemicals based on the CSCL Japan t of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants tillifish (48-h LC ₅₀ \geq 1000 mg/L). The test was anges/24 h) at 25±2°C and 69-99% O ₂ in glass treatment was performed with initially 15-20 carps fed twice daily. Twice a week a water sample was a were removed every two weeks for test fish and at h. fish used (10 cm, OECD 305: 5.0±3.0 cm); large IECD 305: 0.1-1 g fish/L/d); rather high 20-25°C). the study design. There is no information about the						
Title Date of report GLP Reference Test substance Test method Stat. method Procedure	the rang-finding te prepared correctly 1 Biodegradation an October, 1992. No. 20. Cyanuric acid, pur OECD 305C (1987 Not indicated. The carp (<i>Cyprinu</i> exposed to 1 and were used with ve conducted under f vessels containing (loading 0.4-2 g fis removed for analy start and end of ex BCF < 0.1 (10 mg. 1. Deviations fro loading rate (O temperatures 2. There is only I depuration pha	st show the stability of the study reliability in d bioaccumulation da ity not indicated. 1). <i>s carpio</i>) had a weigh 10 mg/L cyanuric acid ry low toxicity to red k low-through (3-12 cha g 100 L of water. The sh/L/24 h). Fish were sis. Two fish samples (L); < 0.5 (1 mg/L). m the guideline: large 0.4-2.0 g fish/L/day, C (25±2°C, OECD 305: imited information on ase; no results on the	of the test concentration and the test solution was is not lowered. It of ~30 g and a length of ~10 cm. They were d for 6-8 weeks. Different vehicles and surfactants tillifish (48-h LC ₅₀ \geq 1000 mg/L). The test was anges/24 h) at 25±2°C and 69-99% O ₂ in glass treatment was performed with initially 15-20 carps fed twice daily. Twice a week a water sample was a were removed every two weeks for test fish and at h. fish used (10 cm, OECD 305: 5.0±3.0 cm); large ECD 305: 0.1-1 g fish/L/d); rather high 20-25°C).						

reported (OECD 305, <20% variation between test chambers); results pH and TOC measurements were not included; reaching of equilibration phase at calculation of the BCF was not reported.

Reliability

4.2. Acute toxicity to aquatic invertebrates

4

Title	Acute toxicity study in <i>Daphnia magna</i> with 2-chlor-4,6-dihydroxy-1,3,5-triazin, mononatriumsalz					
Date of report	April 5, 1990.					
GLP	Yes.					
Reference	47.					
Test	2-chlor-4,6-dihydro	oxy-1,3,5-triazin, mononatriumsalz, purity 97.5%.				
substance						
Test method	OECD 202, EEC 8	34/449/C.2.				
Stat. method	Maximum likelihoo	od estimation method (Finney, D.J., 1971), Logit model (Cox, D.R., 1977).				
Test system	Species	Daphnia magna, <24 h old.				
-	No. of daphnids	10/replicate, 2 replicates/treatment.				
	Concentrations	Nominal: 1000 mg/L (no vehicle); untreated controls.				
	Test conditions	Static without aeration; in 250 mL glass beakers containing 100 mL of water (hardness 201 mg/L as CaCO ₃), 16 h light, unfed.				
	Analyses	No analyses were performed.				
	Phys. meas.	At 0 and 24 h for all replicates; overall ranges for pH 8.2-8.3; O ₂ 95-				
		106%, temperature 18-19°C (for one control vessel).				
	Observations	Immobility at 24 h.				
Results	Ref. product	A test with the reference substance $K_2Cr_2O_7$ was performed at the same				
	·····	time. The 24 h-EC ₅₀ of $K_2Cr_2O_7$ was 1.57 mg/L.				

Biological results

			Nominal concentration [mg/L]				
	Parameter	Time [h]	0	1000			
	Immobility [%]	24	None	•			
Conclusions	24-h EC ₅₀ >1000 mg/L.						
Rev. note	No analyses were performed to confirm the concentration of the test substance during the test. In reference 49 analyses were performed at 1000 mg/L and after 96 h no loss of test substance was seen. So probably during this test the initial test concentration was also maintained.						
Reliability	1						

Reliability

4.3. Acute toxicity to aquatic plants

Title Date of report GLP Reference Test substance	Toxicity to <i>Selenastrum</i> (1996. Yes. 80. Isocyanuric acid, purity 9	capricornutum ATCC 22662. 09.7%.
Test method	OECD 201.	
Stat. method	Not indicated.	
Test system	Species	Selenastrum capricornutum ATCC 22662.
,	Endpoint	Biomass.
	Concentrations	Nominal: 62.5, 125, 250, 500 and 1000 mg/L.
	Exposure	72 h; static.
	Analytical monitoring	Yes.
Results	Biomass	EC ₅₀ (72 h) = 620 mg/L; NOEC = 62.5 mg/L.
Rev. note	The EC ₅₀ value for bioma	ass was calculated based on the measured concentrations of the
Reliability		No solubiliser was used. Concentrations of the test substance ominal conentrations throughout the 72-h test (98-105%).

4.4. Acute toxicity to bacteria

Title	Bericht über die Überprüfung von 2,4,6-trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des "Abwasserverhaltens"
Date of report GLP Reference	January 16, 1979. No. 21. Cyanuric chloride, purity not indicated.
Guideline Stat. method Procedure	Deutsche Einheitsverfahren L3. Not applicable. Dehydrogenase activity micro-organisms in water containing 0.72-576 mg/L cyanuric
	chloride was measured at pH 7.5±0.2 and 20°C. The activity was compared to a blank control.
Results Conclusions Rev. note Reliability	No inhibition of the dehydrogenase activity compared to the control. No inhibition. 1
Title Date of report	Decomposition of cyanuric acid by microbes. 1980.
GLP	No.
Reference Test	57. ¹⁴ C-cyanuric acid.
substance Test method	Not specified.
Test system	Procedure An inoculate of <i>Sporthrix schenkii</i> (used in wastewater) was incubated in a medium containing 1 g/L 14 C-cyanuric acid. Graphic comparison of fungal growth and decomposition of cyanuric acid, with and without the addition of 0.6 g NH ₄ NO ₃ , was performed.
Findings	The curves indicate that <i>S. Schenkii</i> grew best when NH_4NO_3 was added, whereas the decomposition of ¹⁴ C-cyanuric acid was greater without the addition of NH_4NO_3 .
Conclusion Rev. note Reliability	Cyanuric acid can serve as nitrogen source, but is not the ideal source for <i>S. Schenkii</i> The information was essentially confined to what is included in the above summary.
Title Date of report GLP Reference	Rapid degradation of cyanuric acid by <i>Sporothrix schenkii</i> 1981. No. 58.
Test substance	¹⁴ C-cyanuric acid (purity ≥97%)+ unlabelled cyanuric acid.
Test method	Not specified.

OECD SIDS 4. ECOTOXICITY

	-						
Test system	Cultures of <i>Sporothr</i> incubated aerobic in acid (200 rpm). Cell spectrophotometry (Degradation of (¹⁴ C) (1) Loss of radioacti (2) Amount of ¹⁴ CO <u>Test 1:</u> Degradation media (see table bel <u>Test 2:</u> Growth (dry y supplemented with 5 N/L) or 1 g/L cyanuri	an aqueous medi growth was measu 546 nm) for <i>S. sch</i> -Cyanuric acid wa vity (from culture in trapped in a basi of cyanuric acid to ow). Radioactivity weight) was measu g/L glucose, 5 g/l	um (ured s det medi c sol c sol o carl of th ured L suc	pH 7, at 30°(by filtrating/ <i>i</i> (strain 6.2). ermined by um or buffer ution of meti bon dioxide v e cultures w on media co crose and 1 g	C) conta weighing measurin) using L hanol/ et was deter onsisting	ining dil (d.w.) o SC and hanolan ermined of basa	uted ¹⁴ C-Cyanuric or additionally by TLC; nine (4/1). on three different laily for 5 days. I medium
	<u>Test 3</u> : Growth (spec sources. <u>Test 4:</u> Specific rate	of cyanuric acid d	46 nř egra	m) of <i>S. sche</i> dation was c	letermin	ed for S	. schenkii (strain
	6.2) on different nitro acid.	igen sources (bes	ides	cyanuric aci	d), of ce	lls pregr	own on cyanuric
(Composition of media						
	Supplement	Amou	nt of	supplemen	ts (g/L)	to basa	al medium
		medium I		mediu			medium III
	Ammonium nitrate	0.6		0.6		None	
	Glucose	2.5		5		5	
	Sucrose	2.5		5		5	
				-			
	(¹⁴ C)-Cyanuric 40			40		40	
	acid						
	yeast extract <u>Test 1</u> : TLC analyse	None		5		5	
	radioactivity (¹⁴ C) ≥95%. Radioactivity r table below Strains			Radio	activity	(%) afte	er 5 days in
				Medium I Medium II			Medium III
	Sporothrix schenkii	5		5		5	
	472.48)				60 45		10
	Martin)				95 5		10
	Haider)				80 5 100 100		10 100
	359.36),	Sporothrix schenkii (strain CBS 359.36), Hendersonula toruloidea (strain			100		100
	Martin)						
	<u>Test 2</u> : see table below.						
	Strains						nedium with:
				NH₄NO ₃	3		Cyanuric acid
	Sporothrix schenkii	(strain 6.2)	2.9	93		3.03	
	Sporothrix schenkii 472.48)	(strain CBS	3.	59		0.51	
	Stachybotrys charta Martin)			0.79 2.3		2.37	
	Stachybotrys charta Haider)	Υ.	0.1			2.34	
	Toot 2: Crowth rate	f O a a la a la	ain 6.	2) was com	barable v	with grov	wth rates of other N
	sources. <u>Test 4:</u> The influence	e of other N-source		, ,	legradat	ion rate	of cyanuric acid
Conclusion	sources.	e of other N-source -115%. erve as nitrogen so	es or	n the mean c	-		-

OECD SIDS 4. ECOTOXICITY

Reliability	completely. 4 .								
Title Date of report GLP Reference Test substance	Cyanuric acid as nitrogen source for micro-organism 1969. No. 56. Cyanuric acid.								
Test method Test system	<i>var</i> ext	rocedure In this test cyanuric acid is used as nitrogen source for the fungi <i>Penicilliun</i> varians, <i>Penicillium armillatum</i> and <i>Hormodendrum sp.</i> . A medium with so extract containing micro-organisms and cyanuric acid as nitrogen source v							
	 incubated at 25°C. The following was included in the test: The use of cyanurate acid as nitrogen source by the fungi (50 mL medium, 0.04% cyanuric acid = 6.5 mg N/culture). A comparison between cyanurate acid and ammoniumsulphate, urea at biuret (25 mL medium, 3.5 mg N per culture); incubation 7 d (<i>P. varians P. armillatum</i>) or 11d (<i>Hormodendrum sp.</i>). Influence of pH on usage as nitrogen source (25 mL medium, 0.04% cyanuric acid, incubation 9 days) on growth of <i>P. varians</i> and <i>Hormodendrum sp.</i>. 								
Finding		(25 ml mediur	n, incub	ation 9		on gro	wth of <i>Hormodendrum sp.</i>		
Findings	1. Use of cyanu Organism	Incubation (days)	Myce Dry m	celium, per culture v matter N (mg)			Recovery of cyanurate- N (%)		
	P. varians Basal	7 10 15 15	(mg) 99 122 115 10		3.8 4.4 4.5 0.11		56 66 67		
	P. armillatum	10 15 20	42 141 124		1.7 4.3 4.2		25 65 64		
	Basal Hormodendru m sp.	20 10 15 20	14 131 184 169		0.05 4.1 5.1 5.0		61 76 75		
	2. Comparison r	20 hitrogen source	15 s (3.5 m	na N/cul	0.15 ture)				
	N-source			elium, d	ry matter (r	per culture of:			
	Cyanurate	P. varians 79		P. arn 79	nillatum	Ho 53	rmodendrum		
	$(NH_4)_2SO_4$	63		77		62			
	Urea Biuret	79 72		90 48		78 36			
	Basal	0		40 17		3			
	3. Growth at var								
	pH initial	<i>P. varians</i> Mycelium, d.m./culture	pH, fin	al	Hormodena Mycelium, d.m./culture		<i>sp.</i> pH, final		
	3.0	50	3.4-3.6		3		3.3-3.4		
	4.0 5.0	55 56	4.9-5.1 4.9-5.3		42 60		6.0 6.2-6.4		
	6.0	61	4.2-3.8		38*		6.3-6.4		
			5.9-6.1		38* 29		6.6-6.9		
	7.0 8.0	30 6	7.2-7.3		29 24		7.5-7.6		

	 * disagreement between duplicates. 4. Growth at varying concentrations cyanuric acid. 						
	4. 010	Cyanuric acid c			ium dry	matter (mg) per	
	%	,	mM	culture		matter (mg) per	
	0.02		1.55	26			
	0.04		3.1	55			
	0.08		6.2	89			
	0.12		9.3	95			
Conclusion	At leas	t for some fungi cyar these organisms.	nuric acid can serve a	s nitrogen s	source a	and subsequently is not	
Rev. note			for the determination	of a DT ₅₀ -so	oil or for	the determination of	
			ms because of the lim				
Reliability	4	5					
Title	s-Triaz	ines as nitrogen sou	rces for bacteria				
Date of report	1981.	-					
GLP	No.						
Reference	62.						
Test	U- ¹⁴ C-0	Cyanuric acid; radioc	chemical purity 100%.				
substance							
Test method	Not spe						
Test system			im containing test sub				
			treated agricultural fie	lds or sewa	ge) at 3	0°C in N ₂ -free	
		nment (aerated with (
			s determined at 30°C				
			neumoniae containing) cyanuric a	icid (~2.	5 N). Controls with	
		vere included.				_ /	
						Pseudomonas sp. and	
			ammelide (AD), N-iso	propylamm	eliae (in	ID) or cyanuric acid	
Findings		s nitrogen source.	strain D and F) incuba	ated with ee		um wara abla ta usa	
Findings						<i>K. pneumoniae</i> (strain	
			sewage-inoculum were				
		for growth.	Sewaye-moculum wer		e cyana	ne dolu do nicrogen	
			comparable to the co	ontrol			
		see table below.					
		•		-			
Organism		Grown with N-	Conc.	Substrat	¹⁴ CO	Residual ¹⁴ C (%)	
		source	substr.(mM)	е	2 (%)		
Pseudomonas	str D	NID	07	CN	85	0	

organion		00110.	Gaboliat	00	
	source	substr.(mM)	е	2 (%)	
Pseudomonas, str. D	NID	0.7	CN	85	0
Pseudomonas, str. A	CN	0.75	CN	56	36
K. pneumoniae, str. 90	AD	0.70	CN	34	59

Conclusion *Pseudomonas sp.* and *K. pneumoniae* can use cyanuric acid as their only nitrogen-source. Growing strains of *Pseudonomonas sp.* (strain A) and *K. pneumoniae* (strain 90) were better capable of degradaing cyanuric acid than do not-growing strains.

Reliability 3 Pre-adapted soil.

Rev. note The report is not valid to give reliable information about the nitrification rate of bacteria under influence of s-triazines. The test is not performed in accordance with the guidelines, the soil used is pre-adapted to triazines by the use of herbicides on the soil and only secondary literature is available.

4.5. Chronic toxicity to aquatic organisms

4.6. Toxicity to terrestrial organisms

4.6.1. Toxicity to soil dwelling organisms

Title Date of report GLP Reference Test substance	Cyanuric acid – a s-triazine derivative as a nitrogen source for some soil microorganisms 1983. No. 60. Cyanuric acid (test 1), ¹⁵ N-cyanuric acid (test 2).				
Test method Test system	Not specified. <u>Test 1:</u> The effect of cyanuric acid on the development and activity of natural associations of bacteria and fungi was examined in chernozem (2.2% C, pH 7.5, note 1) after 3, 10, 30 and 60 days. The dose rate of cyanuric acid was about 0.2, 0.8, 4 g/kg (corresponding with 50, 250 and 1250 mg N/kg). <u>Test 2:</u> Two isolated fungal strains (<i>Aspergillus minutus</i> and <i>Pseudogymnoascus sp.</i>) were incubated in liquid medium containing ¹⁵ N-cyanuric acid at 27-28°C for 10 and 23 days respectively. At the end of the incubation period the biomass of the fungi was determined. The rate of nitrogen intake by the tested fungi was estimated by the determination of the nitrogen content in the fungal biomass, in proteins extracted from the mycelial mats and in culture filtrates. Also the presence of N-NH ₄ , N-NO ₃ and cyanuric acid in the culture filtrates				
Findings	was determined by colorimetric method or TLC. <u>Test 1</u> : Addition of cyanuric acid to chernozem caused in most cases an increase of bacteria and actinomycetes; no effect in fungi in most cases. <u>Test 2</u> : For <i>A. minutus</i> 7% cyanuric acid-N was utilised after 10 days (70% in biomass); for <i>Pseudogymnoascus sp.</i> 13% cyanuric acid was utilised after 23 days (89% in biomass). No N-NH ₄ , N-NO ₃ was found in the filtrates. All nitrogen remaining in the filtrates was in the form of cyanuric acid				
Conclusion	The examined fungi are able to cleave the triazine ring of cyanuric acid and utilize its nitrogen. No or a positive effect on microbial growth was seen.				
Rev. note	 Chernozem is black soil, formed under continental conditions and characteristic of subhumid to temperature grasslands. 				
Reliability	 This test is not a standard investigation and no EC₅₀ was determined. . 				

4.6.2. Toxicity to terrestrial plants

4.6.3. Toxicity to other non-mammalian terrestrial species (including avian)

Title Date of report	September 2, 19	oral LD50 in the adult japanese quail of GS 41711 81.
GLP	No.	
Reference	64.	
Test substance	Cyanuric chloride	e, purity 99%.
Test method	Not specified.	
Stat. method	Logit model.	
Test system	Species	Japanese quail, age 60-70 days, mean weight 139-144 g.
	No. of animals	10/treatment.
	Dosage	Single oral dose by intubation at 50, 250 and 1000 mg/kg bw (vehicle: PEG 400, 10 mL/kg bw); vehicle controls; food was withheld overnight prior to dosing.
	Observations	 Mortality/symptoms at least daily for 14 days.

Results	Body weights on day 0, 7 and 14.						
Dose [mg/kg	Dose [mg/kg 0 50 250 1000 DR						
bw]\effect	_						
MORTALITY [%		0	0		70	100	Х
Clinical signs*			+		+	+	Х
Body weight				eatment relate			
* Symptoms inc							n and/or ataxia.
Conclusion			mg/kg bw (95				ination is made
Rev. note							inction is made
			for the toxicity			ble sex differer	
						, necropsy of a	ll animals)
							mally birds of 6-
			ight already 1				
Reliability	1		5	5			
Title	Repo	rt on 8-dav fee	edina toxicity o	of technical G	S 41'711 in P	eking ducklings	3
Date of report		7, 1981.				j-	
GLP	No.						
Reference	27.						
Test	Cyan	uric chloride, >	•99%.				
substance							
Test method		163, 71-2, 11.					
Stat. method	Spec	method.	akina duaklina			abt 174 206 a	
Test system)/treatment.	s, age 5-5 ua	ys, mean wei	ght 174-206 g.	
	Dosa			rv administrat	ion at 10 40	200 and 1000	mg/kg diet for 5
	2004					hicle controls (
			sitive controls				,
	Analy		o analyses we				
	Obse	rvations •		l clinical signs			
		•				consumption d	aily.
Results			day LC ₅₀ (diel				
Dose [mg/kg d		ect	0	10	40	200	1000
MORTALITY [%	0		0	0	0	20	0
Clinical signs*	-			+	+	+	+
Body weight gain				No trea	atment related	1 . 1	-
Food consumpt * Symptoms inc		oursed body o	Lesition and as	dation		d	d

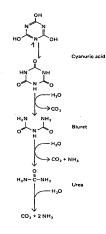
Symptoms included curved body position and sedation

Conclusion

8-day LC_{50} >1000 mg/kg diet. Homogeneous substance feed mixtures were reported to be prepared daily. However no Rev. note analyses were performed to confirm (a) the homogeneity of the test diet, (b) the accuracy of preparation and (c) the stability of the test substance in the diet.

Reliability 2 No analyses.

4.7. Biological effects monitoring


4.8. Biotransformation and kinetics

Title	Ring cleavage and degradative pathway of cyanuric acid in bacteria
Date of report	1985.
GLP	No.
Reference	63.
Test	[U- ¹⁴ C]Cyanuric acid, [carboxyl- ¹⁴ C]allophanic acid (biuret), urea.
substance	
Test method	Not applicable.
Test system	Pseudomonas (strains A and D), Klebsiella pneumoniae (strain 99).

OECD SIDS 4. ECOTOXIC	CITY				(CYANURIC (I	CHLORIDE D: 108-77-0
Analyses	Cyanuric acid and biuret by reverse phase HPLC; bBiuret by MS; urea by the diacetyl- mono-oxime method and TLC; NH_4^+ by Berthelot reaction, protein by method of Kennedy and Fewson and CO ₂ manometrically.						
Procedures Results	nitrogen sou test 2. Stor supernatant measure su separated o	urce. Control red cells were was used fo bstrate disap n a DEAE-cc	cultures were e thawed, sus r enzyme ass pearance and olumn to test	e grown on NH spended and d says. Cyanuric	^{4⁺} . isrupted and acid, biuret a e metabolites degenerating		he d to
	Strain /substrate	Spec. growth(h ⁻¹)) Spec.degr. (mkat/kg protein)	A Spec.growth (h ⁻¹)	Spec.degr. (mkat/kg protein)	99 Spec.growth (h ⁻¹)	9 Spec.degr. (mkat/kg protein)
	NH₄ ⁺ Cyanuric acid Biuret	0.30 0.33 0.26	1.9 0.6 0.6	0.50 0.28 0	2.7 0.5	0.87 0.46 0	4.1 1.3 0
	Urea	0.30	1.0	0.53	1.4	0.39	0.9

test 2. Enzyme activities for the degradation of cyanuric acid and urea were present in all strains. Strain A and 99, but not strain D, lacked the capacity to degrade biuret. Supposed degradation pathway via cleavage of the triazine ring.

Conclusion

Rev. note	No information was present on the analytical method used to determine radio-activity. It is
	not clear whether or not the compounds used in the tests described were radio active.
Reliability	4 .

Title	Enzymatic cleavage of cyanuric acid by a hydrolase
Date of report	1980.
GLP	No.
Reference	61.
Test	Cyanuric acid.
substance	
Test method	Not applicable.
Test system	<u>Test 1</u> : Klebsiella pneumoniae 99B.
-	Test 2: cell-free extract of Klebsiella pneumoniae 99B (desalted).
Findings	Test 1: bacteria were able to grow in presence of cyanuric acid as sole nitrogen source
	(growth rate0.58 h ⁻¹). Mechanism of degradation via biuret and urea.
	Test 2: both under aerobic and anaerobic circumstances cyanuric acid was degraded to
	NH ₃ and CO ₂ . Biuret and urea were also degraded by the test system.

OECD SIDS 4. ECOTOXICITY

Conclusion	Supposed pathway via cleavage of the triazine ring, preliminary results.
Reliability	4

Title Date of report GLP Reference Test	The degradative pathway of the s-triazine melamine. The steps to ring cleavage 1982. No. 65. Cyanuric acid (purity ≥98%).					
substance						
Test method	Not specified.					
Test system	Test strain Pseudomonas, strain A					
	Description The degradative pathway of melamine was examined and the resulting compounds were identified by different methods.					
Conclusion	Pseudomonas sp. (strain A) is able to degrade cyanuric acid.					
Rev. note	 This test is not a standard investigation and no EC₅₀ was determined. Other strains showed similar effects. 					
Reliability	4 .					

4.9. Additional information

Title	Anaerobic degradation of cyanuric acid, cysteine, and atrazine by a facultative anaerobic						
inde	bacterium	fraction of cyanar		and allazine by a			
Date of report	January, 1983.						
GLP	No.						
Reference	66.						
Test substance	•	(purity 98%), Atraz	zine (purity 99.9%).			
Test method	Not specified.						
Test system	Bacterium				apable of degrading		
		cyanuric acid (CA)					
	Description	inoculum (originati	•		. ,		
	Description	Multiple tubes of F					
		(additional also C)			e analysed at each		
					orming units in brain		
					counts (after plating		
					or cyanuric acid and		
		ammonia by respe					
		with cyanuric acid		•			
		"ninhydrin" method		··· ·	···· ·		
Medium	Time (d)	CFU	Cyanuric acid	NH_3 (µg/mL)	Cysteine (mg/mL		
	. ,	(log ₁₀ /mL)	(mg/mL)	, , , , , , , , , , , , , , , , , , ,			
CYS (CA)	0	2.7	1.6	38	39		

Medium	Time (a)	CFU	Cyanunc acid	$NH_3 (\mu g/mL)$	Cysteine (mg/mL		
		(log ₁₀ /mL)	(mg/mL)				
CYS (CA)	0	2.7	1.6	38	39		
	1	4.5	1.6	35	36		
	2	6.2	1.5	45	30		
	3.5	8.0	0.1	255	0		
	4	8.4	0	268	0		
	5	6.8	0	273	0		
	7	4.7	0	275	0		
FeS (CA)	0	3.9	1.1	35	N/A		
	2	5.6	0.74	100	N/A		
	3	6.8	-	-	N/A		
	3.5	6.1	0.61	121	N/A		
	6	5.0	0.49	133	N/A		
	8	4.1	0.44	144	N/A		
Conclusion	An anaerobic bacterium isolated from sludge was able to use cyanuric acid as nitrogen						
	source under anaerobic conditions. Degradation of cyanuric acid was 60% in FeS-						
	medium afte	medium after 8 days. Degradation of cyanuric acid in CYS-medium was 100% after 4					
	days.						
Rev. note	 This test 	is not a standard	investigation and n	o EC ₅₀ was detern	nined.		

2. Compounds that are subject to chlorine substitution (e.g. cyanuric chloride) on the

OECD SIDS
4. ECOTOXICITY

Reliability

ring carbons may be more resistant to biodegradation than the unsubstituted derivatives.

Title	Demande de brevet d'invention no 78 00488
Date of report GLP Reference Test substance Test method Tests	Not indicated. The document contains summaries of acute toxicity studies with molluscs and daphnia, of
Procedures	 daphnia reproduction toxicity study and of a micro-cosm study. Molluscs were exposed for 20 days to cyanuric acid in 15L aquaria at 20±2°C; exposure to 1000 ppm with aeration or 500 ppm without aeration. Daphnia magna Straus (age <72h, 5/vessel, 4 vessels/treatment) were exposed for 24 h at 20°C. Daphnia were exposed (4 vessels/concentration) to 125, 250 and 500 ppm during 14-days in 1.25 L vessels containing 1L medium(fed daily); 30% of the medium was exchanged once weekly; young were counted and removed every two days. Exposure of algae, fish and molluscs during 2 months in 45L aquaria at 20-22°C with aeration to a saturated solution of cyanuric acid.
Findings	 Survival 12-14 days (without aeration), prolonged survival (with aeration) compared to unaerated test. No effects on mobility for concentrations between 620 and 1800 ppm. No effects on population growth at all tested concentrations. No effects on algae and fish, all molluscs were found dead or affected.
Conclusion	Under aerobic conditions survival of moluscs is expected to be lower than under anaerobic conditions. The effect level is \geq 500 ppm.
Rev. note	Cyanuric acid does not affect daphnia at 125 mg/L and above (test 3) Limited information on the tests was available. The test design for the daphnia tests differs from OECD requirements.
Reliability 4	

F

х

5. MAMMALIAN TOXICITY

5.1. Pharmacokinetics

5.2. Acute toxicity

Oral

Title	Akute Toxizität. I Ratte.	Prüfung der akuten Toxizität nach einmaliger oraler Applikation an der						
Date of report	September 19, 1	986.						
GLP	No.							
Reference	23.							
Test substance	Cyanuric chloride	e, purity not indicated.						
Guideline	OECD 401, 84/4	OECD 401, 84/449/EEC.						
Stat. method	Probit analysis.							
Test system	Species	Rat (Wistar), age males 9-10 weeks and females 11-12 weeks, weight males 201-225 g and females 163-186 g.						
	No. of animals	5/sex/treatment.						
	Dosage	Single oral (gavage) administration at 464, 1000, 1470 and 2150 mg/kg						
	-	bw; dose volume 10.0, 14.7 or 21.5 ml/kg bw; vehicle peanut oil; food and water <i>ad libitum</i> (food was withheld 16 h prior to dosing).						
	Observations	According to OECD 401.						

Results 1000 2150 DR Dose [mg/kg bw] \ effect Day 464 1470 Μ Sex Μ F Μ F Μ F F Μ Mortality 0/5 0/5 1/5 1/5 5/5 5/5 5/5 5/5 Clinical signs^(A) + + + + + + Х Body weight gain^(B) Necropsy^(C) 0-14 No treatment related effects + + + + + +

(A) During the first week post dosing: piloerection, diarrhoea and ataxia. Decreased muscle tonus and loss of righting reflex were noted in females only.

(B) Body weight loss noted during the first week post dosing.

(C) Macroscopic findings in animals found dead concluded: dark areas in the glandular stomach, in some animals with erosion.

Conclusions Rev. note Reliability	 2 Dose volum bw). 3 No table with 	mg/kg. If the test substance is not indicated. Ites exceeded the maximum volume for non-aqueous vehicles (10 ml/kg Ith macroscopic findings present. Ithe test substance (note 1). Dose volumes were too high (note 2).
Title Date of report GLP Reference Test substance Guideline Stat. method Test system	Testing the acut October 15, 198 No. 24. Cyanuric chlorid OECD 401, 84/4 Probit analysis. Species No. of animals Dosage	e, purity >95%. 49/EEC. Rat (Wistar), age males 6-10 weeks and females 8-10 weeks, weight males 215-400 g and females 190-250 g.

Observations Mainly as required by OECD 401(No body weights on day 7).

Results													
Dose [mg/kg bw] \ effect	Day	24	40	3(00	3	25	37	75	47	70		DR
Sex		Μ	F	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F
Mortality ^(A)	0-14	0/5	0/5	0/5	0/5	4/5	5/5	5/5	2/5	5/5	5/5		
Clinical signs ^(B)	0-14			+	+	+	+	+	+	+	+	х	х
Body weight gain	0-14					d	N/A	N/A		N/A	N/A		
Body weight gain Necropsy ^(C)	0-14	+	+	+	+	+	+	+	+	+	+	х	х
Histopathology ^(D)	0-14				+	+	+	+	+	+	+	х	х

(A) Deaths occurred within 30 minutes to 3 hours post dosing.

(B) Consisted of: hypokinesia, somnolency, decreased muscle tone, loss of righting reflex, loss of pain reflex, loss of corneal reflex, piloerection, accelerated respiration and decreased body temperature.

(C) Macroscopic findings noted at necropsy included: stomach lesions such as reddening, inflation, reddened gastric mucous membrane, thickened fundus, fusion with peritoneum/liver/spleen and reddening of the intestinal mucosa.

(D) In animals found dead: diffuse necrosis, purulent exudate and ulceration (female high dose only) in the forestomach and glandular stomach, peritonitis and congestion and/or vacuolisation of the liver. In survivors (day 14): focal acanthosis and hyperkeratosis, subchronic submucosal inflamatory tissue and subacute/subchronic ulceration in the forestomach and subchronic submucosal inflamatory tissue in the glandular stomach.

Conclusions Rev. note Reliability	1. No body wei 2. The LD_{50} for	ng/kg (males) and 327 mg/kg (females). ght on day 7. females was recalculated by the reviewer using the Finney model The in the report were based on 3 instead of 5 deaths in 325 mg/kg group.
Title Date of report GLP Reference Test substance Guideline Stat. method	August 6, 1985. No. 5.	y (LD50) study with cyanurchlorid in rats. e, purity not indicated. 49/EEC.
Test system	No. of animals Dosage	Rat (KFM-Han. Wistar), age 8-10 weeks, weight males 173-202 g and females 157-178 g. 5/sex/treatment. Single oral (gavage) administration of 50, 100, 300 and 500 mg/kg bw; vehicle polyethylene glycol; food and water <i>ad libitum</i> (food was withheld 12-18 h prior to dosing and 1 h after dosing). As required by OECD 401.
Results		

Dose [mg/kg bw] \ effect	Day	5	50	1	00	3	00	50	00	D	R
Sex		М	F	М	F	М	F	М	F	М	F
Mortality ^(A)	1-15	0/0	0/0	0/0	0/0	5/5	5/5	5/5	5/5		
Clinical signs ^(B)	1-15	+	+	+	+	+	+	+	+	х	х
Body weight gain	1-15					N/A	N/A	N/A	N/A		
Body weight gain Necropsy ^(C)	1-15	-	-	-	-	+	+	+	+	х	х

(A) Deaths occurred within 3 hours to 3 days post dosing.

(B) Consisted of: sedation, dyspnea, curved and/or ventral or latero-abdominal position, ruffled fur.

(C) Macroscopic findings noted at necropsy included: foam excretion from the nose, discoloured and mottled lungs, stomach perforation, reddening/discolouring of the stomach and intestine and meteorism.

Conclusion Oral LD₅₀ 100-300 mg/kg (males and females).

5. TOXICITY													CI		Ι	CHLC D: 10	8-77-0
Rev. note	ca m Ri va ar 16	 The LD₅₀ mentioned in the report was calculated by the logit analysis, but this method cannot be used for response values of 0 and 100%, because it is a logaritmic method. Therefore, the LD50 value mentioned in the report is not reliable. Recalculation by the reviewer with simple linear regression of the LD50 yielded a value above 200 mg/kg bw. Moreover, recalculation using the Spearman-Karber analysis yielded a value of 200 mg/kg bw, which is higher than the reported LD50 of 166 mg/kg bw. This study is not performed under GLP. 															
Reliability	2																
Title Date of report GLP Reference Test substance Guideline	Nover No. 85.	85. Cyanuric chloride, purity not indicated.															
Stat. method	Not in																
Test system	Speci	es			200-	300 g	g for	male	s and	l fem	nales.						
	No. of		nals		x/trea		-	.) – – – – –					0.4	05 4	~ ~ ~		ام من
	Dosa	ge										J.5, 1	.0, 1.	25, 1.	6, 2.0), 4.0 a	ina
	Obse	8.0 g/kg bw; vehicle propylene glycol.ObservationsClinical symptoms and mortality daily for 14 days.															
Results	Davi	•	-		•	4.0			~						•		
Dose [g/kg bw] \ effect	Day	0.	5	1.(U	1.2	25	1.	6	4	2.0	2	1.0	8	.0	U	R
Sex		М	F	М	F	М	F	М	F	Μ	F	Μ	F	Μ	F	Μ	F
Mortality	1-7	0/5	0/5				5/5	5/5	5/5	5/5		5/5		5/5	5/5	х	Х
Clinical signs ^(A) (A) Sluggish and	1-14 impair	+ ed loc	+	+ tion a	+	+	+ star	+ naprir	+	+ ait in	+ nnaire	+	+	+ tion a	+ nd pr	X ior to d	X death
hematuria at 1.0																	ucatii
Conclusions	Oral L	р –	0 03	a/ka	for m		and	fomal	<u></u>					0			
Rev. note	1. The									ted.							
									IUICa								
			y is n	ot per	forme	ed.			laica								
Reliability	2. Neo 2		∕ is n	ot per	forme	ed.			IUICA								
Title Date of report	2 Acute 1981.			·			hnica			11.							
Title	2 Acute			·			hnica			11.							
Title Date of report GLP Reference Test substance	2 Acute 1981. No. 92. Cyanu	oral l	_D50	in the	e rat c	of tec	hnica			11.							
Title Date of report GLP Reference Test substance Guideline	2 Acute 1981. No. 92. Cyanu Not in	oral I uric ch dicate	_D50 hlorid ed.	in the	e rat c	of tec	hnica			11.							
Title Date of report GLP Reference Test substance	2 Acute 1981. No. 92. Cyanu	oral I uric ch dicate analys	_D50 hlorid ed.	in the e, pur Rat (fema	e rat c ity >9 (Tif: F ales 1	of tec 99%. RAIf (57-1	SPF 77 g	al GS)), 7-4	41'7 3 wee		bld, we	eight	male	es 163	3-178	g and	
Title Date of report GLP Reference Test substance Guideline Stat. method	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci	oral I uric ch dicate analys es	_D50 hlorid ed. sis.	in the e, pur Rat of fema Inter	e rat c ity >9 (Tif: F ales 1 rnal b	of tech 99%. RAIf (57-1 reedi	SPF 77 g	al GS)), 7-4	41'7 3 wee		old, we	eight	male	es 163	3-178	g and	
Title Date of report GLP Reference Test substance Guideline Stat. method	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci Source No. of	oral I uric ch dicate analys es ce f anin	_D50 hlorid ed. sis.	in the e, pur Rat fema Inter 5/se	e rat c ity >9 (Tif: F ales 1 rnal b x/trea	of tech 99%. RAIf (57-1 reedi atmer	SPF 77 g ng fa	al GS)), 7-4 acilitie	41'7 8 wee es.	eks c		-				-	
Title Date of report GLP Reference Test substance Guideline Stat. method	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci	oral I uric ch dicate analys es ce f anin	_D50 hlorid ed. sis.	in the e, pur Rat fema Inter 5/se Sing	e rat c ity >9 (Tif: F ales 1 mal b x/trea le ora	of tech 99%. 8Alf (57-1 reedi atmer al (ga	SPF 77 g ng fa nt.	al GS)), 7-4 acilitie e) adr	41'7 3 wee es. ninist	eks c	on at 5	50, 10	00, 25	50, 50	0 and	1000	
Title Date of report GLP Reference Test substance Guideline Stat. method	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci Source No. of Dosag	oral I uric ch dicate analys es ce f anin ge	LD50 hlorid ed. sis. nals	in the e, pur Rat fema Inter 5/se Sing mg/k food	ity >9 (Tif: F ales 1 nal b x/trea le ora (g bw and	of teck 99%. RAIf (57-1 reedi ttmer al (ga '; dos water	SPF 77 g ng fa nt. vage se vo r ad i)), 7-4 ccilitie lume	41'7 3 wee es. ninist 10.0 <i>n</i> .	eks c	on at 5	50, 10	00, 25	50, 50	0 and	-	
Title Date of report GLP Reference Test substance Guideline Stat. method Test system	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci Source No. of	oral I uric ch dicate analys es ce f anin ge	LD50 hlorid ed. sis. nals	in the e, pur Rat fema Inter 5/se Sing mg/k food	e rat c ity >9 (Tif: F ales 1 nal b x/trea le ora (g bw	of teck 99%. RAIf (57-1 reedi ttmer al (ga '; dos water	SPF 77 g ng fa nt. vage se vo r ad i)), 7-4 ccilitie lume	41'7 3 wee es. ninist 10.0 <i>n</i> .	eks c	on at 5	50, 10	00, 25	50, 50	0 and	1000	
Title Date of report GLP Reference Test substance Guideline Stat. method Test system	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci Sourc No. of Dosag	oral l uric ch dicate analys es ce f anin ge rvatic	_D50 hlorid ed. sis. nals	in the e, pur Rat fema Inter 5/se Sing mg/k food Acco	e rat o ity >9 (Tif: F ales 1 mal b x/trea le ora (g bw and ording	of teck 99%. RAIf (57-1 reedi ttmer al (ga '; dos water	SPF 77 g ing fa nt. vage se vo r <i>ad</i> i DECE)), 7-(acilitie) adri lume libitur) 401	41'7 3 wee es. 10.0 <i>n.</i>	eks o tratio ml/k	on at 5 kg bw;	50, 10 veh	00, 25 icle p	50, 50 olyeth	0 and	1000 glyco	
Title Date of report GLP Reference Test substance Guideline Stat. method Test system	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci Sourc No. of Dosag	oral l uric ch dicate analys es ce f anin ge rvatic	LD50 hlorid ed. sis. nals	in the e, pur fema Inter 5/se Sing mg/k food Acco	e rat c ity >9 (Tif: F ales 1 mal b x/trea le ora (g bw and ording 50	of tech 9%. RAIf (57-1 reedi atmer al (ga to C y to C	SPF 77 g. ng fa nt. vvage se vo r ad l DECE 100))), 7-(acilitie) adr lume <i>libitur</i>) 401	41'7 3 wee es. 10.0 <i>n.</i>	eks c tratio ml/k	on at 5 kg bw; 50(50, 10 veh	00, 28 icle po 10(50, 50 olyeth)0	0 and ylene	1000	I 400;
Title Date of report GLP Reference Test substance Guideline Stat. method Test system Results Dose [mg/kg bw Sex Mortality	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci Sourc No. of Dosag	oral l uric ch dicate analys es ce f anin ge rvatic	_D50 hlorid ed. sis. nals	in the e, pur Rat fema Inter 5/se Sing mg/k food Acco y	e rat c ity >9 (Tif: F ales 1 mal b x/trea le ora (g bw and ording 50 A F	SAIF (99%. SAIF (57-1 reedi atmer al (ga to C y to C y to C	SPF 77 g. ng fa nt. vvage se vo r ad r DECE <u>100</u> M))), 7-(acilitie lume libitur) 401 F	41'7 3 wee es. 10.0 <i>n.</i> 250 M	eks c tratio ml/k	on at 5 kg bw; 500 M	50, 10 veh	00, 25 icle p	50, 50 olyeth	0 and	1000 glyco	
Title Date of report GLP Reference Test substance Guideline Stat. method Test system Results Dose [mg/kg bw Sex Mortality Clinical signs ^(A)	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci Sourc No. of Dosag	oral l uric ch dicate analys es ce f anin ge rvatic	D50 hlorid ed. sis. nals pns Da	in the e, pur Rat of fema Inter 5/se Sing mg/k food Acco	ity >9 (Tif: Fales 1 nal b x/trea le ora (g bw and ording 50 <u>7</u>	of tech 9%. RAIf (57-1 reedi atmer al (ga y to C y to C s to C	SPF 77 g. ng fa nt. vage vo r ad / DECE <u>100</u> <u>/</u> 5 (/ 5 (al GS))), 7-4 acilitie ibitur ibitur J 401 F J/5 (3 +	41'7 3 wee es. ninisis 10.0 <i>n.</i> • 250 <u>M</u> 3/5 (beks c tratio ml/k <u>F</u> 5/5 +	on at 5 kg bw; 50(<u>M</u> 4/5 +	50, 10 veh 0 5/5 +	00, 25 icle po <u>100</u> M	50, 50 olyeth)0 F	0 and ylene M	1000 glyco	l 400; F
Title Date of report GLP Reference Test substance Guideline Stat. method Test system Results Dose [mg/kg bw Sex Mortality	2 Acute 1981. No. 92. Cyanu Not in Logit a Speci Sourc No. of Dosag	oral l uric ch dicate analys es ce f anin ge rvatic	_D50 hlorid ed. sis. nals	in the e, pur Rat of fema Inter 5/se Sing mg/k food Acco	ity >9 (Tif: Fales 1 nal b x/trea le ora (g bw and ording 50 <u>7</u>	of tech 9%. RAIf (57-1 reedi atmer al (ga y to C y to C s to C	SPF 77 g. ng fa nt. vage vo r ad / DECE <u>100</u> <u>/</u> 5 (/ 5 (al GS))), 7-4 acilitie ibitur ibitur J 401 F J/5 (3 +	41'7 3 wee es. ninisis 10.0 <i>n.</i> • 250 <u>M</u> 3/5 (beks c tratio ml/k <u>F</u> 5/5 +	on at 5 kg bw; 50(<u>M</u> 4/5	50, 10 veh 0 5/5 +	00, 25 icle po <u>100</u> <u>M</u> 5/5	50, 50 olyeth 00 F 5/5	0 and ylene <u>M</u> x	1000 glyco	l 400; F X

(A) During the first week post dosing: sedation, dyspnoea, exophthalmos, ruffled fur and curved body position; ventral and lateral body position, convulsions at 250 mg/kg and higher.

(B) Macroscopic findings in animals found dead included: oedema of the lungs and rhinorrhea.

Conclusions	Oral LD₅₀ 208 mg/kg.
Rev. note	1. Individual data for clinical signs are not given.
Reliability	1

Title Date of report GLP Reference Test substance Guideline Stat. method	Acute oral LD50 1981. No. 92. Cyanuric chlorid Not indicated. Logit analysis.	in the rat of technical GS 41'711. e, purity >99%.
Test system	Species	Rat (Tif: RAlf (SPF)), 7-8 weeks old, weight males 163-178 g and females 157-177 g.
	Source	Internal breeding facilities.
	No. of animals	5/sex/treatment.
	Dosage	Single oral (gavage) administration at 50, 100, 250, 500 and 1000 mg/kg bw; dose volume 10.0 ml/kg bw; vehicle polyethylene glycol 400; food and water <i>ad libitum</i> .
	Observations	According to OECD 401.

Results

Dose [mg/kg bw] \ effect	Day	5	0	10	00	2	50	50	00	10	00		DR
Sex		Μ	F	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F
Mortality	1-2	0/5	0/5	0/5	0/5	3/5	5/5	4/5	5/5	5/5	5/5	х	х
Clinical signs ^(A)		+	+	+	+	+	+	+	+	+	+	х	х
Body weight gain Necropsy ^(B)	0-14			No	treatr	nent	relate	d effe	ects				
Necropsy ^(B)								+	+	+	+		

(A) During the first week post dosing: sedation, dyspnoea, exophthalmos, ruffled fur and curved body position; ventral and lateral body position, convulsions at 250 mg/kg and higher.

(B) Macroscopic findings in animals found dead included: oedema of the lungs and rhinorrhea.

Conclusions Rev. note Reliability	Oral LD ₅₀ 208 2. Individual c 1	mg/kg. lata for clinical signs are not given.						
Title Date of report GLP	Cyanur chlorid. 1972. Not applicable.							
Reference	96.							
Test substance		Cyanuric chloride.						
Test method Remark	Not applicable. Oral $LD_{50} = 117$							
Keinark	Oral $LD_{50} = 860$							
Rev. note	Table containin							
Reliability	4							
Title Date of report GLP Reference Test substance Guideline Stat. method Test system	Acute oral toxic November 25, No. 85. Cyanuric chlori Not indicated. Not indicated. Species No. of animals							

Dosage

Single oral (gavage) administration at 0.5, 1.0, 1.25, 1.6, 2.0, 4.0 and 8.0 g/kg bw; vehicle propylene glycol.

Observation

Clinical symptoms and mortality daily for 14 days.

	S		
Results			
Dose [g/kg bw]	Day	0.5	

Dose [g/kg bw] \ effect	Day	0	.5	1	.0	1.	25	1	.6	2	.0	4	.0	8.	.0	C)R
Sex		Μ	F	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F
Mortality	1-7	0/5	0/5	3/5	3/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	х	х
Clinical signs ^(A)	1-14	+	+	+	+	+	+	+	+	+	+	+	+	+	+	х	х

(A) Sluggish and impaired locomotion at 0.5 g/kg; staggering gait, impaired locomotion and prior to death hematuria at 1.0 g/kg; extreme lethargy and ruffled unkempt coats at 1.25 g/kg and higher.

Conclusions	Oral LD ₅₀ = 0.93 g/kg for males and females.
Rev. note	1. The purity of the test substance is not indicated.
	Necropsy is not performed.
Reliability	2

Reliability

Dermal

Title Date of report GLP Reference	Testing the acute October 15, 198 No. 28.	e toxicity after single dermal administration in rats 8.
Test substance	Cyanuric chlorid	e purity >95%
Guideline	OECD 402, 84/4	
Stat. method	Not applicable (li	
Test system	Species	Rat (Wistar), age 10 weeks, weight 330-435 g.
,	No. of animals	
	Dosage	Single dermal application at 5000 mg/kg bw (exposure area 20 cm ²);
	Observations	food and water <i>ad libitum</i> (food was withheld 16 h prior to dosing). Mainly as required by OECD 402.
Results		

Dose [mg/kg bw] \ effect	5000	
Sex	Males	
Mortality ^(A)	2/5	
Clinical signs ^(B)	+	
	No treatment related effects	
Body weight gain Pathology ^(C)	+	

(A) Killed after removal of the dressing due to ethical reasons.

(B) No systemic toxicity. At the application site: skin necrosis, penetrating and/or oozing wounds.

(C) Pathology findings included: necrosis of the epidermis, dermis, subcutaneous tissues and muscles, thrombosis in blood vessels of dermis ulcerations. After 14 days: epidermis ulcerations with epithelium regeneration; in dermis, within ulcerations and under regenerating epithelium, hyperplasia of fibrous connective tissue; granulation tissue was growing into deeper layers of dermis penetrating between sceletal muscles and superficial layers of body integuments.

Conclusions Rev. note	 Dermal LD₅₀ 5000 mg/kg. 1 No females tested. 2 It is not clear why food was withheld for 16 h prior to dosing. 3 Deviations from OECD 402 consisted of: no body weight on day 7, exposure area slightly less than 10% of the total body surface. 4 No tables with macroscopic and microscopic findings included.
Reliability	3 Only males were tested.
Title Date of report GLP	Toxikologische Prüfung nach einmaliger dermaler Applikation am Kaninchen. October 4, 1988. No.

Reference	29.	
Test substance	Cyanuric chlorid	e, purity not indicated.
Guideline	OECD 402, 84/4	49/EEC.
Stat. method	Not applicable (li	imit study).
Test system	Species	Rabbit (Russian White), age males 18-24 weeks and females 22-24 weeks, weight males 2.2-2.3 kg and females 2.5-2.7 kg.
	No. of animals	3 males and 3 females
	Dosage	Single dermal application at 2000 mg/kg bw (24 hours) under occlusion; vehicle paraffin oil.
Results	Observations	Mainly as required by OECD 402.

Dose [mg/kg bw] \ effect	2000						
Sex	Males Females						
Mortality		None					
Clinical signs ^(A)	+	+					
Body weight gain	No treat	ment related effects					
Body weight gain Pathology ^(B)	+	+					

(A) No systemic toxicity. At the application site: red/brown staining, swelling and hardening.

(B) Pathology findings included: acanthosis, hyperkeratosis, subepidermal mixed inflammatory cell infiltration, erosion, superficial exudate, subepidermal haemorrhages, ulceration, epidermal proliferation, secondary builded hairfollicle cysts, epidermal necrosis and slight pustule forming.

area.

Title	Cyanu No. 40		d, Unt	ersucl	hunge	n zur	akuter	n Inha	lations	stoxizi	tät an	der Ra	atte n	ach OECD-
Date of report	Octobe	er 14,1	992.											
GLP	Yes.	,												
Reference	78.													
Test substance	CAS 1	08-77-	0 (cya	anuric	chlori	de), p	urity >	= 93.6	6%.					
Guideline	OECD	403.					•							
Stat. method	Bliss, 1	1938.												
Test system	Specie	es		Rat (W emale:				2-3 m	nonths	s, weig	ht ma	les 17	3 - 20)5 g,
	No. of	anima	als 5	/sex/d	lose.	-								
	Treatn	nent	Ν	lose o	only ex	posur	e for 4	۱h.						
).6, 17	7.3, 2	89.3 a	nd 44	l9.1 mg/m3,
							ight D							
							ably 15							
	Analys	ses		•							by GC			
							sed by	Bern	er imp	actor-	II and	an ae	rodyn	amic
	•		-	Particle										
	Obser	vation	IS •	 Mortality/clinical signs frequently on day of exposure (but not during exposure) and days 1, 2, 3, 7, 14 and 28 										
			•	 Body weights on days 0, 3, 7 and 14, 21 and 28 										
			•				ure at							
			•								m ³). 5	(at 17	7.3 n	ng/m³), 3
				and	d 6 (at	t 289.3	3 mg/n	n ³) an	d 5 an	d 8 (a	t 449.	1`mg/ı	m ³)	0 //
			•			y on d		,		,		Ŭ	,	
Results	Analys	ses	E					and c	lust of	the te	est sub	ostanc	e. Co	ncentrations
	•		n	nentio	ned a	re the	sum c	of both	fracti	ons.				
			F	Particle	e size:	2.21-	2.72 µ	ım (Ma	ass M	ean A	erodyr	namic	Diam	eter) \Rightarrow
			r	espira	ble.			-						-
Dose [mg/m ³]\ef	ffect		D		7.6		0.6		7.3		9.3		9.1	DR
Sex		Μ	F	Μ	F	Μ	F	М	F	Μ	F	М	F	
Mortality		0/5	0/5	0/5	0/5	3/5	1/5	3/5	2/5	5/5	4/5	5/5	5/5	<u> </u>

OECD SIDS 5. TOXICITY

Body weight (gain)					d	d	d	d	d	d	d	d	
(week 1) ^(Å) Clinical signs ^(B)				1	1	2	1 0		1,2	0.0	1 (v
Necropsy ^(C)		1			<u> 1 1,2 1,2,3 </u>				.,3	1,2,3		Х	
Reflexes ^(D)					+			+		4		Х	
Body temperature				d		d	Ċ		d		Ċ		X
(A) Recovery (of nor	mal grow	/th d	.				-	•			A	Χ
cachexia, 3 (C) Survivors:t Intercurren hydrothora	2: pilc 3: abr bloate t dea x, rec stinal d grip Acu Acu Acu Mino - Hu justi The	berection, normal ga ed, oeden ths: bload d staining tract and strength te 4-h LC te 4-h LC te 4-h LC or remark imidity in fied, how number	, gas ait, sl nato ted, of th red and 50 fe 50 cc cs: the rever of ai	ping, blood hortness of us lungs (wi oedematous he nose, pa staining of r diminished nales 150 m males 201 (ombined 170	y and o breath th broid s and o le liver mucos reaction g/m ³ (95%: 0 (95%) hamber t substives vas slig	cruste nchia discolo a of si on to e 158-2 5: 137- er was tance ghly h	d nose filled v bured l cidney: mall in externa 58) mg 213) r below was se gher t	e, per vith sl lungs s, live itestin al stin g/m ³ mg/m ³ / guid ensitin han ii	iorbital ime in with bi- r lobul- ie nuli (tai a eline va ve to hy ndicate	crust males ronch ated, il-pinc alues ydroly	s, cya a filled bloody h and (OEC tic deg DECD	nosis d with /-slim startl D 403 grada 403.	and slime, y contents of e) was 3). This was tion.
Reliability Title Date of report GLP	1 4-hc		ır inf	the mention nalation toxi						in rats	. Proje	ect 07	2112.
Reference	87.												
Test substance			0 (c	yanuric chlo	ride),	purity	99-10	0%.					
Guideline Stat. mathed		CD 403.											
Stat. method Test system		Logit analysis; could not be applied to results. Species Rat (Wistar, KFM-HAN), 8-12 weeks old, 216-277 g for males ar 185-226 g for females.									ales and		
	Sou	Irce Kleintierfarm Madoerin AG, Switzerland.											
		of anima											
	Irea	atment Nose only exposure for 4 h. Concentration (measured): 50, 150, 180 and 300 mg/m ³ generated by bubbling air through the test substance.											
		alyses Analytical determination was performed spectrophotometrically at 440 nm once during exposure.											
	Obs	servation	IS	 Mortality: once per hour during exposure and daily thereafter for 15 days (50 mg/m³) or 22 days at the other doses. Clinical signs: once per hour during exposure and daily thereafter. Body weights on days 1, 8, 15 and 22 (only at 150, 180 and 300 mg/m³). Necropsy on all animals. 									
Results		1											
Dose [mg/m ³]\effe	ct	50		150		1	80		30	0			DR

Dose [mg/m ³]\effect	50		150		180		300		DR	
Sex	М	F	Μ	F	М	F	М	F	М	F
Mortality	0/5	0/5	1/5	1/5	3/5	1/5	3/5	1/5	х	х
Body weight (week 1) ^(A)			dc	d	dc	dc	dc	dc	х	х
Clinical signs ^(B)	1	1	2	2	3	3	4	4	х	х
Necropsy ^(C)			+	+	+	+	+	+	х	х

(A) Recovery of normal growth during the following weeks in survivors.
 (B) Clinical signs included 1: Sedation, rales, dyspnea, chromodacryorrhea, ruffled fur and emaciation (females only); 2: symptoms at 1 and additionally, rhinorrhea, hunched body posture and

OECD SIDS 5. TOXICITY

5. TOXICIT I							1	D. 100-77-0				
nervousne (C) Discoloure	n; 3: symptoms a ess. The intensity ed lungs in anima imals treated at 1	of symp Is that of 50 mg/r	otoms incre lied and an m ³ and abo	ased at hig imals at 30	gher doses	S.						
Conclusion Rev. note	Acute 4-h LC ₅₀	5										
–		Non-GLP study.										
Reliability	2											
Title Date of report	4-hour acute in in rats. Project September 13,	291172		ıdy with cya	anuric chlo	oride – non-	micronize	d - aerosol				
GLP	Yes.											
Reference	88.											
Test substance	CAS 108-77-0	(cyanuri	c chloride)	purity ≥99	%.							
Guideline Stat. method	OECD 403. Logit analysis.											
Test system	Species	Rat (Wistar, Har	n-lbm), 8-w	eek old m	ales and 10)-week old	females.				
	openee		200 g for m									
	Source			arch Labora	atories Lto	I., Switzerla	nd.					
	No. of animals		/dose.									
	Treatment		only expos			omatograph	NV) 12 EO	and 120				
						las aerosol						
			nanges: ca.				generator					
	Analyses				as perform	ned by gas o	chromatog	raphy and,				
			metrically 4									
				s analysed	by a case	ade impact	or once dı	uring each				
	Observations	expo		ce ner hou	r durina e	vnosura or	nce nost_e	xposure on				
	Observations							at 50 mg/m ³				
			nd 28 days			o	()					
						ing exposur	e, once af	ter				
			xposure or					2				
				s on days	1, 8 and 1	5 (and 22 a	it 50 mg/m	³ and 29 at				
			2 mg/m ³).		•							
Results	Analysis		lecropsy or cle size 100		5.							
Dose [mg/m ³]\effe	ect 42	i ditte		0	1	38		DR				
Sex	M	F	M	F	M	F	М	F				
Mortality	1/5	2/5	2/5	0/5	5/5	2/5	х	X				
Body weight (week	dc	dc	dc	dc	dc	dc						
1) ^(A) Clinical signs ^(B)						.						
Necropsy ^(C)	+	+ +	+	+	+	++	х	x				
	of normal growth		the followin	a weeks in	survivors							
	gns included: Hur						on, rales, s	swelling				
(abdomen	; females only), r	uffled fu	r, rhinorrhe	a and chro	modacryc	orrhea; 2: sa	ame as 1,	but no				
	cryorrhea; 3: san						n one fema	ale.				
	ed lungs, incident	ally foar	ny fluid in k	pronchi and	dark red	foci.						
Conclusion Rev. note	Acute 4-h LC ₅₀ 1. The number					d to the 12	15 air cha	ngos/h				
1764. 11016	required by			is very riigi	compare			19571				
	2. In the report			ales was d	etermined	by extrapo	lation, whi	ch means				
	the mean v					,, .	,	-				
Reliability	1											
Title	4-hour acute inha	alation to	oxicity stud	y with cyar	nuric chlor	ide vapor in	i rats. Proj	ect 291150.				

5. TOXICITY							ID: 108-77-0
Date of report GLP	Yes.	ember 12, 1	991.				
Reference Test substance	89. CAS	108-77-0 (c	yanuric chlorid	le), puritv ≥99º	%.		
Guideline		D 403.		, panty _00	,		
Stat. method		pplicable.					
Test system	Spec	les	Rat (Wistar, F 180-200 g.	Han-Ibm), 8-we	eek old males	and 10-week	old temales,
	Sour	ce		search Labora	tories Ltd., Sv	vitzerland.	
		f animals	5/sex/dose.				
	Treat	ment		posure for 4 h.		ha awa a bu i)u 47	, and 150 may (m ³
				a RBG 1000 I			′ and 152 mg/m³
			Air changes:			generator.	
	Analy	/ses				y gas chroma	atography and,
				y 4 times durir		impactor one	e during each
			exposure.	was analyseu	by a cascade		e during each
	Obse	rvations	Mortality:				st-exposure on
			-	d twice daily th		•	~
				igns: once per and daily there		xposure, onc	e after exposure
				ghts on days 1			
			 Necropsy 	on all animals			
Results	Analy	/sis	Particle size		•		
Dose [mg/m ³]\eff Sex	ect	М	17 F	15 M	F	М	DR F
Mortality	(4)	0/5	0/5	2/5	0/5		
Body weight (wee	ek 1) ^(A)	d	d	d	d	X	X
Clinical signs ^(B) Necropsy ^(C)		1	1	2+	2 +	x x	X X
(B) Clinical s 2: apathy only), sw (C) Discolou	signs in y and tr velling, r red lung	cluded 1: H emor (male uffled fur, r gs with foci	s only), hunch hinorrhea, chro	e, labored res ed posture, sti	piration and ru ff gait, labored		es in females only); rales (females
Conclusion			\cdot 152 mg/m ³ .	/h ia hiah			
Rev. note			of air changes		neasured by o	as chromato	graphy and that
			avimetrically h				
		apour and a	aerosol.				
Reliability	2						
Title	4-hou	r acute inh	alation toxicity	study with cya	nuric chloride	micronized a	erosol in rats
		ct 291161.					
Date of report	•	mber 25, 1	991.				
GLP Reference	Yes. 90.						
Test substance		108-77-0 (c	yanuric chlorid	le), puritv ≥99º	%.		
Guideline		D 403.		,,			
Stat. method			ue to the unexp				
Test system	Spec	ies	Rat (Wistar, H 180-200 g.	Han-Ibm), 8-we	eek old males	and 10-week	old temales,
	Sour	ce		search Labora	tories Ltd., Sv	vitzerland	
		f animals	5/sex/dose.				
	Treat	ment		posure for 4 h.		0 5/00	440/47 6 3
				a RBG 1000 I			140/174 mg/m ³
	Analy	/ses			s performed h	v das chroma	atography and

Analyses

5. 10/110111								ID. 100 // 0				
					uring expos							
	Observations				by a casca							
	Observations		 Mortality: once per hour during exposure, once post-exposure on day 1 and twice daily thereafter for 14 days; the two lowest dose 									
			groups were observed for 29 days.									
						ng exposui	re, once af	ter exposure				
				I daily ther				o.c				
				-	1, 8 and 18	o (also day	s 22 and 2	9 for two				
			vest doses	all animal	9							
Results	Analysis	Particle	e size 100		0.							
Dose [mg/m ³]\eff	fect 22 ⁽		6	0	17	76		DR				
Sex	М	F	М	F	М	F	М	F				
Mortality	1/5	0/5	3/5	3/5	5/5	5/5	х	x				
Body weight (wee Clinical signs ^(C)	k 1) ^(b) dc	dc 1	dc 2	dc 2	3	3	x x	x x				
Necropsy ^(D)	1	1	2	2	5	5	x	×				
(A) The nom	inal value is indic	ated here	e, because	e the analy	tical value	does not o						
	ental set-up and th						·					
	ight decrease for		imals at 60	0 mg/m³ a	lso in weel	x 2. Anima	ls in the hig	ghest dose				
	d died before day		nonturo o	tiff agit du	annaa lak	ourod roo	niration ru	flod fur				
	signs included 1: I a, watery dischar											
	acryorrhea; 3: syr							ig und				
	red lungs with foc	si.										
Conclusion	Acute 4-h LC ₅₀											
Rev. note	1. The number				oo of the i		ov hotvoo	a avraatad				
	 The LC₅₀ co and measur 											
Reliability	2			Measured	Concentra			σ.				
Title Date of report GLP Reference	Report on acute January 22,198 No. 91.		halation to	oxicity in th	ne rat of cy	anuric chlo	oride (GS-4	1711).				
Test substance	CAS 108-77-0 (
Guideline	Proposed guide							ust 22, 1978).				
Stat. method Test system	Probit analysis (Species	Rat (Ti	f RAIf (SF	0X011), ana 2F)) 189-2	119818 01 va 288 a for m	nance and 1	F-lesi. 83-227 a f	or females				
rest system	Source		l breeding		.00 g 101 11		100 227 g i	or remaics.				
	No. of animals			ex for cont	rol.							
	Treatment			ure for 4 h		0 0 40 F	40 5 400	1 405				
					5.0, 7.0, 1 fix Exakton		40.5, 108 a r	and 495				
			inges: ca.									
	Analyses		0		C) at hour	y intervals	total amou	unt (vapour				
		(aeroso	ol) 5 times	during ex	posure.		is gravimet	rically				
	Observations				d by Casca			2 heurs				
	Observations	pos	st-exposur	re and dail		r for 14 da	g exposure lys; the two lavs.					
					0, 7 and 14		5					
		 Ne 	cropsy on	all animal	S.							
Results	Analyses						substance					
					are the su	m of both f	ractions.					
Dose	0			-		40.5	108 49	95 DR				
Sex	MFM	ΜF	MF	MFI	M F N	IFM	FΜ	FMF				
Dose [mg/m ³]\effect Sex	0 M F M	5.0	7.0	60% ≤ 7µr 18.3 M F I	18.5							

Mortality	0/10	0/10	0/9	0/9	0/9	0/9	1/9	0/9	0/9	0/9	6/9	0/9	9/9	6/9	9/9	9/9	х	х
Body weight											dc	dc	dc	dc			х	Х
Body weight (week 1) ^(A)																		
Clinical signs ^(B)			1	1	2	2	3	3	4	4	5	5	6	6	6	6	х	х
Necropsy ^(C)	0/9	0/9	9/9	8/9	9/9	9/9	1/9	0/9	9/9	9/9	2/8	2/9	6/9	4/9	2/9	1/9	х	х
(A) Recovery c	of norm	al gro	wth d	luring	the	follov	ving	week	s in s	surviv	/ors.	Anim	nals i	n hig	hest	dose	grou	р
died within				-			-							-			-	

(B) Clinical signs included 1: dyspnea and ruffled fur; 2: symptoms at 1 and abnormal body position; 3: symptoms at 2 and chromodacryorrhea and diarrhea; 4: symptoms at 3 and cyanosis; 5: dyspnea, chromodacryorrhea, rinorrhea, ruffled fur and abnormal body position; 6: dyspnea, chromodacryorrhea, rinorrhea and ruffled fur. Dyspnea and ruffled fur prolonged till day 25 at 108 mg/m³.

(C) Discoloured lungs. Enlarged or oedematous lungs were seen at 40.5 mg/m³ in 6 males and in males and females at 495 mg/m³.

Conclusion	Acute 4-h LC ₅₀ = 18.5-40	0.5 mg/m^3 .

Rev. note

 Non-GLP study.
 The number of air changes/h is low compared to the 12-15 air changes/h required by OECD 403.

Reliability

5.3. Corrosiveness/irritation

2

5.3.1. Skin irritation

Title		rüfung der lokalen Reizwirkung von 2,4,6-Trichlor-1,3,5-triazin ach einmaliger Applikation an der Haut des Kaninchens (Patch-Test).						
Date of report	June 16, 1982.							
GLP	No.							
Reference	30.							
Test substance	Cyanuric chloride,	purity 99-100%.						
Guideline	OECD 404.							
Test system	Species	Rabbit (New Zealand White), weight 2.5-3.0 kg.						
-	No. of animals	6 males.						
	Dosage	Application of 0.5 g test substance, moistened with 0.32 ml aqua dest, on the clipped skin under semi occlusion.						
	Observations	Skin observations at 1, 24, 48 and 72 h and at 7 days after removal of the dressing.						

Results												
Animal		1		2		3		4		5		6
Time	E	0	E	0	E	0	Е	0	Е	0	E	0
1 h	0	1	0	1	1	3	0	2	0	3	1	3
24 h	0	1	0	1	2	2	1	2	1	2	1	2
48 h	2	0	1	1	2	1	1	1	1	1	1	1
72 h	2	0	1	0	2	1	1	0	1	1	1	1
7 days	2	0	1	0	1	0	2	0	1	1	1	1
E=erythem	a O=oe	edema	•		•		•		•		•	
Conclusion	าร	Irritating										
Rev. note		1. The	results	of the 1	hour ex	posure	with occ	lusive c	or semi o	occlusiv	e dressin	g and the
		4 ho	our expo	sure wit	th occlu	sive dre	ssing or	the sar	ne anim	als wer	e not sun	nmarised.
											cation no	
			cated.									
		3. Sinc	e skin e	effects w	vere pre	sent at t	he end	of the ol	bservati	on perio	d, the te	st should
						addition						
Reliability						minatior			•		,	
		-	1		,		,	,				

TitleStudies on the design of animal tests for the corrosiveness of industrial chemicalsDate of report1985.

No.							
31.							
	, purity not indicated.						
	Rabbit (New Zealand	d White), weight 2-4 kg					
			lipped skin under semi-				
		1, 24, 48 and 72 h and	at 7 days after removal of				
	the dressing.						
1 hour (semi- occl.)	1 hour (occl.)	4 hours (semi- occl.)	4 hour (occl.)				
Not irritating	Not irritating	Not irritating	Not irritating				
Not irritating.							
The report was lin	nited to the above me	entioned. It is not clear	why the results differ from				
other reports.			-				
3							
December 6, 199 No. 32. Cyanuric chloride OECD 404, EEC Species No. of animals Dosage	3. , purity > 95%. 84/449/EEC. Rabbit (White Vienna 6 males (test 1), 4 m Test 1: Application o glycol on the skin (2. Test 2: Daily applicat glycol on the internal	a), weight 3.6-4.0 kg, a ales/group (test 2). f 0.3 g test substance, 5 X 2.5 cm) under occl tion of 2% or 10% susp area of the ear for 10	moistened with polyethylene lusion for 24 h. pension in polyethylene days.				
December 6, 199 No. 32. Cyanuric chloride OECD 404, EEC Species No. of animals Dosage Observations	3. , purity > 95%. 84/449/EEC. Rabbit (White Vienna 6 males (test 1), 4 m Test 1: Application o glycol on the skin (2. Test 2: Daily applicat glycol on the internal Test 1: Skin observa	a), weight 3.6-4.0 kg, a ales/group (test 2). f 0.3 g test substance, 5 X 2.5 cm) under occl tion of 2% or 10% susp area of the ear for 10 tions at 1, 24, 48 and 7	age 28-38 weeks. moistened with polyethylene lusion for 24 h. pension in polyethylene				
	OECD 404. Species No. of animals Dosage Observations 1 hour (semi- occl.) Not irritating Not irritating. The report was lir other reports.	Cyanuric chloride, purity not indicated. OECD 404. Species Rabbit (New Zealand No. of animals 6 males/females. Dosage Application of 0.5 g t Observations Skin observations at the dressing. 1 hour (semi-occl.) 1 hour (occl.) Not irritating. Not irritating. The report was limited to the above me other reports.	Cyanuric chloride, purity not indicated. OECD 404. Species Rabbit (New Zealand White), weight 2-4 kg No. of animals 6 males/females. Dosage Application of 0.5 g test substance on the cocclusion or occlusion for 1 and 4 hours. Observations Skin observations at 1, 24, 48 and 72 h and the dressing. 1 hour (semi-occl.) 1 hour (occl.) 4 hours (semi-occl.) Not irritating Not irritating Not irritating Not irritating. The report was limited to the above mentioned. It is not clear other reports.				

Animal	1		2		3		4		5		6	
Time	E	0	E	0	E	0	E	0	E	0	E	0
1 h	4	1	2.5	0	3-4	1	3-4	1	3	0	3	0
24 h	4	1	2.5	0	3-4	1	3-4	1	3	0	3	0
48 h	3	0	4	0	3	0	4	0	2.5	0	3	0
72-96 h	n.d.											
5 days	2	0	3	0	4	0	4	0	3	0	4	0
6-7 days	1	0	2	0	3	0	3	0	2.5	0	3	0
8 days	0	0	0	0	0	0	2	0	2	0	0	0
9 days	0	0	0	0	0	0	3	0	2	0	1	0
10-11 days	0	0	0	0	0	0	1	0	1	0	0	0
12-29 days	0	0	0	0	0	0	0	0	0	0	0	0

E=erythema O=oedema

Test 2	No oedema was seen, erythema scores are presented in the table below.								
Dose		29	%		10%				
Animal	1	2	3	4	5	6	7	8	
Day									
1	0	0	0	0	+	+	+	+	
2	0	0	0	0	+	+	?	+	
3	0	0	0	0	+	+	?	+	
4	0	0	0	0	++	+	++	+	
5	0	0	0	0	++	++	++	+	
6-10	0	0	0	0	++	++	++	++	

OECD SIDS CYANURIC CHLORIDE 5. TOXICITY ID: 108-77-0 0= no erythema += slight ++ well-defined to moderate ? not indicated Conclusions Irritating (based on the results of test 1). Rev. note 1. The test substance was applied during 24 h (test 1). This represents a worst case situation. 2. The amount applied in test 1 was lower than required by OECD 404 (i.e. 0.5 g). It can not be excluded that after application of this higher dose, the effects would have been more severe. The validity of the results is lowered. 3. Minor deviation from OECD 404: Time between clipping and dose application not indicated. Reliability 2 Amount applied too low (note 2). Title Cyanuric Chloride In Patty's Industrial Hygiene and (via personal communication of E. Flint). Date of report 1981. GLP Not applicable. Reference 99.

Test substance	Cyanuric chloride.
Test method	Not indicated.
Remark	A skin absorption study on rabbits has shown severe skin irritation but no deaths at 3000
	mg/kg.
Reliability	4

5.3.2. Eye irritation

Title Date of report GLP Reference Test substance	Report on eye irritation in the rabbit after single application of GS 41711 October 5, 1981. No. 33. GS 41711 (cyanuric chloride), purity not indicated.					
Guideline	Not indicated.					
Test system	Species	Rabbit (New Zealand White), weight 2-3 kg.				
-	No. of animals	1 male and 1 female.				
	Dosage	Application of 0.1 g test substance into the conjunctival sac; the eye of one animal was rinsed within 30 sec. after application with physiological saline.				
	Observations	Observations at 24, 48, 72 and 96 h.				

Results								
Animal			1				2 (rinsed)	
Effect	С	I	Conj		С	I	Conj	
Time			Red	Ch			Red	Ch
24 h	3	2	3	3	1	0	3	2
48 h	3	2	3	3	1	1	3	2
72 h	3	2	3	3	2	1	3	2
96 h	4	2	3	3	3	2	3	2
C=corn	neal opaci	ty I=Ir	is Conj=c	conjunctiva	Red=	redness Cl	h=chemosis	
Conclus	sions	Irritating.	-	-				
Rev. not		informatio	on on purity	vas identified t is missing. substance no		2	nuric chlorid	e, however
Reliabili	ity	2 Tunty		Substance no	i indicated			
Title	report		ne primary i er 6, 1993.	rritancy after s	ingle app	lication to the	e eye of the r	abbit

_

• •

OECD SIDS 5. TOXICITY

Test system	Species	Rabbit (New Zealand White), weight 2.5-3.0 kg, age 4-12 weeks.
	No. of animals	4 (sex not indicated).
	Dosage	Application of 0.1 g test substance into the conjunctival sac.
	Observations	Observations at 1, 24, 48 and 72 h and 7 and 30 days.
Results		

Time		Index of ocular lesions*					
1 h		23					
24 h		58					
48 h		66					
72h		70					
7days		78					
30 days		recovery					
*According to Dr	aize (mean values for 4 rat	obits)					
Conclusions	Irritating.						
Rev. note No individual data were presented. Therefore calculations could not be checked by the reviewer.							

Reliability	2	No individual data.
-------------	---	---------------------

5.4. Skin sensitization

Title Date of report GLP Reference Test substance Guideline Test system	January 26, 1994. No. 35. Cyanuric chloride, p OECD 406, EEC 84 Species C No. of animals 1 Procedure 4 Observations 5 No. Pos. control 5	/449/EEC. Guinea-pig (Hartley), age 9-10 we 12 females/treatment, 8 females f As per OECD 406: Intradermal ind glycol) on day 1, topical induction glycol), challenge on day 22 (1% i after 24 and 48 h (day 24 and 25)	eeks, weight 270-410 g. for controls. duction (0.01% in polyethylene n on day 8 (2% in polyethylene in polyethylene glycol), skin reading fter the challenge exposure. not indicated).
Stat. method Results	Not applied.		
Dose/effect		Control	Treatment
No. of animals		8	12
Mortality/clinical	signs		None
Body weight		No treatme	ent related effects
Challenge			
No. with erythem (24/48h)	na/oedema score > 0	0/0	12/12
Conclusions	Sensitising.		
Rev. note			on day 22 (1% in polyethylene glycol), skin reading day 24 and 25). and 48 hours after the challenge exposure. gns (frequency not indicated). y 2 and weekly thereafter. ne. trol Treatment 3 12 None No treatment related effects 70 12/12 were not reported. However, the test system seems as the test substance induces effects. a vehicle for the intradermal challenges in which to necrotic reactions at the induction sites. It is
Reliability	2. Polyethylene gly FCA was involve	col was used as a vehicle for the	e intradermal challenges in which ctions at the induction sites. It is

Title	A murine local lymph node assay for the identification of contact allergens. Assay development and results of an initial validation study.
Date of report	January 24, 1989.
GLP	No.
Reference	75.
Test substance	Cyanuric chloride, purity not indicated.

5

Guideline	NI-4 Baabla					
Stat. method	Not applicable. Not indicated.					
est system	Species				weight and sex no	t indicated.
	No. of animals Dosage		st concentration		dave on the dorsu	m of the ear of test
	Dosage				; vehicle acetone	
	Negative		ium lauryl sulpł		,	
	control	~				
	Procedure				re removed and w	eignea; midine for 24 hours
					phocyte suspensi	
		with	pyronin/methy	green to detern	nine pyroninophilio	cells.
	Observations					of [³ H]thymidine by
				ing; iympn node on microscopy.	weight; frequency	of pyroninophilic
Results	SDS < 0.56 x 10	⁻³ cpr	n.	on meroscopy.		
Oose (%)/effect			0	2.5	5	10
NC proliferation	(cpm)					
Without IL-2			1.0	63	55	64
With IL-2	woight (mg)		1.2	91 7 7	81 7 6	87
Mean lymph node	nin positive cells	(%)	1.0 <1	7.7 6.2	7.6 7.2	6.3 7.1
Conclusions	Sensitising.	(70)		0.2	1.2	1.1
Rev. note		f the t	est substance i	s not indicated.		
	2. The assay is	s not y	yet installed as		line for the determ	ination of
	sensitizing p				、 . <i>.</i>	
Reliability	2 No purity of 2).	the t	est substance i	ndicated (note 1) and the assay is	not validated (note
Date of report	1991. No.					
Reference	76.			J		
Fest substance Guideline	Cyanuric chlorid Not applicable.	e, pui	rity not indicate	J.		
Stat. method	No.					
Fest system		Guine	ea pig (Dunkin-ł	Hartley –Pirbrigh	t), weight 300-350) g, sex not
		indict				
			e (CBA/Ca), ag concentration.	ge 6-8 weeks, w	eight and sex not	indicated.
	No. of animals	JIEST	concentration.			
		Daily	application for	3 consecutive da	ays on the dorsum	of both ears of 50
	-	µl (gu			t concentrations a	
		5%;				
					amide/acetone/eth	anol (4/4/3) or
			and for mice ac im lauryl sulpha	etone/olive oil (4 te (SDS)	+/ 1).	
	control	55010				
		On da	ay 4 (mouse) or	5 (guinea pig) c	Iraining lymphnod	es were removed
			veighed.			
				ce of inter-leukir	ie 2) in the presen	ce of
		് ല്വന Mous	e: lymphocytes	were cultured in	the presence of	³ H1thymidine for
		24 ho				
						· • 31 1141
				C) proliferation a		
Results		β -sci r	ntillation countir	g; lymph node v	as incorporation of veight (guinea pig 0 ⁻³ cpm in mouse).
	Procedures	and w Guine prese [³ H]th Mous	veighed. ea pig: lymphoc nce and absen ymidine. e: lymphocytes	ytes were cultur ce of inter-leukir	Iraining lymphnod ed for 24 or 48 ho le 2) in the presen n the presence of	urs (48-h assay ir ce of

Dose (%)/effect

OECD SIDS 5. TOXICITY	CYANURIC CHLORIDE ID: 108-77-0					
Guinea pig LNC proliferation (cpm x 10 ⁻³)						
24 h without IL-2	4.7	27	27	36	25	
48 h without IL-2	0.6	2.0	1.5	6.1	5.0	
48 h with IL-2	1.3	8.7	11	22	14	
Mean lymph node weight (mg \pm SE)	11.1±0.9	16.5±1.8	28.1±2.8	34.8±2.9	21.7±0.9	
Mouse	+					
LNC proliferation (cpm x 10-3)	1.7	22	31	43	-*	

* not tested.

Conclusions Sensitising. Rev. note

The purity of the test substance is not indicated.
 The assay is not yet installed as an official guideline for the determination of sensitising properties.

Reliability

2 No purity of the test substance indicated (note 1) and the assay is not validated (note 2).

5.5. Repeated dose toxicity

Title Date of report GLP Reference Test substance Guideline Stat. method Test system	February 24, 1 No. 36.	ide Technical, purity not indicated. ing study).
	Dosage	Oral gavage once daily for 5 days at 0, 10, 20, 40, 80, 160 or 320 mg/kg body weight.; vehicle mineral oil.
	Observation s	Daily clinical signs and mortality, body weight and food consumption at initiation (day 1) and termination (day 6) of the study. Macroscopic examination on the day of death or at termination.
Results		

Results																						
Dose (mg/kg bw)\effect	(0		0		0		0 10		0	20		40		80		160		320		DR	
Sex	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F	М	F						
Mortality	0	0	0	0	0	0	0	1	2	4	4	4	5	5	х	х						
Clinical signs ^(A)					+	+	+	+	+	+	+	+	+	+	х	х						
Body weight					d	d	d	d	d	d	d	d	d	d	х	х						
Food consumption					d	d	d	d	d	d	d	d	d	d	х	х						
Macroscopic findings ^(B)					+	+	+	+	+	+	+	+	+	+	х	х						

(A) Rales, excesssive salivation, labored breathing, gasping, cool to touch, decreased motor activity, brown material around mouth/nose, moist areas of yellow material on several body regions, dry/red material around eye(s)/mouth and black material around anal opening were seen. (B) Dark discolouration (with foci), haemorrhage and erosions or ulcerations in the glandular stomach and/or nonglandular stomach. Conclusion Effects were seen at and above 20 mg/kg bw. 1. This study represents a preliminary investigation for a study of longer duration. Rev. note Therefore, GLP compliance and a full correspondence with the repeated dose toxicity guideline (OECD 407) is not required. 2. The purity of the test substance is not indicated. Reliability Limited parameters evaluated, therefore, limited interpretation possible (note 1) and 2 no purity of the test substance (note 2). Title 21-day dermal toxicity study in rabbits. Date of report November 15, 1983. GLP Yes. Reference 37. Test substance Cyanuric chloride Technical, purity not indicated. Guideline Not indicated.

Stat. method ANOVA, Bartlett's test, t-test according to Steel and Torrie, Dunnett's test, non-parametric test according to Conover and Iman.

	toot according to	
Test system	Species	Rabbit (New Zealand White), age 12-14 weeks, weight males 2,3-3,2 kg
		and females 26-3,2 kg.
	No. of animals	6/sex/dose level.
	Dosage	Dermal administration for 4 weeks (6h/day, 5 days/week) at 0, 50, 150
		and 500 mg/kg bw on the clipped dorsal skin under occlusion (30% of
		body surface); vehicle mineral oil; vehicle and untreated controls.
	Observations	As required by OECD 410.
		Histopathology on treated and untreated skin, kidney, liver and gross

Results

Dose mg/kg bw)	0		0		50		150		500		DR	
	(untreated)		(veh	(vehicle)								
Sex	Μ	F	Μ	F	М	F	Μ	F	М	F	М	F

lesions.

Mortality	1/6				1/6		1/6			
Clinical signs	N	o trea	tment	related	d effect	s				
Local effects (A)	+	+	+	+	+	+	+	+	х	х
Body weight					d		d	dc		
Food consumption	N	o trea	tment	related	d effect	s				
Haematology:										
Erythrocytes								ic		
MČV								dc		
Leucocytes					ic		i			
Segmented neutrophils			ic		ic		ic			
Clinical biochemistry:										
ALP				d	dc	d	dc	dc		
Albumin					d		dc	dc		
Globulin					ic		ic	ic		
Glucose					ic					
Organ weight	N	o trea	tment	related	d effect	s				
Necropsy(B)		+	+	+	+	+	+	+	х	х
Histopathology (C)	+	+	+	+	+	+	+	+	х	х

(A) Effects included erythema and oedema in all groups (not untreated control); blanching, fissuring, desquamation, eschar formation and exfoliation in 50, 150 and 500 mg/kg groups.

(B) Treated skin: thickening/hardeness in all groups (not untreated control and males vehicle control); eschar formation and corrugation in 50, 150, and 500 mg/kg groups.

(C) Epidermal hyperkeratosis and acanthosis, follicular hyperkeratosis and acanthosis in all groups treated with test substance and the vehicle control group (dose related increase). Intraepidermal suppuration, ulceration of the epidermis and increased relative severity of dermal inflammation in 50, 150 and 500 mg/kg groups.

Conclusions NOAEL (systemic) 150 mg/kg bw (see rev. note). 1. The purity of the test substance is not indicated. Rev. note 2. Slight deviations from the OECD 410 guideline included: no temperature and relative humidity ranges given; initial weight range exceeded the upper OECD limit (3.0 kg); no acclimatisation period given; exposed skin area 30% of the total surface area $(OECD \ge 10\%)$: food consumption estimated instead of measured: no indication of paring/pregnancy status of females. These deviations were considered not to have affected the study outcome. Exposure of 30% surface area under occlusion considered to be worst case. 3. Increased leucocytes and segmented neutrophils among males may be related to the local damage of the exposed skin. 4. Decreased ALP values were considered biologically not meaningful. Variations in blood proteins and glucose remained within normal biological limits. 5. In this study a No Observed Effect Level could not be established based on the local irritant effect on the treated skin area. The body weight loss seen at 150 and 500 mg/kg bw may be at least partly related to stress due to the repeated use of bandages and the skin damage. Since at 150 mg/kg bw effects on body weight were seen in males only, it was concluded that the No Observed Adverse Effect Level (systemic) was 150 mg/kg bw. 6. The histopathology was performed according to the requirements of OECD 410. However, in view of the development of other OECD guidelines on repeated exposure (e.g. OECD 407), the histopathology performed in this study was considered to be minimal. Reliability 2 No purity of the test substance indicated (note 1). Title Summary: Repeated dose oral toxicity - 28 days Date of report 1989. GLP Not indicated. Reference 73. Test substance CAS 108-77-0 (Cyanuric chloride), purity not indicated. Guideline Not indicated. Stat. method Not indicated. Test system Species Rat (Wistar)

Results Conclusions Rev. note Reliability	Observations Mortality: at 4 mg mg/kg bw 6 males nodules and gast In survivors dose and focal papillon Active germinal c 100 mg/kg bw. At hepatocyte nuclei Food consumptio Liver and adrenal concentration and phosphatase activ	Daily oral doses of 0, 4, 20 and 100 mg/kg bw. Not specified /kg bw 1 female, at 20 mg/kg bw 1 male and 2 females and at 100 s and 3 females. Animals that died showed atrophic spleen lymphatic ritis. related effects included erosion and ulceration of the stomach mucosa natous proliferation and hyperkeratosis of the forestomach epithelium. enters of lymphatic nodules in the small intestine were seen at 20 and 100 mg/kg bw vacuolisation of hepatocytes and polymorphism of was reported. n and body weight were decreased at 100 mg/kg bw. weights were increased and red blood cell count, haemoglobin I haematocrit were lowered at 100 mg/kg bw. An increase in alkaline <i>i</i> ty was seen at 100 mg/kg bw. an be drawn based on the limited information available.
Title		(2,4,6-trichloro-1,3,5-triazine): 90-days repeated exposure inhalation
Date of report GLP	toxicity study in ra August 6, 1994. No.	ats.
Reference	74.	
Test substance Guideline		yanuric chloride), purity >95%.
Stat. method	OECD 413, EEC Bartlett's test for I	nomogeneity of variance, ANOVA, Dunnett's test, Kruskal-Wallis test,
		ank test, Jonkheere's test for trend and ANCOVA.
Test system	Species	Rat, DAK Wistar; 6-8 weeks old, weighing 145-190 g (males) and 120-
	Source	160 g (females). The Nofer institute of Occupational Medicine.
	No. of animals	10/sex/treatment.
	Type of	Whole-body inhalation exposure system.
	exposure	3
	Dosage	0.01, 0.05 and 0.25 mg/m ³ , air-exposed controls.
	Exposure period	13 weeks, 5 days per week, 6 hours per day.
	Air changes	7.2/hour.
Investigations	General	Mortality daily;
-		Clinical signs daily before and after exposure;
		Body weight at study initiation and weekly thereafter;
	Clinical	Food consumption.
	Clinical pathology	Blood chemistry at end of treatment period: aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), sorbitol
	pathology	dehydrogenase (SDH), γ -glutamyl transpeptidase (GGT), alkaline
		phosphatase (ALP), ornithine carbamovitransferase (OCT), total
		billirubin, total protein, albumin, blood urea nitrogen (BUN), glucose,
		natrium, potassium, chloride, inorganic phosphate and calcium;
		Hematology at end of treatment period: red blood cell count (RBC), white blood cell count (WBC), hemoglobin, hematocrit value, mean
		corpuscular volume (MCV), mean corpuscular hemoglobin
		concentration (MCHC), platelet count, percentage of reticulocytes and
		differential leukocyte count.
	Necropsy	Macroscopy: external appearance, body orifices, body cavities and
		their contents; Organ weights: brain, lungs, beart, liver, kidnove, adrenale, thumus
		Organ weights: brain, lungs, heart, liver, kidneys, adrenals, thymus, ovaries/testes and spleen;
		Histopathology: nose, trachea, lungs, heart, liver, kidneys, adrenal
		gland, spleen, stomach, duodenum, pancreas, small and large
		intestine, testes and epididymides/uterus and ovaries, brain,

Results

cerebellum, (para)thyroid, salivary gland, thymus, oesophagus, mediastinal lymph nodes, urinary bladder, prostate gland, seminal vesicles, mammary glands, lacrimal glands, eye with optic nerve, skin, femur muscles, spinal cord and spinal medulla.

Analysis of test substance

t Analysis of test substance concentrations at least every two hours by gas chromatography.

Dose	Coi	ntrol	0.01 ו	mg/m³	0.05 r	ng/m³	0.25 r	ng/m³	Dose related	
Sex	М	F	М	F	М	F	М	F	М	F
Mortality				No	ne					
Clinical Signs			No sy	mptoms	were ob	served				
Body weight /food			No tre	eatment	related e	effects				
consumption										
Hematology										
Hemoglobin				d		d		dc		+
Reticulocytes				d		d	d	d	+	
WBC			dc		dc		dc			
Young neutrophils			i		i		i	i		+
Eosinophils				i	i	i	i	i		
Clinical chemistry										
Phosphate					ic					
Glucose						ic				
Macroscopy (A)							+	+		
Organ weights										
Testes			dc ^{ar}							
Adrenals						dc ^r				
Heart						dc ^r		dc ^r		
Microscopy										
Nose (B)							+*			
Trachea (tracheitis)							+			
(C)										
Bronchi (D)							+			
Lungs (E)			+		+	+	+*	+		
Small intestine (F)				+						
Liver (G)					+		+*			
Testes/epidymides/pr			No tre	eatment	related e	effects				
ostate/seminal										
vesicles										
Uterus/ovaries			No tre	eatment	related e	effects				

Where i=increase; d=decrease; ic=significant increase; dc=significant decrease; ^a=absolute; ^r=relative, * incidence of findings significantly higher than control group.

- (A) Consisting an of increased amount of yellowish exudate in the nose of males (6/10), and congested lungs. In control and other treatment groups incidence of exudate was 0-1/10 males and 2/10 females.
- (B) Presence of PMN in the lumen.
- (C) Incidence 5/10. Also findings in females. Increased incidence at all treatment groups and controls (1-3/10)
- (D) Higher incidence of increased cellularity of BALT in high dose males compared to control and other groups.
- (E) Congestion and/or foamy macrophages in alveoli and/or interstitial lymphocytic infiltrations; effects in females appeared less frequently.
- (F) Proliferation of lymphatic tissue.
- (G) Fast red (+) droplets in hepatocytes

Analyses of test	0.012, 0.051 and 0.241 mg/m ³ for nominal concentrations of 0.01, 0.05 and 0.25 mg/m ³
substance	resp.

Conclusions NOAEC = 0.25 mg/m^3 for systemic toxicity.

NOAEC = 0.05 mg/m^3 for local effects.

OECD SIDS 5. TOXICITY		CYANURIC CHLORIDE ID: 108-77-0	
Rev. note	 All changes not treatmen the observat and young n The list of ex The effects of of the report groups, the lungs, and for performed w It is not specified No ophthalm Air changes The analytic of the methor 	not performed under GLP. in blood chemistry, hematology and organ weights were considered ht-related, since no dose-response relationship became apparent, or tion was found only in one sex. Effects on hemoglobin, reticulocytes eutrophils showed a high inter-individual variance. kamined organs is not fully in accordance with OECD 413. on the lower airways were attributed to a viral infection by the author . The presence of yellowish exudate in females of treated and control presence of interstitial lymphocyte infiltration in alveolar septa of the bamy macrophages in all dose groups may indicate the study was with non-SPF rats. cified if several slides of nasal and laryngeal tissues were examined. hologic examinations were performed. were below OECD recommendations (10-12/h rec.) al report did not include many details. No information on the validation ad used. No chromatograms were included. Between 28 and 33 re investigated.	
Renability	2 NUL-OLI		
Title Date of report GLP Reference Test substance Guideline Stat. method	No. 68. Ce CAS 108-77-0 (Cyanuric chloride), purity not indicated. Not indicated. Not applicable.		
Test system	Species No. of animals Dosage Exposure period	Rat. 10//treatment. 0, 1.88 and 0.3 mg/m ³ . 4 hours for 5 days/week for 2.5-5 months.	
Investigations		signs, body weight, body temperature, haematology, clinical chemistry,	
Results	Mortality Clinical signs	3/10 at 1.88 mg/m ³ . At 1.88 mg/m ³ : Inflammation of the conjunctiva and the higher respiratory tract, hypokinesis,	
	Body weight	At 1.88 mg/m ³ a initial decrease followed by recovery relative to starting weight.	
	Body	At 1.88 mg/m ³ a mean decrease of 1 degree was observed after 6 weeks of exposure.	
	temperature Blood	At 1.88 mg/m ³ decrease in haemoglobin and erythrocytes.	
	chemistry	Ammonium thiocyanate in blood serum was below the norm (0.4-0.6 mg%). Prothrombin decreased.	
	Macroscopy	Tracheitis, bronchitis, peribronchitis, pneumonia, dystrophy of the liver, kidneys and myocardis at 1.88 mg/m ³ .	
	Histopathology	Animals deceased at 1.88 mg/m ³ : bronchopneumonia. Discoloured lungs, swollen lungs and brain, inflammation of the respiratory tract, dystrophy of liver and kidneys and decrease of lipids in adrenal glands.	
Conclusions	Other NOAEL = 0.3 mg/	Decreased oxygen consumption from 1.5 months onwards.	
Rev. note		s limited to the above summary.	
Reliability	4	·y.	

Title Date of report GLP Reference Test substance Guideline Stat. method Test system	1993. No. 77. Cyanuric chloride Not indicated. Not indicated. Species No. of animals Dosage	Inhalation exposure for 4 weeks (6h/day, 5 days/week) at 0, 0.04, 0.2, 0.4, 1.0 and 1.5 mg/m ³ . Routine toxicometric methods, biochemistry, histopathology,				
Results	morphometry and popliteal lymph node assay (PLNA). In higher doses increased mortalitity, decreased body weight gain and food consumption and histopathological changes in the lungs. At 1 mg/m ³ an increase of bronchoalveolar lymphatic tissue. Atrophia of the thymus cortex , enlargement of the mesenteric lymph nodes and increase of lymph node weights and cell numbers (from PLNA).					
Conclusions Rev. note Reliability	The data are too	limited to draw a conclusion nly a short abstract was available.				
Title	Cyanuric Chloride Flint).	e In Patty's Industrial Hygiene and (via personal communication of E.				
Date of report GLP	1981. Not applicable.					
Reference Test substance	99. Cyanuric chloride	ð.				
Test method Remark Reliability	Not indicated. A subacute feedii 4	ng study on rabbits has shown no injury at 37 mg/kg bw.				
Title	Cyanuric Chloride Flint).	e In Patty's Industrial Hygiene and (via personal communication of E.				
Date of report GLP	1981. Not					
Reference Test substance Test method Remark		e. study in rats gave a NOEL of 0.02% in diet (20 mg/kg bw). At 0.1 and dy weight gain was reported				
Reliability	4 .					

5.6. Genetic toxicity

5.6.1. Chromosomal aberration

Title Date of report GLP Reference Test substance Guideline Stat. method	Mouse micronucleus test (single oral administration) April 16, 1987. Yes. 39. Cyanuric chloride, purity 97%. OECD 474, EC 4/449 B12 Poisson test.			
Test system	Species	Mouse (NMRI), 6 weeks old, 26-39 g.		
	No. of animals	7/sex/sampling time (controls 6/sex/sampling time).		
	Dosage	Single oral administration (gavage) at 619 mg/kg bw; vehicle (peanut oil controls), dosing volume 10 mL/kg bw. Dose selection was based on preliminary study at 1000 mg/kg bw, which showed deaths and clinical symptoms.		
	Sampling time	At 24, 48 and 72 hours post-dose.		
	Pos. control	Cyclophosphamide (in 0.9% saline at 51 mg/kg bw) gave the expected response.		
	Scoring	For 5 animals/sampling time, the following proportions were determined in bone marrow smears: Micronucleated PolyChromatic Erythrocytes (MPCE) per 1000 PCE. Ration PCE/NCE (NormoChromatic Erythrocytes).		

Results

Dose [mg a.i./kg bw]/effect		0		619
Sex	М	F	М	F
Mortality			2/21	2/21
Clinical signs ^(A)				+
% MPCE		No treatm	ent related effects	
PCE/NCE				d

(A) Salivation, forced respiration, ruffled fur, hypokinesia, tremor and disturbance of the general condition was seen among animals.

Conclusion	Not clastogenic.	
Rev. note	 was seen. How differences considered to 2. Minor remarks proportion of Mathematical 	at the first sampling time a strongly increased number of micronuclei wever in all other animals at this and the other sampling times no mpared to controls were seen. Therefore the effect in this animal is have occured by chance. The number of normochromatic erythrocytes was not reported. The MPCE was determined for 1000 PCE. This is in agreement with OECD ECD 474 (1997) requires evaluation of 2000 PCE.
Reliability	1	
5.6.2. Gene mutat	tion	
Date of report	January 26, 1994	
GLP	No.	
Reference	38.	
Test substance	Cyanuric chloride,	purity >95%.
Guideline	OECD 471, 84/44	
Stat. method	Not performed.	· ·
Test system		TA97a, TA98, TA100, and TA102.
,	Metabolic	Male rat liver S9 mix (Aroclor 1254 induced)
	activation	
	Test	1, 10, 100 and 500 μ g/plate (based on toxicity in TA97a).
	concentration	
	Controls	Negative: vehicle (DMSO).
		<u>Positive</u> : Without activation: 4-nitro-o-phenylenediamine (TA98), sodium azide (TA100), 4-nitroquinoline-N-oxide (TA97a,

Procedure

1

TA102), With activation: 2-aminofluorene (TA97a, TA100, TA102), benzo(a)pyrene (TA98). Plate incorporation assay according to OECD 471.

Results	Tost	t result ^(A)
Tester strain	Without activation	With activation
TA97a	-	-
TA98	-	-
TA100	-	-
TA102	-	-
(A) +/- : positive	/negative result; positive controls gave expect	ed responses.
Conclusion	Not mutagenic.	
Rev. note		ed (OECD 471 five). The initial number of cells

Reliability

5.7. Carcinogenicity

Title Date of report GLP Reference Test substance Guideline Stat. method	e of report1966.No.erence97.t substanceCAS 108-77-0 (Cyanuric chloride), purity 96.9%; impurity is cyanuric acid.delineNot indicated.					
Test system	Species	Rat; male/female; 100-110 g.				
	No. of animals Dosage	50/treatment. Test 1 (25 male/25 female): once weekly subcutanous injection of 10				
	DUSaye	mg in 0.5 ml sunflower oil for 3.5 months and subsequently, 6 times/week 10 mg in 0.5 ml sunflower oil in the diet for 20.5 months. Test 2 (27 males/23 females): 6 times/week 10 mg in 0.5 ml sunflower oil in the diet for 24 months.				
	Investigations	Tumour development, macroscopic and microscopic investigation of tumours				
Results	 Test 1: From 17 months onwards 9 rats of 34 survivors developed subcutaneous masses (one animal developed also a mass of the preputial gland) and one animal had a mass in the left hip. No metastases were apparent. All tumours were identified as sarcomas (1 osteosarcoma (hip), 4 spindle cell sarcoma: 2 fibrosarcomas, 1 neurosarcoma and 2 lymphosarcomas). The tumour of the preputia gland was possible malign. 					
	Test 2: From 17 months onwards 8 rats of 45 survivors developed fibroadenomas of th mammary gland (5), ileocaecal lymphosarcoma (1), carcinoma of the prostate (1) and leiomyosarcoma in the uterus (1). The mammary tumours are considered benign and the 3 other tumpours malign.					
A I I	Other effects in b cysts in the liver	both tests were renal changes (renal dystrophy, glomerulosclerosis) and (related to invasion with parasites).				
Conclusions	Cyanuric chloride may induce tumours at the injection site associated with the development of necrosis due to its highly irritating/caustic properties. The other tumours found in both tests were considered incidental findings without relationship to the treatment with cyanuric chloride.					
Rev. note Reliability	Translation of a F 4	Russian article with extensive description of pathology.				

5.8. Reproductive toxicity

Title Date of report GLP Reference Test substance Guideline Stat. method	Not indicated. ANOVA, Bartle	
Test system	Species No. of animals Dosage Procedures	Rat (CD), 17 weeks old at gestation day 0, weight 228-383 g. 25 mated females/dose group. Oral gavage at 0, 5, 25 and 50 mg/kg bw; vehicle mineral oil. Female rats were mated with untreated stock males (1/1) from the same strain and source. The day of observation of a vaginal plug was defined as day 0 of gestation. Females were treated daily from day 6 to 19 of gestation inclusive. Mortality/clinical symptoms of females were observed daily from day 0 to 20. Body weights were recorded on gestation days 0, 6, 9, 12, 16 and 20. On day 20, all females were subjected to macroscopic examination. The uteri were removed and examined for no. of corpora lutea, total no. of implantation sites, no. and location of viable and non-viable foetuses and the no. of resorptions. Foetuses were inspected on the sex, weight, external malformations/variations and visceral (1/2 of foetuses) and skeletal (1/2 of foetuses) defects.

Results

Dose (mg/kg bw)	0	5	25	50	DR
Maternal data					
Mortality	0/25	0/25	1/25 [#]	0/25	
Clinical signs ^(A)				+	
Body weight gain (day 6-19 and 0-20)				d	
Necropsy		No treatment	related effect	sts	
No. of pregnant females	17	18	21	22	
No. of corpora lutea/dam	No treatment related effects				
No. of implantation sites /dam		No treatment	related effect	sts	
Post-implantation loss				i	
Pre-implantation loss/ resorptions		No treatment	related effect	sts	
No. live foetuses/ dam				d	
Foetal data					
No. of litters included in evaluations	17	18	20	22	
Foetal weight	No treatment related effects				
External examination / sex	No treatment related effects				
Anomalies: visceral	No treatment related effects				
skeletal	No treatment related effects				

Due to an intubation error: d = decreased; I = slightly increased (A)Dry matter around the face, forelimbs and anogenital area, matted haircoat, excessive salivation, respiratory rales.

Conclusions	NOAEL for maternal toxicity: 25 mg/kg.
	NOAEL for developmental effects: 25 mg/kg.
Rev. note	 Purity of test substance not indicated.
	2. Deviations from the OECD 414 guideline included: No food consumption and no
	uterus weights. The omission of these parameters was considered not to have
	adversely affected the outcome of the study.
Reliability	2 No purity of the test substance (note 1).
Number	
Title	Exploratory range-finding teratology study in rats.
Date of report	October 27, 1983.

OECD SIDS 5. TOXICITY		CYANURIC CHLORIDE ID: 108-77-0
GLP Reference Test substance Guideline Stat. method Test system	No. 93. Cyanuric chlori Not indicated. Species Source No. of animals Dosage Procedures	 de Technical, purity not indicated. Rat (CD), 12 weeks old at gestation day 0, weight 224-271 g. Charles River Breeding Laboratories Inc., Portage, Michigan. 5 mated females/dose group. Oral gavage at 0, 5, 10, 20, 30 and 40 mg/kg bw; vehicle mineral oil. Female rats were mated with untreated stock males (1/1) from the same strain and source. The day of observation of a vaginal plug was defined as day 0 of gestation. Females were treated daily from day 6 to 19 of gestation inclusive. Mortality/clinical symptoms of females were observed daily from day 0 to 20. Body weights were recorded on gestation days 0, 6, 9, 12, 16 and 20. On day 20, all females were subjected to macroscopic examination. The uteri were removed and examined for no. of corpora lutea, total no. of implantation sites, no. and location of viable and non-viable foetuses and the no. of resorptions.

Results							
Dose (mg/kg bw)	0	5	10	20	30	40	DR
Maternal data							
Mortality	0/5	0/5	0/5	0/5	0/5	0/5	
Clinical signs ^(A)		No tr	eatment	related e	ffects		
Body weight gain (day 0-20)	No treatment related effects						
Necropsy ^(B)		No tr	eatment	related e	ffects		
No. of pregnant females	4	4	4	5	5	5	
No. of corpora lutea/dam	15.8	15.8	15.8	16.8	16.6	15.6	
No. of implantation sites /dam	14.0	14.8	14.8	12.6	14.2	15.0	
Post-implantation loss	1.5	1.3	1.0	0.4	1.2	1.2	
No. live foetuses/ dam	12.5	13.5	13.8	12.2	13.0	13.8	

(A) At doses above 5 mg/kg bw incidentally hair loss. At 40 mg/kg bw rales, decreased activity, soft stool and emaciation in one female.

(B) Incidentally hydronephrosis and distended ureter in all groups. Distended intestines in one female at 40 mg/kg bw (see clinical signs).

Conclusions NOAEL for maternal toxicity: 40 mg/kg.

- NOAEL for reproductive effects: 40 mg/kg.
 - 1. Purity of test substance is not indicated.
 - 2. No foetal parameters were established. The study is a dose-range finding study.
- **Reliability** 2 Dose-range finding study.

5.9. Other relevant information

••

Rev. note

Title Date of report GLP Reference Test substance Guideline Stat. method	No. 41. Stance Cyanuric chloride, purity >95%. Not applicable.				
Test system	Species	Mouse (Balb/C), age 2-3 months, weight 18-20 g.			
	No. of animals	10 males/group.			
	Dosage	15 minutes exposure (nose only) at 2.1, 6.7, 9.1, 11.7 and 14.6 mg/m ³ ; food and water <i>ad libitum</i> (food was withheld 16 h prior to dosing).			
	Analyses	5 L air (rate 0.5 L/min) from the inhalation chamber was passed through an impinger (with toluene) and analysed by GC/NPD.			
	Observations	Respiratory rate before, during and after exposure for 10, 15 and 5 min. resp. by whole body plethysmography.			
Results	Between 8 and 1	15 minutes a plateau was reached			

OECD SIDS 5. TOXICITY

5. TOXICITY						ID: 108-77-0
Measured conce effect	ntration [mg/m ³] \	2.1	6.8	9.3	11.7	14.6
Mean decrease re	espiratory rate during	59	68	75		
plateau phase [%						
Conclusions	RD ₅₀ 5.9 mg/m ³ (bas		found in pla	teau phase).		
Rev. note	1. No females teste					
	2. It is not clear why					
	3. No information or					led
Reliability	3 Only males were	tested, limite	ed analyses	performed (no	ote 3).	
- /						
-	e with human exposu					
Title	Problems of industria	l hygiene in t	he productio	n of cyanuric	chloride	
Date of report	1964.					
GLP	No.					
Reference	42.					
Test substance	Cyanuric chloride.					
Test method	Not applicable.	bo found in	the etmeent	oro of induct	ial promises -	The substance
Results	Cyanuric chloride can can be released durin					
	imperfectly sealing of			chillicological	i samping and	
Rev. note	The reference consist		e in Russian	Only an abst	tract in Englis	h was available
Reliability	4 .			. Only an abo		
Rondonity	• •					
Title	Occupational hygiene	in the manu	facture of si	mazin		
Date of report	1962.					
GLP	No.					
Reference	43.					
Test substance	Cyanuric chloride.					
Procedure	During the production					
	cyanuric chloride (400					
	Scientific Institute of (al Diseases. C	yanuric chioride
Results	may be released durin				noontration of	$0.1 ma/m^3$
Conclusion	Cyanuric chloride was Occupational exposure	s present in a	a samples a	t a nignest co	incentration of	0.1 mg/m
		•	•			
Rev. note	1. No information or				g was provide	d.
—	2. The analytical me	ethod was no	t further desc	cribed.		
Reliability	4.					
Title	Su di un caso di into	ssicazione ad	cuta professi	onale da 2-4-	6 trichloro-1-t	riazina (chloruro
	di cianurile)					
Date of report	1987.					
GLP	No.					
Reference	45.					
Test substance	Cyanuric chloride.	• •	- 4 \			
Case	An, in general, health					
	inspection in a factory					
	basic materials) was			cause a vesse	el got broken.	The man was
	totally submerged und					, , , , , , , , , , , , , , , , , , ,
	Signs of intoxication of	consisted of	irritation of th	ne skin, eyes	and pharynx,	followed by
	serious obstructive pu					
	No effects on the hea					
• · ·	reported from an pre-					0 days.
Conclusion	Acute poisoning with				ting effects.	
Rev. note	No information on the	exposure le	vel was pres	ent.		
Reliability	4.					

Title Date of report GLP Reference Test substance Test method Procedures Results Rev. note Reliability	Resilient-viscous properties of the arterial vessels in workers contacting with cyanourchloride February 20, 1987. No. 46. Cyanuric chloride. Not applicable. Two times per year (for 4 year) workers (n=38) exposed to cyanuric chloride were investigated. Results were compared with an unexposed control group (n=30). An effect on the viscous properties of the walls of the arterial vessels was seen. The reference consists of an article in Russian. Only an abstract in English was available. From the text it can be deduced that most probably the tension in muscles of the arterial walls was increased.
Title Date of report GLP	Cyanurchlorid - Arbeitsmedizinische-toxikologische Bewertung der Exposition in der Produktion unter Aspekten der Arbeitssicherheit 1998. No. 20
Reference Test substance Test method	 79. Cyanuric chloride. 39 workers with known history of long-term exposure to cyanuric chloride (between 1 and 22 years) were investigated. Investigations included anamnesis, physical examination (with special attention to lungs, skin and eyes), lung function (forced expiratory volume) and blood pressure measurements. Medical records of another 21 workers previously exposed to incidental high concentrations, who had changed jobs in the mean time, were checked. Determination of concentrations at the workplace. Samples (30-60 min) were taken during the filling procedure (worst case) and during normal production procedures (both room and personal monitoring). The samples were analysed after adsorption tosilicagel, desorption with H₂SO₄, hydrolysis to cyanuric acid (70 min at 70°C) and analysis of the cyanuric acid by HPLC with UV detection. No effects on any of the measured parameters were found. FEV was within normal ranges. Accidental acute exposure to high doses of cyanuric chloride was reported to lead to irritation/corrosion of the conjunctiva and skin irritation. After inhalation of the test substance coughing, breathing problems and shortness of breath were seen. These effects disappeared completely after a short time and did not result in persisting problems. Measured concentrations were 7.09 ± 9.22 µg/m³, 4.43 ± 2.72 µg/m³ and 92.76 ±
Rev. note	147.52 μ g/m ³ , for filling, room and personal monitoring, resp For test 3 the number of samples was not indicated. The information available is confined to the above mentioned. No individual data (on subjects or samples) are provided, except for FEV measurements.
Reliability	4.
Title Date of report GLP Reference Test substance Test method Results	Vesication and some vesicants. 1945. No. 82. Cyanuric chloride. Not applicable. Cyanuric chloride is a lachrymator and an irritant to the eyes and nose. Exposure of a laboratory assistant to a small amount of vapour resulted in rash on the neck and behind the ears with irritation. Closer contact is expected to produce marked vesication as with exposure to analogous compounds happened. 4 .

Title Date of report GLP Reference Test substance	Einwirkungen von Cyanurchlorid auf den menschlichen Organismus 1984. No. 84. Cyanuric chloride.
Test method Test system	Not applicable. Male workers exposed to cyanuric chloride regularly (n=30) or exposed to cyanuric chloride occasionally (n=27-30) were followed over a 5-year period. Sampling of air concentrations in the plant showed values above the current MAK value (1984). Workers were examined twice yearly for clinical signs, cardiovascular effects and lung function. Blood was investigated for glutathion, ascorbic acid, heterophilic agglutines, specific immuglobulins (A, G, M) and hepatitis-antibodies. Urine was investigated for ascorbic acid.
Results	In the high exposure group complaints of headache and pain in the epigastric and/or heart region were significantly more frequent than in low exposed workers. The number of subjects with hypertension in the high exposure group was significantly increased (29% at high exposure and 4% at low exposure). Effects on the nervous system including decreased heart tonus, irritability, tearful and depression were observed more frequently in the high exposure group. All these effects were associated with vegetative-vascular dystonia (33% at high exposure and 11% at low exposure) In 53% of the investigated workers rhinitis and pharyngitis was observed. 9 exposed subjects developed dermatitis. Lung function was mainly unaffected. Slight myocardial changes were observed (leading to increased incidences of bradycardia, tachycardia and arrhytmia). Initially there was a tendency of increased elasticity of the vessel walls, which normalised after prolonged exposure. Blood glutathion was decreased and ascorbic acid in blood and urine was decreased.
Conclusion	General decrease of natural antibodies and decreased IgA were reported. Cyanuric chloride may exhibit effects on the nervous system, immune system and
Rev. note	concomitant effects on heart and blood vessels. The study is poorly described. For several effects no distinction between high and low exposed workers was made, making analysis of the findings complicated, as no relationship between exposure concentration and severity of response can be established.
Reliability	4
Title Date of report GLP	BUA-Bericht "Cyanurchlorid" – Eintrag in die Umwelt. August 31, 1992. Not applicable
Reference	applicable. 95.
Test substance Test method Remark	Cyanuric chloride. Not applicable. The total emission of cyanuric chloride into the atmosphere is estimated to be less than 50 kg/year, including diffuse emission sources like repair and service work. The emission of hydrolysis products of cyanuric chloride into the hydrosphere is estimated to be in the range of 15 tonnes per year.
Rev. note Reliability	Letter. 4
Title Date of report GLP	Cyanuric Acid and Cyanuric Chloride In Ullmann's Encyclopedia of Industrial Chemistry. 1987. Not applicable.
Reference Test substance	98. Cyanuric chloride.
Test method Remark	Not applicable. Worldwide annual production exceeds 100,000 t/a. Approximately 80% of production is used for pesticides, especially herbicides. More than 10% is converted into optical

lyes.	9						
Verbrauchsmengen (letter).							
1992. Not applicable.							
100. Cyanuric chloride.							
Production In 1990 about 27.000 tonnes of cyanuric chloride was produced in Wester Germany, an estimated 48.000 tonnes in Western Europe and world-wid	е						
···· ··· ··· ··· ··· ··· ···							
15-30% optical brightners							
,							
992. Not							
01. Cyanuric chloride.							
 Waste Cyanuric chloride is produced in a closed system. The air from the production building (suppressed atmosphere) is cleaned by alkali water (complete hydrolysis to cyanuric acid) and/or thermal afterburning at 1000°C of evaporated dangerous substances. The air from the production apparatus containing solid cyanuric chloride is led through a filter and subsequently through alkali water. Less than 0.08 mg/m³ air of cyanuric chloride could be detected. The active carbon from the cyanuric chloride reactor is washed by water until free of smell and burned afterwards. Waste water is directly or after a biological waste water treatment dumped in the river. About 12 tonnes per year of hydrolysis product is released into the environment. 							
angzeitfolgen einer einmaligen (unfallmäβigen) Einwirkung von Cyanurchlorid auf							
Aitarbeiter des Betriebes.							
lot							
02. Cyanuric chloride. Jot applicable. Exposure of workers to cyanuric chloride in 1971-75 and from 1984 onwards. Exposure cyanuric chloride dust may result in irritation of the respiratory tract, bronchitis, severe eye irritation and skin burns. Incidentally bronchitis with obstruction was reported (n=2) dowever, routine investigation of lung function over a period of 2 years after exposure							
d4 EV1Na1CNF U 4 EU1Na1CNV 4 UN1Na1CNEcer	Not applicable. 100. Cyanuric chloride. Not applicable. Production In 1990 about 27.000 tonnes of cyanuric chloride was produced in Wester Germany, an estimated 48.000 tonnes in Western Europe and world-wid (without Eastern Europe, GUS, China and India) an estimated 108-118.0 tonnes. Use Estimation of cyanuric chloride use in 1990: 50% pesticides 5-10% optical brightners 5-10% dyes 5-10% plastic additives 4 BUA-Bericht "Cyanurchlorid" – Beschreibung des Herstellungsverfahrens und des Umwelteintrages (letter). 1992. Not applicable. 101. Cyanuric chloride. Not applicable. Waste Cyanuric chloride is produced in a closed system. The air from the production building (suppressed atmosphere) is cleaned by alkali water (complete hydrolysis to cyanuric acid) and/or thermal afterburning at 1000°C of evapora dangerous substances. The air from the production puilding (suppressed atmosphere) is cleaned by alkali water (complete hydrolysis to cyanuric acid) and/or thermal afterburning at 1000°C of evapora dangerous substances. The air from the production apparatus containing soli cyanuric chloride is led through a filter and subsequently through alkali water. Less than 0.08 mg/m ³ air of cyanuric chloride reactor is washed by water until free of smell and burned afterwards. Waste water is directly or after a biological waste water treatment dumped in the river. About 12 tonnes per year of hydrolysis product is released into the						

OECD SIDS 5. TOXICITY	CYANURIC CHLORIDE ID: 108-77-0
Reliability	4
Title Date of report GLP	Cyanurchlorid (letter). 1982. Not applicable.
Reference Test substance Test method Remark	103. Cyanuric chloride. Not applicable. Exposure of workers to cyanuric chloride dust may result in irritation of the respiratory tract, eye irritation and contact dermatitis (corrosion). Repeated exposure may lead to skin sensitisation.
Reliability	Yearly physical research of 75 workers during 24 years showed no permanent effects. 4
Title Date of report GLP	Eventuelle Gesundheitsschäden durch Umgang mit Cyol und MMA (letter). 1980. Not applicable.
Reference Test substance Test method Remark	104. Cyanuric chloride. Not applicable. Exposure of workers to cyanuric chloride dust may result in skin irritation. In 20-30% of exposed workers urticaria and asthma bronchitis is observed, which was reversible after transfer to another firm (not producing cyanuric chloride).
Reliability	4
Title Date of report GLP	Cyanurchlorid – MDT (letter). 1979. Not applicable.
Reference Test substance Test method Remark	105. Cyanuric chloride. Not applicable. Yearly physical research including an ECG in people working on the production of cyanuric chloride resulted in no cardiovascular effects during 21 years.
Reliability	4
Title Date of report GLP	Cyanurchlorid (Degussa brochure). 1987. Not applicable.
Reference Test substance	106. Cyanuric chloride, purity ≥99%.
Test method Remark Reliability	Not applicable. Cyanuric chloride is a starting material for 2-methylmercapto-4,6-dichlorotriazine (MDT), an intermediate for producing triazine herbicides. It is also used as optical brightner and in dyes. 4

Ref	Author	Year	Title	Source/performing laboratory
1	Grisley D.W., Gluesenkamp E.W. & Heininger S.A.	1958	Reactions of nucleophilic reagents with cyanuric fluoride and cyanuric chloride	J. Org. Chem. 23: 1802-1804
2	Matsui K. & Sakamoto I.	1960	On the hydrolysis of cyanuric chloride (japanese)	J. Synth. Org. Chem. Jap., 18: 175-183
3	Lonza AG	1992	Unpublished letter	Telefax of Lonza AG to Dr. W. Mayr of Degussa AG
4	Hoppe W. von, Lenne H.U. & Morandi G.	1957	Strukturbestimmung von Cyanursäuretrichlorid C ₃ N ₃ Cl ₃ mit Verwendung der diffusen Röntgenstreustrahlung zur Bestimmung der Molekülorienterungen	Zeischrift fur Kristallographie, Bd. 108:, 321-327
5.	Degussa AG	1985	Acute oral toxicity (LD50) study with cyanurchlorid in rats	Degussa, 85-0047-DKT
6	Bienert K., Klamt A., Krockenberger D., Nader F., Sewekow B. & Wittlinger R.	1993	Zum Bioakkumulationspotential von Chlororganika	UWSF – Z. Umweltchem. Ökotox. 5 (4), 228-234
7	Horrobin S.	1963	The hydrolysis of some chloro-1,3,5- triazines: Mechanism: Structure and reactivity	p 4130-4145
8	Jäckel H., Müller M., Nendza M., Klein W. & Gies- Reuschel A.	1993	Abschätzung des umweltchemischen und ökotoxikologischen Verhaltens von Stoffen durch computergestützte Analyse von Struktur und verhalten sowie von Struktur und Wirkung	UWSF – Z. Umweltchem. Ökotox. 5 (1): 11-18
9	Bacaloglu R. & Havlik J.	1983	Nucleophile Substitutionen in der 1,3,5- Triazinreihe. VIII. Zur Hydrolyse des Cyanurchloride in Dioxan-Wasser	Journal f. prakt. chemie. 325 (2): 309-318
10	James T.	1978	Chlorherbizide. 2,4-dichlor-6- isopropylamino-s-triazin, kinetische Untersuchung der Hydrolyse und Aminolyse mit Aethylamin in Abhängigkeit der wichtigsten Reaktionsparameter	Ciba-Geigy AG, Basel Switzerland; QF 2900/78/796 Nr. 34983
11	Degussa AG	1978	Hydrolytische Zersetzung von Cyanurchlorid und MDT	Degussa, 78-0007 DKO
12	Degussa AG	1985	Bestimmung der Geschwindigkeitskonstanten für die Bildung von Cyanursäure in Abhängigkeit von der Temperatur und dem pH-Wert	Degussa, 85-0045 DKO
13	Fierz-david H.E. & Matter M.	1937	Communication. Azo and anthraquinonoid dyes containing the cyanuric ring	Journal of the Society of Dyers and Colourists, Nov. 1937: 424-436
14	Kane P.F. &	1960	Determination of dyrene and cyanuric	Agricultural and food
15	Gail Gillespie K. Rys P., Schmitz A. & Zollinger H.	1971	chloride in technical materials Der Mechanismus der Hydrolyse con Chlortriainen in protischen Lösungsmitteln	chemistry, 8 (1): 29-32 Helvetica Chimica Acta, 54/1 (14): 163-176
16	Scheinost & Mertschenk	1990	Brief: Hydrolyse von Cyanurchlorid	Letter of SKW Trostberg Aktiengesellschaft to Dr. W. Mayr of Degussa AG
17	Degussa AG	1993	Berechnung der Henrykonstante von	Degussa AG, unpublished

0. KE	FERENCES			ID: 108-77-0
Ref	Author	Year	Title	Source/performing laboratory
18	Fränzle O.	1993	Cyanurchlorid Brief: Bodensorptionspotential	results Letter of Geographisches Institut of the Christian- Albrechts-Universität zu Kiel to C. Jacobs of Degussa AG.
19	Hansch C. & Leo A.	1979	The FRAGMENT method of calculating partition coefficients	Substituent constants for correlation analysis in chemistry and biology, chapter IV, p. 18-37, Pomona College, New York.
20	Chemical inspection & Testing institute Japan (Ed.)	1992	Biodegradation and bioaccumulation. Data of existing chemicals based on the CSCL Japan	Japan Chemical Industry Ecology-Toxicology & Information Center
21	Degussa AG	1979	Bericht über die Überprüfung von 2,4,6- Trichlor-1,3,5-triazin auf toxikologisches Verhalten gegenüber Fischen und Bakterien und Bestimmung der Parameter zur Kennzeichnung des "Abwasserverhaltens"	Degussa, 79-0013 DKO
22	Wakabayashi K., Okuzu M.	1970	Hydroxy-s-triazines (Japanese)	Nippon Doj0-Hiryogaku Zasshi, 41: 237-245
23	Degussa AG	1986	Cyanurchlorid. Akute Toxizitat. Prufung der akuten Toxizitat nach einmaliger oraler Applikation an der Ratte	Degussa, 86-0063 DKT
24	Rydzyński K.	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the acute toxicity after single oral administration in rats	The Nofer intitute of occupational medicine, Lodz, Poland
25	Kugler-Laffont J. & Rouquier- Fourmaud A.	1988	Bio-accumulation de l'acide cyanurique chez les mollusques bivalves et conséquences histologiques de sa toxicité chez <i>Anodonta cygnea</i>	Bull. Soc. Hist. Nat., Toulouse, 124: 101-106
27	Kobel W.	1981	Report on 8-day feeding toxicity of technical GS 41'711 in Peking ducklings	CIBA-GEIGY Limited, Basle, Switzerland
28	Rydzyński K.	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the acute toxicity after single dermal administration in rats	The Nofer intitute of occupational medicine, Lodz, Poland
29	Degussa AG	1988	Cyanurchlorid. Akute Toxicität. Toxikologische Prüfung nach einmaliger dermaler Applikation am Kaninchen	Degussa, 88-0023 DKT
30	Degussa AG	1982	Bericht über die Prüfung der lokalen Reizwirkung von 2,4,6-trichlor-1,3,5- triazin (Cyanurchlorid) Nach einmaliger Applikation an der Haut des Kaninchens (Patch-Test)	Degussa, 82-0038 DKT
31	Potokar M., Grundler O.J., Heusener A., Jung R., Mürmann P., Schöbel C., Suberg H. & Zechler H.J.	1985	Studies on the design of animal tests for the corrosiveness of industrial chamicals	Fd. Chem. Toxic., 23 (6): 615-617
32	Rydzyński K.	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the primary irritancy after single and repeated application to the skin of the rabbit	The Nofer intitute of occupational medicine, Lodz, Poland
33	Kobel W.	1981	Report on eye irritation in the rabbit after single application of GS 41711	CIBA-GEIGY Limited, Basle, Switzerland
34	Rydzyński K.	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5-	The Nofer intitute of
13/			LINED DUBLICATIONS	

Ref	Author	Year	Title	Source/performing laboratory
			triazine). Testing the primary irritancy after single application to the eye of the rabbit	occupational medicine, Lodz, Poland
35	Rydzyński K.	1994	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the cutaneous sensitizing properties in the guinea pig	The Nofer intitute of occupational medicine, Lodz, Poland
36	Goldenthal E.I.	1983	(maximization test) Exploratory 5 day oral toxicity study in rats	International Research and Development Corporation, Mattawan, Michigan, USA
37	Goldenthal E.I.	1983	21-day dermal toxicity study in rabbits	International Research and Development Corporation, Mattawan, Michigan, USA
38	Janik- Spiechowicz E. & Rydzyński K.	1994	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing for mutagenic activity in the Ames test	The Nofer intitute of occupational medicine, Lodz, Poland
39	Degussa AG	1987	2,4,6-trichloro-1,3,5-triazine (cyanurchloride) Mouse Micronucleus test (Single oral administration)	Degussa, 87-0021-DGM
40	Schardein J.L.	1983	Teratology study in rats	International Research and Development Corporation, Mattawan, Michigan, USA
41	Rydzyński K.	1994	Cyanuric chloride (2,4,6-trichloro-1,3,5- triazine). Testing the respiratory irritation in mice	The Nofer intitute of occupational medicine, Lodz, Poland
42	Blagodatin V.M.	1964	Problems of industrial hygiene in the production of cyanuric chloride (Russian article)	
43	Blagodatin V.M.	1964	Occupational hygiene in the manufacture of simazin	UDC 613.63:615.778.3, 1 st Moscow Medical Institute
44*	Blagodatin V.M., Dorofejewa E.D., Melnikova L.V. et al.	1971	Russian article	Gig. Tr. Prof. Zabol., 1: 45-47
45	Catenacci G.	1987	Su di un caso di intossicazione acuta professionale da 2,4,6- trichloro-1- triazine (cloruro di cianurile)	Med. Lav. 78 (2): 155-161
46	Soboleva L.P.	1987	Resilient-viscous properties of the arterial vessels in workers contacting with cyanourchloride (Russian article)	Vrach. Delo, 9: 103-105
47	Degussa AG	1990	Acute toxicity study in Daphnia magna with 2-chlor-4,6-dihydroxy-1,3,5-triazin, mononatriumsalz	Degussa, 90-0016 DGO
48	Degussa AG	1990	Ready biodegradability: "modified OECD screening test" for 2-chloro-4,6- dihydroxy-1,3,5-triazin, mononatriumsalt	Degussa, 90-0014 DGO
49	Degussa AG	1990	96-hour acute toxicity study in the guppy with 2-chlor-4,6-dihydroxy-1,3,5-triazin, mononatriumsalz	Degussa, 90-0015 DGO
50	Degussa AG	1992	Bestimmung des Verteilungsgleichgewichts von Cyol nach der OECD-Richtlinie Testing of Chemicals Nr. 117 vom 03.03.1989 und 107 vom 12-05-1981	Degussa, 92-0176 DKP
52	Saldick	1974	Biodegradation of cyanuric acid	Appl Microbiol 28 (6): 1004- 1008
54	Wolf D., Martin J.P.	1975	Microbial Decomposition of Ring- ¹⁴ C Atrazine, Cyanuric Acid, and 2-chloro- 4,6-diamino-s-1,3,5-triazin,	J. Environm. Qual. 4(1):134- 139
55	Hauck R.,	1964	Nitrification of triazine nitrogen	Agr. Food Chem. 12(2): 147-

0. KE	FERENCES			ID: 108-77-0
Ref	Author	Year	Title	Source/performing laboratory
56	Stephenson H. Jensen H.L., Abdel-Ghaffar A.S.	1969	Cyanuric acid as nitrogen source for micro-organisms	151 Arch. Mikrobiol 67:1-5
57	Zeyer J., Huetter R. & Mayer P.	1980	Decomposition of cyanuric acid by microbes	Chemical abstracts, 60 Sewage, Wastes 92:313-314
58	Zeyer J., Bodmer J., Hütter R.	1981	Rapid degradation of cyanuric acid by Sporothrix schenckii	Zbl. Bakt. Hyg., I. Abt. Orig. C 2: 99-110
60	Myskow W., Lasota T., Stachyra A.	1983	Cyanuric acid- a s-triazine derivative as a nitrogen source for some soil microorganisms	Acta Microbiol Pol 32(2): 177-183
61	Beilstein P., Hütter R.	1980	Enzymatic cleavage of cyanuric acid by a hydrolase	Experimentia 36: 1457
62	Cook A., Hütter R.	1981	s-Triazines as nitrogen sources for bacteria	J. Agr. Food Chem. 29: 1135-1143
63	Cook A., Beilstein P., Grossenbacher H. & Hütter R.	1985	Ring cleavage and degradative pathway of cyanuric acid in bacteria	Biochem. J. 231:25-30
64	Kobel W.	1981	Report on the acute oral LD50 in the adult japanese quail of GS 41711	CIBA-GEIGY Limited, Basle, Switzerland
65	Jutzi K., Cook A., Hütter R.	1982	The degradative pathway of the s- triazine melamine	Biochem. J. 208: 679-684
66	Jessee J., Benoit R., Hendricks A.	1983	Anaerobic degradation of cyanuric acid, cysteine, and atrazine by a facultative anaerobic bacterium	Appl Environm Microbiol. 45(1): 97-102
67	Degussa AG	1989	Zahn-Wellens-Test zum biologischen Abbau von Cyanursaüre	Degussa, 89-0012 DKO
68	Blagodatin W.	1978	Zur Toxizität des Cyanurchlorids (translation from Russian)	Gig. Tr. Prof. zabol. 12(8):35- 39
69 ==+	Labat R. & Proteau J-P.	1979	Demande de brevet d'invention No 78 00488	Institut national de la propriété industrielle
70 ⁺	German Chemical Society	1993	Cyanuric chloride (2,4,6-trichloro-1,3,5- trazine	BUA report 125 (August 1993)
71	Lewis R.J. Sr.	1996		Sax's Dangerous properties of industrial materials, Ninth edition: 2051.
72		1997	SIDS dossier on the OECD HPV chemical 2,4,6-trichloro-1,3,5-triazine CAS No. 108-77-0	
73	-	1989	Summary: Repeated dose oral toxicity - 28 days	The Nofer intitute of occupational medicine, Lodz, Poland
74	Jedrychowski R.	1994	Cyanuric chloride (2,4,6-trichloro-1,3,5- trazine 90-days repeated exposure inhalation toxicity study in rats	The Nofer intitute of occupational medicine, Lodz, Poland
75	Kimber I., Weisenberger C.	1989	A murine local lymph node assay for the identification of contact allergens	Arch. Toxicol 63: 274-282
76	Maurer T., Kimber I.	1991	Draining lymph node cell activation in guinea pigs: comparisons with the murine local lymph node assay	Toxicol 69: 209- 218
77	Rydzynski K., Stetkiewicz J.,	1993	Is cyanuric chloride an immunotoxicant?	Pharmacol Toxicol 73 (suppl II): 46
78	Jedrychowski R. Pauluhn J.	1992	Cyanurchlorid Untersuchungen zur akuten Inhalationstoxizität an der Ratte	Bayer AG Fachbereich Toxicologie, Wuppertal,

Ref	Author	Year	Title	Source/performing
79	Mertschenk A., Burkhart-Reichl A., , Ergenzinger M.,	1998	nach OECD-No. 403 Cyanurchlorid - Arbeitsmedizinische- toxikologische Bewertung der Exposition in der Produktion unter Aspekten der Arbeitssicherheit	laboratory Germany Zbl Arbeitsmed 48:504-510
80	et al.	1996	Toxicity to algae	Environment Agency of Japan
81	American Cyanamid Company	1952	The chemistry of cyanuric chloride	New Products Bulletin Collective, Vol. 1, RE-ISED Ed. 1, Band 1
82 83	Goldblatt, M. Von Herlinger, H.	1945 1964	Vesication and some vesicants Synthese von Halogenalkyl-dichlor- und bis-(halogenalkyl)-chlor-s-triazinen	Brit. J. Ind. Med. 2, 183-201 Angew. Chem. 76(10), 437
84	Kaskevich, L. et al.	1984	Einwirkungen von Cyanurchlorid auf den menschlichen Organismus	Vrachebn. Delo 8, 109-112
85	Wallace, J.	1975	Acute oral toxicity study.	Bio-Toxicology Laboratories, Inc.
86	Ullmann, L.	1985	4-hour acute aerosol inhalation toxicity (LC50) study with cyanurchlorid in rats	RCC AG, Switzerland
87	Ullmann, L.	1986	4-hour vapour inhalation toxicity study with cyanurchloride in rats.	RCC AG, Switzerland
88	Duchosal, F.	1991	4-hour acute inhalation toxicity study with cyanuric chloride – non-micronized - aerosol in rats. Project 291172.	RCC AG, Switzerland
89	Duchosal, F.	1991	4-hour acute inhalation toxicity study with cyanuric chloride vapor in rats.	RCC AG, Switzerland
90	Duchosal, F.	1991	4-hour acute inhalation toxicity study with cyanuric chloride micronized aerosol in rats. Project 291161.	RCC AG, Switzerland
91	Stevens, J.	1981	Report on acute vapor inhalation toxicity in the rat of cyanuric chloride (GS- 41711).	Ciba-Geigy Ltd. Switzerland
92	Sarasin, G.	1981	Acute oral LD50 n the rat of technical GS 41'711	Ciba-Geigy Ltd. Switzerland
93	Cuddeback, B.	1983	Exploratory range-finding teratology study in rats with technical cyanuric chloride	Int. R&D Corp. Michigan USA
94	Paa, H.	1974	Acute oral toxicity study – female albino rats	Industrial Bio-Test Laboratories, Inc.
95	Boehm and Mertschenk	1992	BUA-Bericht "Cyanurchlorid" – Eintrag in die Umwelt.	SKW Trostberg Aktiengesellschaft
96	Marhold, J.	1972	Sbornik Vysledku Toxikologickeno Vysetreni Latek a Pripravku, Prag	p. 152
97	Pliss, G.	1966	Blastomogene Effekte von Cyanurchlorid (translation from Russian)	Vopr. Onkol. 12 (4), 78-82
98	Kriebitzsch, N.	1987	Cyanuric Acid and Cyanuric Chloride	In Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft,
99		1981	Cyanuric Chloride	Weinheim, S. 191-200. Patty's Industrial Hygiene and Toxicology, 3e ed., vol 2A, 2763-2765 (via personal communication with E. Flint)
100	Kegel, A.	1992	BUA-Bericht "cynurchlorid" – Producktionsmengen, Verarbeitung, Anwendung, Verbrauchsmengen.	Degussa AG, Internal letter 16-10-92
101	Haubrich	1992	BUA-Bericht "Cyanurchlorid" – Beschreibung des Herstellungsverfahrens und des	Degussa AG, Internal letter 28-09-92

Ref	Author	Year	Title	Source/performing laboratory
			Umwelteintrages	
102	Kulzer, R.	1991	Langzeitfolgen einer einmaligen (unfallmäβigen) Einwirkung von Cyanurchlorid auf Mitarbeiter des Betriebes	Degussa AG, Internal letter 29-07-91
103	Jacobs, K.	1982	Cyanurchlorid	Degussa AG, Internal letter 17-03-82, Wesseling
104	Mohr	1980	Eventuelle Gesundheitsschäden durch Umgang mit Cyol und MMA	Degussa AG, Internal letter 11-12-80
105		1979	Cyanurchlorid - MDT.	Degussa AG, Internal letter 11-05-79
106		1987	Cyanurchlorid (Degussa brochure).	Degussa AG
107	Häusler, A.	1989	Anaerober Abbau von Cyanursäure in diskontinuierlichen	Diplomarbeit, Technischen Hochschule Darmstadt
			Suspensionsreaktoren und kontinuierlich betriebenen Festbett-Umlaufreaktoren	
* • • •				

* Not used because it was written in a language that we could not read. * The data from this reference were only used to complete the assessment if necessary.