FOREWORD

Cyclohexene

CAS N°:110-83-8

INTRODUCTION

SIDS Initial Assessment Report

For

SIAM 15

Boston, US, 22-25 October, 2002

- 1. Chemical Name: Cyclohexene
- **2. CAS Number:** 110-83-8
- 3. Sponsor Country:

Japan

National SIDS Contact Point in Sponsor Country: Ms. Mizuho Hayakawa, Ministry of Foreign Affairs, Japan

4. Shared Partnership with:

5. Roles/Responsibilities of the Partners:

- Name of industry sponsor /consortium
- Process used

6. Sponsorship History

•	How was the chemical or category brought into the	The original draft documents were prepared by the Japanese government.
	OECD HPV Chemicals	l ests:
	Programme ?	No testing ()
	-	Testing (x) log P _{ow} , Water solubility, Hydrolysis,
		Biodegradation, Bioconcentration, Acute toxicity to fish,
		daphnia and algae, Chronic toxicity to daphnia, Acute
		toxicity Combined repeated and

- toxicity, Combined repeated and reproductive/developmental toxicity, Ames test and Chromosomal aberration test
- 7. Review Process Prior to the SIAM:
- 8. Quality check process:
- 9. Date of Submission: August 13, 2002
- **10. Date of last Update:**
- 11. Comments:

SIDS INITIAL ASSESSMENT PROFILE

CAS No.	110-83-8
Chemical Name	Cyclohexene
Structural Formula	

SUMMARY CONCLUSIONS OF THE SIAR

Human Health

An oxidation of cyclohexene at the allylic position has been shown by *in vitro* studies but there is no detailed information *in vivo* regarding absorption, metabolism and excretion.

The oral acute toxicity of cyclohexene is low: the LD_{50} in rats is 1,000-2,000 mg/kg [OECD TG 401]. Some clinical signs including hypoactivity were observed. Dermal acute toxicity is negligible: the LD_{50} in guinea pigs is >16,220 mg/kg. Acute inhalation toxicity is very low: exposure of rats to 21,388 mg/m³ produced no deaths. There is no reliable information on eye and skin irritation and sensitization.

According to a combined repeated dose toxicity study with the reproduction/developmental toxicity screening test [OECD TG 422], SD rats received gavage doses of 0, 50, 150 and 500 mg/kg b.w./day for 48 days in males and for 42-53 days from 14 days before mating to day 4 of lactation throughout the mating and pregnancy period in females. Salivation was observed for about 5 minutes after dosing in 3 of 12 males and 2 of 12 females at 150 mg/kg b.w./day and up to 6 hours after dosing all of 12 males and 12 females at 500 mg/kg b.w./day. Blood chemical examination showed a decrease in triglyceride in males at 150 and 500 mg/kg b.w./day, and increases in total bilirubin in males at 500 mg/kg b.w./day and in total bile acid in both sexes at 150 mg/kg b.w./day and more. In males of the 500 mg/kg b.w./day group, there was an increase in relative kidney weight. On histopathological examinations, no dose-related changes were observed. Therefore, the NOAEL for repeated dose toxicity was considered to be 50 mg/kg b.w./day for both sexes.

In a reverse gene mutation assay [OECD TG 471], this chemical was not mutagenic in *Salmonella typhimurium* TA100, TA1535, TA98, TA1537 and *Escherichia coli* WP2 *urv*A with and without exogenous metabolic activation. In a chromosomal aberration test [OECD TG 473], structural chromosomal aberrations and polyploidy were not induced with and without exogenous metabolic activation in cultured Chinese hamster lung (CHL/IU) cells.

There is no data available on carcinogenicity.

Regarding the effects on the reproductive/developmental parameters, in the above-mentioned combined study [OECD TG 422], no effects of this chemical were observed on mating, pregnancy, delivery, lactation of parent animals and viability, body weight, general appearance and the autopsy finding of offspring. The NOAEL for reproductive/developmental toxicity was considered to be 500 mg/kg b.w./day.

Environment

Cyclohexene has a vapour pressure of 119 hPa (25degree C), a water solubility of 250 mg/L, a LogPow of 2.99. Its Henry's law constant is 4.55E-2 atm.m3/mol.

Cyclohexene is not readily biodegradable and its BCF is less than 45. In the air, this chemical is expected to be photodegraded ($T_{1/2}$ = 1.4 hours) by ozone. Hydrolysis is not expected to occur.

In acute toxicity to aquatic organisms, for daphnid a 48hEC50 of 2.1 mg/L (*Daphnia magna*, OECD TG202, closed system) and for fish a 96hLC50 of 5.8 mg/L (*Oryzias latipes*, OECD TG 203 semistatic) and a 96hLC 50 of 12.4 mg/L (*Poecilia reticulata*, semistatic) have been reported.

Three chronic toxicity values from two trophic level species were available: a NOErC of 0.67 mg/L and a 72hNOEbC of 1.8 mg/L in algae (*Selenastrum capricornutum*, OECD TG 201, closed system) and a 21dNOEC of 0.53 mg/L in the daphnid (*Daphnia magna*, OECD TG 211, semistatic) on reproduction.

Exposure

Cyclohexene is used as an intermediate for the production of cyclohexanol and cyclohexeneoxide and as a solvent. The fugacity model (Mackay level III) suggests that if cyclohexene is released to one of the compartments of air, water and soil, it has a tendency to remain in the original compartment.

Occupational exposure to cyclohexene through inhalation and dermal routes is possible.

No information is available on consumer exposure.

RECOMMENDATION

Human Health: The chemical is currently of low priority for further work.

Environment: The chemical is a candidate for further work.

RATIONALE FOR THE RECOMMENDATION AND NATURE OF FURTHER WORK RECOMMENDED

Human Health: The chemical is currently of low priority for further work based on a low hazard potential.

<u>Environment</u>: There is no information available on the production volume or use as a solvent, and since the substance shows chronic toxicity to aquatic organisms, an environmental exposure assessment is recommended.

CAS NO: 110-83-8		SPECIES	PROTOCOL	RESULTS	
PHYSICAL-CHEMICAL					
2.1	Melting Point		Unknown	- 103.5 °C	
2.2	Boiling Point		Unknown	83 °C	
2.3	Density		Unknown	0.810 g/cm ³ at 20°C	
2.4	Vapour Pressure		Unknown	119 h Pa at 25 °C	
2.5	Partition Coefficient (Log P _{ow})		OECD TG 107	2.99	
2.6 A.	Water Solubility		OECD TG 105	250 mg/L at 25 °C	
В.	рН			None	
	рКа			None	
2.7	Flash point		Unknown	-12°C	
2.12	Oxidation: Reduction Potential			None	
2.12	Viscosity		Unknown	0.625mPaS	
ENVI	RONMENTAL FATE AND PATHWAY				
3.1.1	Photodegradation		Calculated	$T_{1/2}$ =1.4 hours (ozone) $T_{1/2}$ =2.1 hours (hydroxyl radical) $T_{1/2}$ =0.83 hours (ozone and hydroxyl radical)	
3.1.2	Stability in Water		OECD TG 111	Stable at pH 4, 7 and 9 at 50 °C for five days	
3.2	Monitoring Data		-	No data is available.	
3.3	Transport and Distribution		Calculated (Level III Fugacity Model)	$\begin{array}{c c} (\text{Release 100 \% to air}) \\ \text{Air Water Soil Sediment} \\ 99.7 \% 0.1 \% 0.2 \% 0.0 \% \\ (\text{Release 100 \% to water}) \\ \text{Air Water Soil Sediment} \\ 0.6 \% 94.2 \% 0.0 \% 5.2 \% \\ (\text{Release 102 \% to soil}) \\ \text{Air Water Soil Sediment} \\ 0.9 \% 0.2 \% 98.9 \% 0.0 \% \end{array}$	
3.5	Biodegradation		OECD TG 301C	Not readily biodegradable	
3.7	Bioaccumulation		OECD TG 305	12–38 at 100 μ g/L of test water for 28 days 23–45 at 10 μ g/L of test water for 28 days	
	ECOTOXICOLOGY				
4.1	Acute/Prolonged Toxicity to Fish	Oryzias latipes	OECD TG 203	$\begin{array}{rll} 96h \ LC_0 & = & 4.0 & mg/L \\ 96h \ LC_{50} & = & 5.8 & mg/L \\ 96h \ LC_{100} & = & 17 & mg/L \end{array}$	
		Poecilia reticulate		96h LC_0 = 3.1 mg/L 96h EC_{50} = 4.7 mg/L (mortality and paralysis) 96h LC_{50} = 12.4 mg/L	
4.2	Acute Toxicity to Aquatic Invertebrates	Daphnia magna	OECD TG 202	$\begin{array}{rcl} 48h \ EC_0 & = & 1.5 & mg/L \\ 48h \ EC_{50} & = & 2.1 & mg/L \end{array}$	
4.3	Toxicity to Aquatic Plants e.g. Algae	Selenastrum capricornutum	OECD TG 201 Closed system	$\begin{array}{rcl} 72h \ \text{NOErC} &=& 0.67 & \text{mg/L} \\ 72h \ \text{NOEbC} &=& 1.8 & \text{mg/L} \end{array}$	
4.5.2	Chronic Toxicity to Aquatic Invertebrates	Daphnia magna	OECD TG 211	$\begin{array}{rcl} 21d \mbox{ Reproduction} \\ EC_{50} &= 1.0 \mbox{ mg/L} \\ LOEC &= 0.74 \mbox{ mg/L} \\ NOEC &= 0.53 \mbox{ mg/L} \end{array}$	

CAS NO	: 110-83-8	SPECIES	PROTOCOL	RESULTS
TOXICOLOGY				
5.1.1	Acute Oral Toxicity	Rat	OECD TG 401	$LD_{50} = 1,000 - 2,000 \text{ mg/kg b.w.}$
5.1.2	Acute Inhalation Toxicity	Rat	Other	$LD_{50} > 21 \ 388 \ mg/m^3$.
5.1.3	Acute Dermal Toxicity	Guinea pig	Other	LD ₅₀ > 16 220 mg/kg b.w.
5.2.1	Skin Irritation			No reliable data
5.2.2	Eye Irritation			No data
5.3	Sensitization			No data
5.4	Repeated Dose Toxicity	Rat	OECD TG 422	NOAEL = 50 mg/kg b.w./day
5.5	Genetic Toxicity In Vitro			
А.	Bacterial Test (Gene mutation)	Salmonella Typhimurium, E. coli	OECD TG 471	
B.				- (With metabolic activation) - (Without metabolic activation)
	Non-Bacterial In Vitro Test (Chromosomal aberrations)	CHL cells	OECD TG 473	- (With metabolic activation)
5.6	Genetic Toxicity In Vivo			- (Without metabolic activation) No data
5.7	Carcinogenicity			No data
5.8 5.9	Toxicity to Reproduction Developmental Toxicity/	Rat Rat	OECD TG 422 OECD TG 422	NOAEL = 500 mg/kg b.w./day NOAEL = 500 mg/kg b.w./day
5.10	Other Polovent Information			No data
5.10	Experience with Human Exposure			No data

SIDS Initial Assessment Report

1 IDENTITY

1.1 Identification of the Substance

1.2 Purity/Impurities/Additives

Substance type:	organic
Physical status:	liquid
Purity:	99.8 % w/w

1.3 Physico-Chemical properties

 Table 1
 Summary of physico-chemical properties

Property	Value	Reference
Melting point	- 103.5 °C	Unknown
Boiling point	83 °C	Unknown
Relative density	0.810 g/cm ³ at 20 °C	Unknown
Vapour pressure	119 h Pa at 25 °C	Unknown
Water solubility	250 mg/L at 25°C	OECD TG 105
Partition coefficient n- octanol/water (log value)	2.99	OECD TG 107
Viscosity	0.625 mPaS	Unknown
Flash point	-12 °C	Unknown

Cyclohexene is a colorless and flammable liquid with a specific odor. It is moderately soluble in water (250 mg/L at 25 $^{\circ}$ C).

2 GENERAL INFORMATION ON EXPOSURE

2.1 Production Volumes and Use Pattern

This chemical is not released to the water compartment in Japan.

This chemical is used as an intermediate for the production of cyclohexanol and cyclohexeneoxide, and as a specific solvent.

2.2 Environmental Exposure and Fate

2.2.1 Sources of Environmental Exposure

Cyclohexene is not readily biodegradable as 0 % of BOD was observed in a test after 28 days according to OECD TG301C (METI Report on Hazard data collection for HPV chemicals (2001)). The substance was hydrolytically stable at pH 4, 7 and 9 at 50 degrees C for five days in a test according to OECD TG 111. The substance is therefore not expected to hydrolyse in the environment. The bioconcentration potential seems to be low as the BCF in carp was less than 45 at test concentrations of 10 and 100 μ g/L after 28 days in a test according to OECD TG305, which is confirmed by a measured LogP_{ow} of 2.99 with OECD TG107 (METI Report on Hazard data collection for HPV chemicals (2001)).

The potential environmental distribution of Cyclohexene obtained from a generic level III fugacity model under three emission scenarios is shown in Table 2. The result shows that if Cyclohexene is released to one of the compartments of air, water and soil, it has a tendency to remain in the original compartment.

Volatilization to the atmosphere is expected to be rapid according to its physical chemical properties. This chemical has an estimated half-life in the atmosphere of 2.1 hours by the reaction with OH radicals (rate constant 6.1×10^{-11} cm³ molecule⁻¹ sec⁻¹) and an estimated half-life of 1.4 hours by reaction with ozone (rate constant 2.0×10^{-16} cm³ molecule⁻¹ sec⁻¹). The overall half life with ozone and hydroxyl radicals is 0.83 hours. The Henry's Law constant is 4.55×10^{-2} atm m³/mol.

Compartment	Release: 100 % to air	Release: 100 % to water	Release: 100 % to soil
Air	99.7 %	0.6 %	0.9 %
Water	0.1 %	94.2 %	0.2 %
Soil	0.2 %	0.0 %	98.9 %
Sediment	0.0 %	5.2 %	0.0 %

Table 2: Environmental distribution of Cyclohexene using a generic level III fugacity model

 under three emission scenarios

Data used

Melting point: -103.5 °C, Vapour pressure: 119 hPa, Water solbility: 250 mg/L, LogP_{ow}: 2.99, Half-life time in air: 0.83 hours, Half-life times in water, soil and sediment are 240,000, 240,000 and 720,000 hours, because this chemical is not readily biodegradable.

2.3 Human Exposure

2.3.1 Occupational Exposure

Cyclohexene is a volatile liquid and worker exposure through inhalation and dermal routes is possible. In Japan, cyclohexene is synthesized in a closed system by catalytic hydrogenation of benzene, isolated by fractionation, stored temporarily in storage tanks and used solely as an intermediate for cyclohexanol synthesis in the same factory. Workers take quality control samples of fractionated cyclohexene once a day and stored cyclohexene once a month. The duration of these sampling operations is about two minutes. The sampling ports are enclosed and have ventilation systems. The estimated exposure concentration of cyclohexene is 10-50 ppm, using the EASE model. The EHE_{inh} of a worker with a body weight of 70 kg is 0.1 mg/kg/day, if the worker operates all the sampling work in a month. Workers wear goggles and protecting gloves during sampling, exposure through dermal contact is therefore expected to be minimal.

No information on exposure through the use of cyclohexene as a solvent are available.

A TWA of 300 ppm is recommended by ACGIH.

3 HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

3.1.1 Toxicokinetics, Metabolism and Distribution

Studies in Animals

In vivo Studies

Two *in vivo* studies in rats exposed to cyclohexene by oral or inhalation route were available, in addition to several *in vitro* studies.

In an oral study, two male Holtzman rats were each given 0.1 mL (81.1 mg/kg bw) of cyclohexene by stomach tube [Leibman & Ortiz: 1978]. The urine sample for 24 hr contained 2-cyclohexen-1- one (0.1 % of the oral dose) but 2-cyclohexen-1-ol was not detected even by beta-glucuronidase treatment.

In an inhalation study, male F344/N rats were exposed nose-only to gaseous cyclohexene at 600 ppm (2,015 mg/m³) for 60 minutes [Maples and & Dahl: 1993]. During exposure, the blood levels of cyclohexene increased up to 2 ug/g blood.

In vitro Studies

In *in vitro* studies, the oxidation of cyclohexene at the allylic position has been shown to occur with hepatic microsomes and with supernatant fractions of liver extracts (centrifugation 9000 g) from male Holtzman rats and male New Zealand White rabbits [Leibman & Ortiz: 1970, 1971 & 1978]. 2-Cyclohexen-1-ol $(0.93 \pm 0.10 \text{ umol/g liver})$, trans-cyclohexanediol $(0.89 \pm 0.05 \text{ umol/g liver})$ and cyclohexene oxide $(0.06 \pm 0.02 \text{ umol/g liver})$ were produced after 10-min incubation of supernatant fractions (centrifugation 9000 g) from rats with 40 mM cyclohexene, [Leibman & Ortiz: 1978]. Pretreatment of rats with phenobarbital induced cyclohexene oxidation by more than 3.5 times.

Studies in Humans

There is no information available on humans.

3.1.2 Acute Toxicity

Studies in Animals

Acute toxicity data are reported for rats, mice and guinea pigs, as shown in Table 3. Among these studies, the study by MHLW (2002) was identified as the key study because it was well conducted and used a current protocol. Other studies have low reliabilities because no details could be obtained. The details of the key study are as follows.

The study by MHLW (2002) was conducted according to OECD TG 401 according to GLP. SD rats were given cyclohexene by gavage at doses of 0, 500, 1,000 and 2,000 mg/kg b.w. Three out of five males or females in the 2,000 mg/kg b.w. group showed some clinical signs such as abnormal gait, adoption of a prone position, salivation, piloerection and tremors, and then died within three days. Lacrimation was observed in both sexes just after dosing at 1,000 mg/kg and more. Hypoactivity were observed in both sexes of all dose groups. Necropsy of the dead animals revealed pulmonary congestion. The LD₅₀ values were between 1,000 and 2,000 mg/kg b.w. for both sexes.

Route	Species	Туре	Value	Reference
Oral	Rat	LD ₅₀	1,000-2,000 mg/kg b.w.	MHLW, Japan: 2002
	Rat	LD ₅₀	2.4 mL/kg b.w. (1,946 mg/kg b.w.)	NTIS: OTS054026
	Mouse	LD ₅₀	> 3.2 mL/kg b.w. (2,595 mg/kg b.w.)	NTIS: OTS0546026
Inhalation	Rat	LC _{LO} *	> 6,370 ppm (21,388 mg/m ³)	NTIS: OTS0555329
Dermal	Guinea pig	LD ₅₀	> 20 mL/kg b.w. (16,220 mg/kg b.w.)	NTIS: OTS0556686
¥Τ /1 1	1 1			

Tahla 3.	Acute	tovicity	ofou	clohevene	in er	vnerimental	animale
Table 5.	Acute	toxicity	OI Cy	cionexene	III C	xpermental	ammais

*Lethal concentration, low

Studies in Humans

There is no available information on human toxicity.

Conclusion

The LD₅₀ values were between 1,000 and 2,000 mg/kg b.w. for both sexes.

3.1.3 Irritation

Studies in Animals

In a study on inhibition of warts induced by mustard gas [Berenblum et al.: 1935], a preliminary test was conducted to determine the degree of irritation produced by cyclohexene. In this test, 50% cyclohexene acetone solution was applied to the skin of 4 mice 3 times at weekly intervals, and a week after the last application the skins were examined both macroscopically and microscopically. As a result, marked thickening and loss of hair with little or no evidence of ulceration following repeated applications was reported. However, the validity and reliability of this study is uncertain.

Studies in Humans

There is no information available on humans.

Conclusion

There is no reliable data on eye and skin irritation and sensitization.

3.1.4 Repeated Dose Toxicity

Studies in Animals

Inhalation

An inhalation study over 6 months using rats, guinea pigs and rabbits was reported [Laham: 1976]. In this study, significant increases in body weight at 600 ppm (2,015 mg/m³) and in alkaline phosphatase at 75 ppm (252 mg/m³) and above were noted in rats but no significant changes at up to 600 ppm in guinea pigs and rabbits. However, the validity and reliability of this study was uncertain because only the abstract was available.

Oral

One oral study using rats was reported [MHLW, Japan: 2002]. This study was carried out according to an OECD combined repeated dose toxicity study with the reproduction/developmental toxicity screening test guideline [TG 422] under GLP. This study was identified as a key study and the details are described below.

SD rats (12 animals/sex/dose) received gavage doses of 0 (vehicle: corn oil), 50, 150 and 500 mg/kg b.w./day [MHLW, Japan: 2002]. Males were dosed for 48 days and females for 42-53 days from 14 days before mating to day 4 of lactation throughout the mating and pregnancy period.

Salivation was observed in 3 of 12 males and 2 of 12 females at 150 mg/kg b.w./day and in all of 12 males and 12 females at 500 mg/kg b.w./day. This sign was observed only for about 5 minutes after dosing at 150 mg/kg b.w./day but up to 6 hours after dosing at 500 mg/kg b.w./day. No significant changes of body weight, food consumption and hematological findings for both sexes and urinalysis findings for males were detected. Blood chemical examination showed a decrease in triglyceride in males at 150 and 500 mg/kg b.w./day, and increases in total bilirubin in males at 500 mg/kg b.w./day and in total bile acid in females at 50 mg/kg b.w./day and in both sexed at 150 mg/kg b.w./day and above. In males of the 500 mg/kg b.w./day group, there was an increase in relative kidney weight. On histopathological examinations, no dose-related changes were observed. The increase in total bile acid observed in females at 50 mg/kg b.w./day was not considered to be an adverse effect because of no accompanying changes. Therefore, based on salivation at 150 mg/kg b.w./day for both sexes.

Studies in Humans

There is no information available on human toxicity.

Conclusion

In oral repeated dose studies in rats, salivation was observed in both sexes at 150 mg/kg b.w. and above. The NOAEL was considered to be 50 mg/kg b.w./day.

3.1.5 Mutagenicity

In vitro Studies

Bacterial test

The only available result is from a reverse gene mutation assay conducted according to OECD TG 471 & Japanese Guideline for Screening Mutagenicity Testing of Chemicals (Chemical Substances Control Law of Japan) under GLP [MHLW, Japan: 2002]. This study was identified as a key study.

This chemical was not mutagenic with and without S9 mix at concentrations up to 1,250 ug/plate in Salmonella typhimurium TA100, TA98, TA1535, TA1537 and 5,000 ug/plate in Escherichia coli WP2 urvA. Growth inhibition was observed at 625 ug/plate or above with or without S9 mix in Salmonella typhimurium TA100, TA98, TA1535 and TA1537, and at 1,250 ug/plate or above with S9 mix in Escherichia coli WP2 uvrA.

Non-bacterial in vitro test

One chromosomal aberration test using cultured Chinese hamster lung (CHL/IU) cells was reported [MHLW, Japan: 2002]. This study was identified as a key study because it was conducted according to OECD TG 473 under GLP.

Structural chromosomal aberration and polyploidy were not induced up to the maximum concentration of 400 ug/mL, which was established based on the result of a preliminary growth inhibition test. Cell toxicity was observed at 400 ug/mL after continuous treatment for 24 and 48 hrs.

In vivo Studies

There is no information available on genotoxicity in vivo.

Conclusion

This chemical was not genotoxic with and without an exogenous metabolic activation in bacterial tests as well as in a chromosomal aberration test *in vitro*.

3.1.6 Carcinogenicity

There is no data available.

3.1.7 Toxicity for Reproduction

Studies in Animals

The only results available are from a study conducted according to the OECD combined repeated dose toxicity study with the reproduction/developmental toxicity screening test guideline [TG 422] [MHLW, Japan: 2002]. This study was identified as a key study.

Cyclohexene was administered to SD(Crj:CD)IGS rats by gavage at doses of 0, 50, 150 and 500 mg/kg b.w./day for 48 days from 14 days prior to mating in males and for 42-53 days from 14 days prior to mating to day 4 of lactation throughout the mating and pregnancy period in females [MHLW, Japan: 2002].

Regarding the reproductive ability of parent animals, no effects were detected on the estrus cycle, copulation index, fertility index, gestation length, numbers of corpora lutea and implantations, implantation index, gestation index, delivery index, parturition or maternal behavior. And regarding the developmental parameters, no effects were detected on viability, body weight, general appearance or autopsy findings of offspring. The NOAEL for reproduction/developmental toxicity was considered to be 500 mg/kg b.w./day.

Studies in Humans

There is no information available on humans.

Conclusion

In an OECD combined study, there were no effects of this chemical on reproduction/developmental parameters. The NOAEL for reproduction/developmental toxicity was considered to be 500 mg/kg b.w./day.

3.2 Initial Assessment for Human Health

An oxidation of cyclohexene at the allylic position has been shown by *in vitro* studies but there is no detailed information *in vivo* regarding absorption, metabolism and excretion.

The oral acute toxicity of cyclohexene is low: the LD_{50} in rats is 1,000-2,000 mg/kg [OECD TG 401]. Some clinical signs including hypoactivity were observed. Dermal acute toxicity is negligible: the LD_{50} in guinea pigs is > 16,220 mg/kg. Acute inhalation toxicity is very low: exposure of rats to 21,388 mg/m³ produced no deaths. There is no reliable information on eye and skin irritation and sensitization.

According to a combined repeated dose toxicity study with the reproduction/developmental toxicity screening test [OECD TG 422], SD rats received gavage doses of 0, 50, 150 and 500 mg/kg b.w./day for 48 days in males and for 42-53 days from 14 days before mating to day 4 of lactation throughout the mating and pregnancy period in females. Salivation was observed for about 5 minutes after dosing in 3 of 12 males and 2 of 12 females at 150 mg/kg b.w./day and up to 6 hours after dosing in all of 12 males and 12 females at 500 mg/kg b.w./day. Blood chemical examination showed a decrease in triglyceride in males at 150 and 500 mg/kg b.w./day, and increases in total bilirubin in males at 500 mg/kg b.w./day and in total bile acid in both sexes at 150 mg/kg b.w./day and more. In males of the 500 mg/kg b.w./day group, there was an increase in the relative kidney weight. On histopathological examinations, no dose-related changes were observed. Therefore, the NOAEL for repeated dose toxicity was considered to be 50 mg/kg b.w./day for both sexes.

In a reverse gene mutation assay [OECD TG 471], this chemical was not mutagenic in *Salmonella typhimurium* TA100, TA1535, TA98, TA1537 and *Escherichia coli* WP2 urvA with and without exogenous metabolic activation. In a chromosomal aberration test [OECD TG 473], structural chromosomal aberrations and polyploidy were not induced with and without exogenous metabolic activation in cultured Chinese hamster lung (CHL/IU) cells.

There is no data available on the carcinogenicity.

Regarding the effects on the reproductive/developmental parameters, in the above-mentioned combined study [OECD TG 422], no effects of this chemical were observed on mating, pregnancy, delivery, lactation of parent animals and viability, body weight, general appearance and the autopsy finding of offspring. The NOAEL for reproductive/developmental toxicity was considered to be 500 mg/kg b.w./day.

4 HAZARDS TO THE ENVIRONMENT

4.1 Aquatic Effects

Acute Toxicity Test Results

Two algal growth inhibition test results are available. A test with *Selenastrum capricornutum* was conducted according to OECD TG 201with a final concentration of carrier of 0.003 mg/L polyoxyethylene sorbitan fatty acid ester (HCO-xx) and 0.1 ml/L acetone in each test solution. EC50 values were not determined as the growth inhibition rate was about 20 % (calculated by the

biomass or growth rate method) at the highest concentration tested (MOE Japan, unpublished data, 2000). Furthermore, a test with *Chlorella pyrenoidosa* according to GLP was reported. This test was conducted according to a different test guideline with a 48 h exposure and without analytical monitoring (Canton & Wegman, 1983). In this test the EbC50 was determined to be 3.5 mg/L but the value obtained without analytical monitoring may be not reliable because the concentration could not be kept due to the high volatility of the substance.

One reliable toxicity test with *Daphnia magna* is available. The 48 h EC50 was 2.1 mg/L (MOE Japan, 2000; soft water and closed system).

Acute toxicity tests with two different species were performed. A 96 h LC50 of 5.8 mg/L was determined with *Oryzias latipes* (MOE Japan, 2000) and a 96 h LC50 of 12.4 mg/L with guppy, *Poecilia reticulata* (Canton & Wegman, 1983). In the latter study, an EC50 of 4.7 mg/L for paralysis effects of cyclohexene was also reported.

Toxicity test results with other species, *Chilomonas* sp and *Uronema parduzci* (both were protozoa, Bringmann et al., 1980 and Bringmann &Kuhn, 1980) were reported. However these test results were judged invalid or not assignable as less information was available.

Chronic Toxicity Test Results

There are chronic toxicity test results with cyclohexene available. In algae, a 72 h NOErC of 0.67 mg/L and a NOEbC 1.8 mg/L in *Selenastrum capricornutum* were reported. And a 48 h NOEbC of 0.22 mg/L in *Chlorella* was reported however this value was regarded to be of low reliability due to lack of analytical monitoring.

In daphnids, a 21 d EC50 of 1.0 mg/L and a 21 d NOEC of 0.53 mg/L for reproduction of *Daphnia magna* were reported (MOE Japan, 2000). This test was conducted using a carrier as in the acute test.

4.2 Terrestrial Effects

There is no available information.

4.3 Initial Assessment for the Environment

Cyclohexene is not readily biodegradable and its bioconcentration factor is less than 45. In the air, this chemical is expected to be photodegraded ($T_{1/2}$ = 1.4 hours) by ozone. Hydrolysis is not expected to occur. A generic level III fugacity model shows that if Cyclohexene is released to one of the compartments of air, water and soil, it has a tendency to remain in the original compartment.

Regarding acute toxicity test results to aquatic organisms, for daphnids an EC50 of 2.1- 5.3 mg/L and for fish an LC50 of 5.8 mg/L (*Oryzias latipes*) and a LC 50 of 12.4 mg/L (*Poecilia reticulata*) have been reported.

Three chronic toxicity test results from two trophic level species were available, a NOErC of 0.67 mg/L and a NOEbC of 1.8 mg/L in algae and a NOEC of 0.53 mg/L for reproduction of daphnids are available.

A predicted no effect concentration (PNEC) of 0.0053 mg/L for the aquatic organisms was calculated from the NOEC for *Daphnia magna* on reproduction using an assessment factor of 100, because only two chronic data (daphnids and algae) are available.

5 **RECOMMENDATIONS**

Human Health: The chemical is a currently of low priority for further work.

Environment: The chemical is a candidate for further work.

There is no information available on the production volume or use as a solvent, and since the substance shows chronic toxicity to aquatic organisms, an environmental exposure assessment is recommended.

6 REFERENCES

Berenblum I et al. (1935) Journal of Pathology and Bacteriology, 40, 549-558.

Bringmann, G., and R. Kuhn; Determination of the biological effect of water pollutants in protoza. II Bacteriovorous ciliates., Z.Wasser-Abwasser-Forsch. 13(1):26-31; (1980)

Bringmann, G., R. Kuhn, and A. Winter; Determination of biological effect of the water pollutants in protozoa. III. Saprozoic flagellates., Z.Wasser-Abwasser-Forsch. 13(5):170-173, (1980)

Bringmann, G., and R. Kuhn; Results of toxic action of water pollutants on *Daphnia magna* Straus tested by an improved standardized procedure., Z.Wasser-Abwasser-Forsch. 15(1):1-6; (1982)

Canton, J. H. and Wegman, R. C. C.; Studies on the toxicity of Tribromoethene, Cyclohexene and Bromocyclohexane to different freshwater organisms., Water Res.;17: 743-747; (1983)

Laham S (1976) Toxicol. Appl. Pharmacol., 37, 155-156.

Leibman KC and Ortiz E (1970) J. Pharmacol. Exp. Therap., 173, 242-246.

Leibman KC and Ortiz E (1971) Biochem. Pharmacol., 20, 232-236.

Leibman KC and Ortiz E (1978) *Drug Metab. Dispos.*, 6, 375-378. Maples KR and Dahl AR (1993) *Inhalation Toxicology*, 5, 43-54.

METI Report on Hazard data collection for HVP chemicals (2001), Japanese only.

MHLW (Ministry of Health, Labour and Welfare), Japan (2002) Toxicity Testing Reports of Environmental Chemicals, 9, 235-259.

MOE, Japan (2000) Ministry of the Environment, unpublished data.

NTIS (National Technical Information Service): OTS054026

NTIS (National Technical Information Service): OTS0546026

NTIS (National Technical Information Service): OTS0555329

NTIS (National Technical Information Service): OTS0556686

IUCLID

DATA SET

Existing Chemical CAS No. EINECS Name EINECS No. Molecular Formula	: ID: 110-83-8 : 110-83-8 : cyclohexene : 203-807-8 : C6H10
Producer Related Part Company Creation date	National Institute of Health & Sciences24.12.0002
Substance Related Part Company Creation date	: National Institute of Health & Sciences : 24.12.0002
Memo	:
Printing date Revision date Date of last Update	: 08.01.2003 : 24.12.0002 : 24.12.2002
Number of Pages	: 1
Chapter (profile) Reliability (profile) Flags (profile)	 Chapter: 1, 2, 3, 4, 5, 7 Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

1.0.1 OECD AND COMPANY INFORMATION

Туре	: sponsor country
Name	: Chemicals Evaluation and Research Institute (CERI)
Partner	:
Date	:
Street	: 1-4-25 Koraku, Bunkyo-ku
Town	: 112-0004 Tokyo
Country	: Japan
Phone	: 03-5804-6135
Telefax	: 03-5804-6139
Telex	:
Cedex	:
Source	: Chemicals Evaluation and Research Institute (CERI) Tokyo
Flag	: Critical study for SIDS endpoint
24.07.2002	

1.0.2 LOCATION OF PRODUCTION SITE

1.0.3 IDENTITY OF RECIPIENTS

1.1 GENERAL SUBSTANCE INFORMATION

Substance type	: organic
Physical status	: liquid
Purity	: % w/w
Source	: Chemicals Evaluation and Research Institute (CERI) Tokyo
Reliability	: (1) valid without restriction
Flag	: Critical study for SIDS endpoint
24.07.2002	

1.1.0 DETAILS ON TEMPLATE

1.1.1 SPECTRA

1.2 SYNONYMS

1,2,3,4-Tetrahydrobenzene Source Flag 24.07.2002) : :	Chemicals Evaluation and Research Institute (CERI) Tokyo Critical study for SIDS endpoint
Benzenetetrahydride Source 24.07.2002	:	Chemicals Evaluation and Research Institute (CERI) Tokyo
Cyclohexene Source 24.07.2002	:	Chemicals Evaluation and Research Institute (CERI) Tokyo

OECE	SIDS			CYCI	<u>.OHEXENE</u>
1. GEI	NERAL INFORMA	TIC	DN	Ι	D: 110-83-8
				DA	TE: 08.01.03
Sou 24.0	Irce)7.2002	:	Chemicals Evaluation and Research Institute (CERI)	Tokyo	
Теtr Soı 24.0	rahydrobenzene I rce 07.2002	:	Chemicals Evaluation and Research Institute (CERI)	Tokyo	
1.3	IMPURITIES				
1.4	ADDITIVES				
1.5	QUANTITY				
1.6.1	LABELLING				
1.6.2	CLASSIFICATION				
1.7	USE PATTERN				
Тур	e	:	industrial		
Cat	egory	÷	Chemical industry: used in synthesis	Tokyo	
Flag		÷	Critical study for SIDS endpoint	ТОКУО	
24.0	07.2002				
Тур	e	:	industrial		
Cat	egory	÷	other: specific solvent Chemicals Evaluation and Research Institute (CERI)	Tokyo	
29.0)7.2002	•		ТОКУО	
171		וח∩	ICTION/LISE		
		ODC			
18		XP			
1.5					
1.9	SOURCE OF EXPO	SU	RE		
1.10.1	RECOMMENDATIO	NS	PRECAUTIONARY MEASURES		

1.10.2 EMERGENCY MEASURES

1.11 PACKAGING

OECD SIDS	CYCLOHEXENE
1. GENERAL INFORMATION	ID: 110-83-8
	DATE: 08.01.03
1.12 POSSIB. OF RENDERING SUBST. HARMLESS	
1.13 STATEMENTS CONCERNING WASTE	
1.14.1 WATER POLLUTION	
1.14.2 MAJOR ACCIDENT HAZARDS	
1.14.3 AIR POLLUTION	

- 1.15 ADDITIONAL REMARKS
- 1.16 LAST LITERATURE SEARCH
- 1.17 REVIEWS
- 1.18 LISTINGS E.G. CHEMICAL INVENTORIES

2. PHYSICO-CHEMICAL DATA

2.1 MELTING POINT

Value	: = -103.5 °C
Sublimation	:
Method	: other: unknown
Year	:
GLP	: no data
Test substance	: no data
Source	: Chemicals Evaluation and Research Institute (CERI) Tokyo
Conclusion	: Melting point is -103.5 degree C.
Reliability	: (2) valid with restrictions
Flag	: Critical study for SIDS endpoint
31.10.2002	· · ·

(29)

(29)

2.2 BOILING POINT

Value	: = 83 °C at 1013 hPa
Decomposition	:
Method	: other: unknown
Year	:
GLP	: no data
Test substance	: no data
Source	: Chemicals Evaluation and Research Institute (CERI) Tokyo
Conclusion	: Boiling point is 83 degree C.
Reliability	: (2) valid with restrictions
Flag	: Critical study for SIDS endpoint
31.10.2002	

2.3 DENSITY

Type Value Method	:	density = .81 g/cm3 at 20° C other: unknown
CLP		1999 no data
Test substance	÷	
Source	:	Wako Pure Chemical Industries, Ltd.
		Chemicals Evaluation and Research Institute (CERI) Tokyo
lest substance	:	Wako Pure Chemical Industries, Ltd.
Conclusion	:	Density is $0.810 \text{ a/cm}3$.
Reliability	:	(2) valid with restrictions
Flag	:	Critical study for SIDS endpoint
01.11.2002		•

2.3.1 GRANULOMETRY

2.4 VAPOUR PRESSURE

Value	:	= 119 hPa at 25° C
Decomposition	:	
Method		other (measured)
Year	:	

OECD SIDS	CYCLOHE	XENE
2. PHYSICO-CHEMI	CAL DATA ID: 110	0-83-8
	DATE: 08	.01.03
GLP Test substance Source Conclusion Reliability Flag 31.10.2002	 no data no data SRC PhysProp Database Chemicals Evaluation and Research Institute (CERI) Tokyo Vapour pressure is 210 hPa. (2) valid with restrictions Critical study for SIDS endpoint 	(7)
2.5 PARTITION CO	EFFICIENT	
Log pow Method	 = 2.99 at 25° C OECD Guide-line 107 "Partition Coefficient (n-octanol/water), Flask-shaking Method" 2001 	
GLP	: 2001 : ves	
Test substance	:	
Result	 The results at each conditions were as follows; Condition 1: 2.96, 3.03 Condition 2: 2.99, 3.00 Condition 3: 2.94, 3.02. The pH was 6.3 - 6.9. The logPow was averaged using all data. 	
Source	: Chemicals Evaluation and Research Institute, Japan Chemicals Evaluation and Research Institute (CERI) Tokyo	
Test substance	: Wako Pure Chemical Industries, Ltd. Purity 99.8%	
Conclusion	: LogPow is 2.99.	
Reliability	: (1) valid without restriction	
Flag 31.10.2002	: Critical study for SIDS endpoint	(16)
2.6.1 WATER SOLUE	BILITY	
Value Qualitative Pka PH Method Year	 = 250 mg/l at 25 ° C moderately soluble (100-1000 mg/L) at 25 ° C at and ° C OECD Guide-line 105 "Water Solubility" 1999 	
GLP Test substance	. 110	
Source	 Chemicals Evaluation and Research Institute, Japan Chemicals Evaluation and Research Institute (CERI) Tokyo 	
Test substance	: Wako Pure Chemical Industries, Ltd.	
Conclusion	: This chemical is moderately soluble in water (250mg/L).	
Reliability	: (1) valid without restriction	
Flag	: Critical study for SIDS endpoint	(10)
31.10.2002		(10)

2.6.2 SURFACE TENSION

OECD SIDS 2. PHYSICO-CHEMICAL DATA

2.7 FLASH POINT

Value	: = -12 ° C
Туре	:
Method	:
Year	:
GLP	: no data
Test substance	:
Source	: Material safety data sheet of Aldrich chemical Co., Inc
	Chemicals Evaluation and Research Institute (CERI) Tokyo
Reliability	: (2) valid with restrictions
Flag	: Critical study for SIDS endpoint
31.10.2002	

2.8 AUTO FLAMMABILITY

2.9 FLAMMABILITY

2.10 EXPLOSIVE PROPERTIES

2.11 OXIDIZING PROPERTIES

2.12 ADDITIONAL REMARKS

Memo Source	:	Viscosity : 0.625mPaS at 25 degree C CRC Handbook of Chemistry and Physics. 75th ed. Chemicals Evaluation and Research Institute (CERI) Tokyo
Reliability Flag 31.10.2002	:	(2) valid with restrictions Critical study for SIDS endpoint

3. ENVIRONMENTAL FATE AND PATHWAYS

3.1.1 PHOTODEGRADATION

Туре	:	air
Light source	:	
Light spect.	:	nm
Rel. intensity	:	based on Intensity of Sunlight
Indirect photolysis		
Sensitizer	:	03
Conc. of sens.	:	7000000000 molecule/cm3
Rate constant	:	= .000000000000002 cm3/(molecule*sec)
Degradation	:	= 50 % after .8 hour(s)
Deg. Product	:	
Method	:	other (calculated)
Year	:	2002
GLP	:	
Test substance	:	
Remark		The reaction rate constant with OH was estimated by SRC AOPWIN. The
		half-life time (2.086 hours) was calculated based on the calculated rate
		1.5E6 OH/cm3.
		The reaction rate constant with ozone was estimated by SRC AOPWIN.
		The half-life time (1.375 hours) was calculated based on the calculated rate
		7E11 mol/cm3.
		The half-life time with ozone and hydroxyl radical is 0.83 hours.
Source	:	Chemicals Evaluation and Research Institute (CERI) Tokyo
Conclusion	:	The half-life time with ozone and hydroxyl radical in air is
		0.83 hours.
Flag	:	Critical study for SIDS endpoint
01.11.2002		

3.1.2 STABILITY IN WATER

Туре	:	abiotic	
t1/2 pH4	:	at degree C	
t1/2 pH7	:	at degree C	
t1/2 pH9	:	at degree C	
Degradation	:	< 10 % after 5 day at pH and 50 degree C	
Deg. Product	:	no	
Method	:	OECD Guide-line 111 "Hydrolysis as a Function of pH"	
Year	:	2000	
GLP	:	no	
Test substance	:		
Source	:	Chemicals Evaluation and Research Institute, Japan Chemicals Evaluation and Research Institute (CERI) Tokyo	
Test substance	:	Wako Pure Chemical Industries, Ltd. Purity 99.8 %	
Conclusion	:	This chemical is stable at pH 4, 7 and 9 at 50 degree C for five days.	
Reliability	:	(1) valid without restriction	
Flag	:	Critical study for SIDS endpoint	
31.10.2002			(17)

OECD SIDS

3. ENVIRONMENTAL FATE AND PATHWAYS

3.1.3 STABILITY IN SOIL

3.2 MONITORING DATA

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Type Media Air (level I) Water (level I) Soil (level I) Biota (level II / III) Soil (level II / III) Method Year Method	 fugacity model level III 2002 2002 Parameters used in calculation of distribution by Mackay level III fugacity model are as follows; Melting point: 83 degree C Vapour pressure: 11900 Pa Water solbility: 250 mg/L LogPow: 2.99
Result	As this chemical is not readily biodegradable, we assume the following half-life times; Half-life time in air: 0.83 hours Half-life times in water: 240000 hours Half-life times in soil: 240000 hours Half-life times in sediment: 720000 hours ************************************
Source Conclusion Reliability Flag 31 10 2002	 Chemicals Evaluation and Research Institute (CERI) Tokyo If Cyclohexene is released to one of the compartments of air, water and soil, it has a tendency to remain in the original compartment. (1) valid without restriction Critical study for SIDS endpoint
3.3.2 DISTRIBUTION	
Type Media Year Method Result	: Water-air 1975 Henry's Law Constant The reported Henry's Law Constant of cyclohexene is 4.55 E-2 at m-

m3/mol

Source

Remarks

Reliability

- : Chemicals Evaluation and Research Institute (CERI) Tokyo
 - : Reliable secondary data source

3. ENVIRONMENTAL FATE AND PATHWAYS

Flag 22.12.2003 : Critical study for SIDS endpoint

(30)

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 **BIODEGRADATION**

Туре	: aerobic
Inoculum	: activated sludge
Concentration	: 100mg/l related to Test substance related to
Contact time	: 28 day
Degradation	: = 0 % after 28 day
Result	 under test conditions no biodegradation observed
Control substance	: Aniline
Kinetic	: % %
Deg. Product	: no
Method	: OECD Guide-line 301 C "Ready Biodegradability: Modified MITI Test (I)"
Year	: 1999
GLP	: yes
Test substance	: other TS
Remark	 The concentration of activated sludge is 30mg/L. The concentration of control substance (aniline) is 100mg/L.
Result	 The biodegradations of this chemical were as follows; 0, 0, 0 % by BOD after 28 days 0, 1, 0 % by GC after 28 days.
Source	: Chemicals Evaluation and Research Institute, Japan Chemicals Evaluation and Research Institute (CERI) Tokyo
Test substance	: Wako Pure Chemical Industries, Ltd. Purity 99.8%
Conclusion	: This chemical is not readily biodegradable.
Reliability	: (1) valid without restriction
Flag	: Critical study for SIDS endpoint
31.10.2002	(17)

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

Species Exposure period Concentration	:	Cyprinus carpio (Fish, fresh water) 28 day at 25 degree C 100µg/l
Elimination	:	= 12 - 38 no
Method	:	OECD Guide-line 305 E "Bioaccumulation: Flow-through Fish Test"
Year	:	2001
GLP	:	yes
Test substance	:	other TS
Result	:	The bioconcentration of the test substance was 12 - 38 at 100 ug/L of test concentration.
		The bioconcentration of the test substance was 23 - 45 at 10 ug/L of test concentration.
Source	:	Chemicals Evaluation and Research Institute, Japan

OECD SIDS			CYC	LOHEXENE
3. ENVIRONMENT		ID: 110-83-8		
			DA	TE: 08.01.03
Test substance	:	Chemicals Evaluation and Research Institute (CERI) Wako Pure Chemical Industries, Ltd. Purity 99.8 %	Tokyo	
Conclusion Reliability Flag	:	The bioconcentration potential is low. (1) valid without restriction Critical study for SIDS endpoint		
25.07.2002				(17)

3.8 ADDITIONAL REMARKS

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type Species Exposure period Unit Analytical monitoring LC0 LC50 LC100 Method Year GLP Test substance Method	semistatic Oryzias latipes (Fish, fresh water) 96 hour(s) mg/l yes = 4 = 5.8 = 17 OECD Guide-line 203 "Fish, Acute Toxicity Test" 2000 yes other TS:Kanto Kagaku, Lot. No.; 204D2060, Purity >= 99 % -Test Organisms: a) Supplier: Test organisms were obtained from Takizawa Yougyo-jo (Private Fish Farm, Japan) and had been reproduced in the testing laboratory for four years. b) Size (length and weight): 2.0 cm (1.8-2.0 cm) in length; 0.11 g (0.091 - 0.13 g) in weight c) Age: Not described d) Any pretreatment: Test organisms were acclimated for at least 7 days before testing, any groups showing > 5 % mortality were not used for testing. During acclimination, test fishes were fed with TETRAMINE equivalent to 3% of weight. These test organisms were not fed for 24 hours before the test started.
	 b) Molecular Veight: 82.15g/mol c) Purity: >=99 % -Test Conditions: a) Dilution Water Source: Dilution water was prepared from tap water (Tama city, Tokyo). The tap water was dechlorinated and treated by activated carbone. After that Residual Chlorine was removed from the water. Before using the dilution water, aeration was fully carried out. b) Dilution Water Chemistry: pH: = 7.9 Total hardness (as CaCO3): = 76 mg/L c) Exposure Vessel Type: 4 L test solution in a 5 L Glass Tank d) Nominal Concentrations: control, solvent control, 3.2, 4.2, 5.6, 7.5, 10, 13 and 18 mg/L e) Vehicle/Solvent and Concentrations: 100mL of Solvent was prepared by dissolving 3g polyoxyethylene sorbitan fattyacid ester in acetone and it was
	made 100mL. The final concentrations of polyoxyethylene sorbitan fatty acid ester and acetone were at maximum of 3ug/L and 100 uL/L respectively in test solution and in solvent control. f) Number of Replicates: 1 g) Fish per Replicates: 10 h) Renewal Rate of Test Water: Every 24 hours i) Water Temperature: 24+/-1°C j) Light Condition: 16:8 hours, light-darkness cycle k) Feeding: None l) Aeration : Not described -Analytical Procedure: Thetested concentrations were measured at the start and 24th hour (before exchange of test solution).

-Statistical Method:

DECD SIDS						CYCLO	HEXEN			
. ECOTOXICITY						ID DATE	: 110-83 : 08 01 0			
	a) Data Anal b) Method of mean, geome	ysis: Probi Calculatir etric mean,	it method fo ng Mean Me , etc.): Time	or LC50 easured (e-weighte	Concentra d mean	ations (i.e. a	rithmetic			
Result	: - Measured C and 24 h (bef For some of 20%.	Concentration fore excharacter them, the	ons : The t nge of test deviation fr	est conce solution). om the ne	entrations ominal we	were meas ere not less	ured at 0 than +/-			
	Nominal NominalConc	Nominal Measured Conc., mg/L Percent of								
	mg/L	0 Hour Fresh	24 Hours Old	Mean* mg/L	0 Hour Fresh	24Hours Old				
	Control Solvent Contr 3 2	<0.10 rol <0.10 3 31	<0.10 <0.10 1 48	 2 27	 104	 46				
	4.2 5.6 7.5	3.91 5.61 7.99	1.88 2.76 4.02	2.77 4.02 5.78	93 100 107	45 49 54				
	10 13 18	10.3 13.7 18.5	5.69 8.19 14.9	7.77 10.7 16.6	103 105 103	57 63 83				
	Old: End of re - Water chem and temperat and each con pH: 7.3 - 8. DO: 5.4 - 9. Water Tem	nistry (pH a ure were r iccentration 2 .0 mg/L perature: 2	and DO) an neasured fo at the start 23.9 - 24.3°	d tempera or old and t of test a C	ature in te I renewal nd every	est: Water o solution wit 24 hours.	chmistry h control			
	-Effect Data(r LC50 (96hr) LC0 (96hr) = LC100 (96hr mc: based on	mortality): = 5.8mg/L 4mg/L (m) = 17mg/L n measured	(mc) c) - (mc) d concentra	ition (time	e weighte	d mean)				
	- Cumulative period at cont organisms we	Mortality: trol, solver ere killed a	None of tes nt control, 3 t 18mg/L o	t organis .2, 4.2 ar n and afte	ms were nd 5.6 mg er 24hour	killed during J/L, however S.	exposu all test			
	Measured Conc	Cumula	tive Numbe	er of Dead	d (Percen	ntMortality)				
	-mg/L	24hr	48hr 7	2hr 96	6hr					
	Control Solvent Contr 2.3 2.8 4.0 5.8	0 (0) rol 0 (0) 0 (0) 0 (0) 0 (0) 7 (70)	0 (0) (0 0 (0) (0 0 (0) (0) 0 (0) (0) 7 (70) (0)	0 (0) 0 0 (0) <td< td=""><td>(0)) (0) 0 (0) 0 (0) 0 (0) 7 (70)</td><td></td><td></td></td<>	(0)) (0) 0 (0) 0 (0) 0 (0) 7 (70)					
	7.8 10.7 16.6	9 (90) 9 (90) 	9 (90) 9 (90) 9	9 (90) 9 (90) 9 (90)	9 (90) 9 (90) 9					

---: All fishes were dead at this observation time.

		(,	0					
		Nominal		Sympto	oms			
		mg/L	24hr	48hr	72hr	96hr		
		Control	n	n	n	n		
		Solvent Control	n	n	n	n		
		2.3	n	n	n	n		
		2.8	n	n	n	n		
		4.0	اا ما	اا	n	n		
		J.0 7.8			n	n		
		10.7	le	le le	n	n		
		16.6						
		n: No abnormali le: Lethargy : All fishes we - Calculation of mean measured ranges of measured nominalconcent	ties ar ere dea toxicity l conce ured c ration.	ad at thi v values entratio	s obser s: The c ns. The r ration w	vation time. calculation oftox e reason is that s ere not less tha	icity values was t some of the error n +/-20% of	he
Source	:	Ministry of Envir National Institute Ibaraki	ronme e of Ei	nt, Japa nvironm	an (200 iental S	0) itudies, Environi	ment Agency Ts	ukuba-
Reliability	:	(1) valid without	restric	ction				
Flag	:	Critical study for	r SIDS	endpo	int			
19.12.2002								(22)
Type Species Exposure period Unit	:	semistatic Poecilia reticula 96 hour(s) mg/l	ta (Fis	h, fresł	n water)	1		
Analytical monitoring	:	yes						
	:	= 3.1						
LC50 Method	:	= 12.4 other:NEN6501, Organization	, 6502	, 6504 a	and 650	06 (1980) Dutch	Standardization	
Year	:	1982						
GLP	:	yes						
Test substance Method	:	other TS: Fluka, -Test Organisms test.	, Purity s: The	/>99.5% 3 - 4 w	% eeks ol	d fishes were us	sed for	
		-Test substance a) Empirical Fo b) Molecular W c) Purity: >99.5	e: Cycl rmula: eight: %	ohexen C6H1(82.15g/	e) ′mol			
		-Test Conditions a) Dilution Wate	s: er Che NaH CaC CaC KHC MgS	emistry: CO3 = I2·H2O O3 = 2I O4·7H2	Total h 100 mg = 200n 0mg/L 20 = 18	ardness (°DH): /L ng/L :0mg/L	= 11.7	

-Other Effect:Toxicological symptom was observed at 5.8mg/L (24 hour) and higher concentration.

OECD SIDS							CYCLOHEXENE
4. ECOTOXICITY							ID: 110-83-8
		h) Te	st Volume	a. 31 tasts	olution per	aroun	DATE: 08.01.03
		c) No conce d) Fis e) Re f) Wa g) Lig -Analy the low	minal Con ntration = h per Gro newal Ra ter Temp ht Condit rtical Proc west and	 20 of test of sectors 20mg/L, fapup: 10 te of Test V erature: 23- ion: 14:10 f cedure: At 0 the highest 	Vater: once -/-2°C hours, light concentra	e per 2days -darkness cycl 48th hour, san tions.	n =4.1mg/L, the highest e nples were taken from
		- Wate Oxyge	er chemis en conten	try (pH and t of the test	DO) and t solutions	emperature in were checked	test: The pH and at 0 hour and 48th hour.
Result	:	- - Meas from ti	sured Cor he lowest	ncentrations and the hig	s : At 0 hou phest conc	ur and 48th hou entrations.	ur, samples were taken
		Nomir	al Measu	ired Conc.,	mg/L Per	cent of Nomina	al
		Conc. mg/L	0 Hour Fresh	48 Hours Old	0 Hour Fresh	48 Hours Old	
		4.1 20	3.5 17	2.7 14	85.4 85.0	65.9 70.0	
		-Effec LC50	: Start of i ind of ren t Data(mo (96hr) = 96hr) = 3	renewal per ewal period prtality, para 12.4mg/L .1mg/L	iod Ilysis):		
		EC50	(96hr) =	4.7mg/L			
Source	:	Canto Natior Ibarak	n, J. H. a nal Institut i	nd Wegmar te of Enviro	n, R. C. C. nmental St	(1983) udies, Environ	ment Agency Tsukuba-
Reliability	:	(1) val	id withou	t restriction	naint		
Fiag 19.12.2002	:	Critica	li study to	r SIDS end	point		(5)
	то	λοιιλτ			ç		
4.2 ACOTE TOXICITY	107				0		
Type Species Exposure period Unit		semis Daphr 48 hou mg/l	tatic nia magna ur(s)	a (Crustace	a)		
EC0 EC50	:	yes = 1.5 = 2.1					

=	
Method	: OECD Guide-line 202, part 1 "Daphnia sp., Acute Immobilisation Test"
Year	: 2000
GLP	: yes
Test substance	: other TS:Kanto Kagaku, Lot. No.; 204D2060, Purity >= 99 %
Method	 Test Organisms: a) Age: < 24 hours old b) Supplier/Source: Test organisms were obtained from National Institute for Environmental Studies (JAPAN) and had been reproduced in the testing

OECD SIDS						CYCL	<u>OHEXENE</u>
4. ECOTOXICITY						I DAT	D: 110-83-8 TE: 08.01.03
	laborate c) Any days or were no During 0.2 mg	pretreatment pretreatment test condition tused for acclimination carbon/day	e years. ent: Parent ition before testing. on, test da y/individua	al daphn e testing, phnids w I.	ids were a any group ere fed wi	acclimated for at os showing high ith Chlorella vul	t least 14 mortality garis, 0.1 -
	-Test s a) Emp b) Mole c) Puri	ubstance: (birical Form ecular Weig ty: >=99 %	Cyclohexe hula: C6H1 ght: 82.15g	ne 0 g/mol			
	-Test Conditions: a) Dilution Water Source: Dilution water was prepared from tap water. The tap water was dechlorinated. After that Residual Chlorine was removed from the water. Before using the dilution water, aeration was fully carried out. b) Dilution Water Chemistry: pH: = 8.0 Total hardness (as CaCO3): = 81 mg/L c) Exposure Vessel Type: 250 mL test solution in a 270 mLGlass Beaker with glass cap (closed system) d) Nominal Concentrations: control, solvent control, 1.0,1.5, 2.2, 3.2, 4.6, 6.8 and 10 mg/L e) Vehicle/Solvent and Concentrations: 100mL of Solvent was prepared by dissolving 3g polyoxyethylene sorbitan fatty acid ester in acetone and it was made 100mL. At the maximum,100uL/L solvent could be be contained in the test solutions. 100uL/L solvent was contained in solvent control. f) Number of Replicates: 5 h) Renewal Rate of Test Water: Every 24 hours i) Water Temperature: 20+/-1°C j) Light Condition: 16:8 hours, light-darkness cycle k) Feeding: None- Analytical Procedure: Test concentrations were measured at the start and 24th hour.						p water. The removed ully carried ass Beaker 2, 3.2, 4.6, prepared by ne and it be contained control.
	a) Data b) Met Mean	a Analysis: hod of Calc	Binominal culating Me	method ean Meas	for EC50 sured Con	centrations: Tim	ne-Weighted
Result :	- - Mease start an the dev	ured Conce Id 24th hou iation from	entrations ir (before e the nomir	The test exchange al were r	concentra of test so not less th	ations were mea lution). For son an +/-20%	asured at the ne of them,
	Nomina	al Measure	ed Conc., r	ng/L	Perce lean*	ent of Nominal	-
	mg/L	0 Hour Fresh	24 Hour Old	mg/L	0 Hour Fresh	24 Hour Old	
	Control Solvent	<0.05 t Control	<0.05				-
	1.0 1.5 2.2 3.2 4.6	<0.05 1.04 1.80 2.52 3.14 4.77	<0.05 0.779 1.22 1.45 1.89 2.57	 0.914 1.49 1.94 2.46 3.56	 104 120 115 98 104	 80 81 66 59 56	

OECD SIDS							(CYCLOHEXENE
4. ECOTOXICITY								ID: 110-83-8 DATE: 08.01.03
		6.8 10	7.35 9.87	4.22 5.41	5.64 7.42	108 99	62 54	
		Fresh Old: t *: Me	: freshly p est solution an measu	orepared te on after 24 ured concer	est solution hours expo ntration (Tir	osure me-weighte	ed Mean)	
		- Wat and te start a pH: DO Wa	er chemis emperatur and 24th I 7.8 - 8.1 : 8.8 - 9.1 ter Tempe	stry (pH and re were me hour. mg/L erature: 19.	d DO) and f asured for 6 - 20.8°C	temperatur control and	re in test: d each cc	Water chemistry oncentration at the
		-Effec EC EC mc: b	t Data:) (48hr) = 50 (48hr) ased on r	= 1.5 mg/L = 2.1 mg/L measured c	(mc) (mc) concentratio	on		
		-Morta solve organ were	ality or Im nt control, isms were affected a	mobility: N , 1.0 and 1 e affected v at 3.6, 5.6a	o test orga .5mg/L. Th was 1.9mg/ nd 7.4mg/L	nism was I le lowest c /L after 48 . on and af	mmobiliz oncentra hours. A ter 24th h	ed at control, tion that the test Il test organisms nour.
		Meas	ured C (F	umulative I Percent Mo	Number of rtality or Im	Dead or Im	nmobilize	d Daphnids
		Conc mg/L		24 Hour	48	Hour		
		Contr Solve 0.91 1.5 1.9 2.5 3.6 5.6 7.4	ol nt Contro	0(0) 0(0) 0(0) 0(0) 0(0) 10(50) 20(100 20(100 20(100	0 (0 (0 (3 (20) 20) 20) 20)	0) 0) 0) 15) (100) (100) (100) (100)		
		- Calo	culation of	f toxic value	es: Based o	on the mea	in measu	red concentrations.
Source	:	Minis Natio Ibaral	try of Env nal Institu ki	ironment, c ite of Enviro	Japan (200 onmental S	0) tudies, En	vironmen	t Agency Tsukuba-
Reliability Flag 19.12.2002	:	(1) va Critica	llid withou al study fo	it restriction or SIDS end	ו dpoint			(22)
Type Species Exposure period Unit Analytical monitoring EC0 EC50 Method		semis Daph 48 ho mg/l yes = 3.8 = 5.3 other:	nia magna ur(s) NEN6501	a (Crustace 1, 6502, 65	ea) 04 and 650	06 (1980) E	Outch Sta	ndardization
Year GLP	:	1983 yes	nzaliuli					

ID: 110-83-8 DATE: 08 01 03
DATE: 08.01.03 : other TS: Fluka, Purity>99.5% : - Test Organisms: The 24 hours old daphnids were used for test. -Test substance: Cyclohexene a) Empirical Formula: C6H10 b) Molecular Weight: 82.15g/mol c) Purity: >99.5 % -Test Conditions: a) Dilution Water Chemistry: Total hardness (°DH): = 11.7 NaHCO3 = 100 mg/L CaCl2·H2O = 200mg/L KHCO3 = 20mg/L MgSO4·7H2O = 180mg/L b) Test Volume: 1 L test solution per group c) Nominal Concentrations: factor=1.8 d) Individuals per Group: 25 e) Water Temperature: 19+/-1°C f) Light Condition: 12:12 hours, light-darkness cycle-Analytical Procedure: At 0 hour and 48th hour, samples were taken form the lowest and the highest concentrations.
- Water chemistry (pH and DO) and temperature in test: The pH and Oxygen content of the test solutions were checked at 0 hour and 48th hour.
- : -Effect Data: EC50 (48hr) = 5.3 mg/L LC50 (48hr) = 9.4 mg/L EC0(48hr) = 3.8 mg/L
: Canton, J. H. and Wegman, R. C. C. National Institute of Environmental Studies, Environment Agency Tsukuba- Ibaraki
: (4) not assignable - Remark: Details on test condition and results are not available.
Remark: Details on test condition and results are not available. (6)
 Daphnia magna (Crustacea) 24 hour(s) mg/l = 563 = 720 = 750 1982 other TS - Test Organisms: The 24 hours old daphnids (IRCHA strain) were used for test. -Test Conditions: a) Dilution Water: For reasons of national and international standardization, artificial fresh water according to DIN (Deutsches Institut fuer Normung) was used. This water was aerated to oxygen saturation

OECD SIDS	CYCLOHEXENE
4. ECOTOXICITY	ID: 110-83-8
	DATE: 08.01.03
	c) Water Temperature: approximately 20°C d) Number of Replicates: 2
	- Effect of end point: When the test period (24 hr) was over, the test organisms that could swim were counted
	Water chemistry (pH and DO) and temperature in test: At the end of the test period pH values and dissolved oxygen concentration were measured in the test and control vesseles. The dissolved oxygen concentration had not dropped below 2mg/L at the end of the test period.
Source	: National Institute of Environmental Studies, Environment Agency Tsukuba- Ibaraki National Institute of Environmental Studies, Environment Agency Tsukuba- Ibaraki
Reliability	: (4) not assignable - Remark: Details of the test were not available and test was a 24-h exposure.
Remark 20.12.2002	-:Details of the test were not available and test was a 24-h exposure. (3)
4.3 TOXICITY TO AG	QUATIC PLANTS E.G. ALGAE

Species	: Selenastrum capricornutum (Algae)
Endpoint	: growth rate
Exposure period	: 72 hour(s)
Unit	: mg/l
Analytical monitoring	: ves
NOEC	: = .67
Method	: OECD Guide-line 201 "Algae, Growth Inhibition Test"
Year	: 2000
GLP	: Ves
Test substance	other TS:Kanto Kagaku, Lot. No.: 204D2060, Purity >= 99 %
Method	- Test Organisms
	 a) Supplier/Source: Obtained from American Type Culture Collection and reproduced in aseptic culture for 6 months. b) Method of Cultivation: Sterile c) Stain Number: ATCC22662
	-Test substance: Cyclohexene a) Empirical Formula: C6H10 b) Molecular Weight: 82.15g/mol c) Purity: >=99 %
	- Test Conditions:
	 a) Medium: OECD medium b) Exposure Vessel Type: 100 mL Medium in a 500mL Erlenmeyer Flask with glass cap (closed system) c) Nominal Concentrations: control, solvent control, 1.8, 3.2, 5.6, 10 and 18 mg/L d)Vehicle/Solvent and Concentrations: 100mL of Solvent was prepared by dissolving 3g polyoxyethylene sorbitan fatty acid ester in acetone and it was made 100mL The final concentration of polyoxyethylene sorbitan fatty acid ester and acetone were at maximum 3ug/L and 100 uL/L respectively in test solution and in solvent control. e) Stock Solutions Preparations and Stability: Not described.

OECD SIDS						С	<u>YCLOHEXENE</u>				
4. ECOTOXICITY							ID: 110-83-8 DATE: 08.01.03				
		f) Number of Replicates: 3 g) Initial Cell Number: 10,000 cells/mL h) Water Temperature: 23+/-2°C i) Light Condition: 4,000 - 5,000 lux, continuously j)Shaking: 100 rpm									
		- Analytical Procedure: Test concentrations were measured at the start and the 72nd hour using GC-MS with detection limit of 0.05 ma/l.									
		- Statistical a) Data Ana comparison b) Method o mean, geom	Method: alysis: regres for NOEC, of Calculating netric mean,	ssion analysi g Mean Meas etc.): geome	s for EC50 sured Con), and Duni	nett multiple s (i.e. arithmetic				
Remark	:	Some devi 1) Dispersa substance w 2) Light inte 3) Exponen 4) EC50 wa	ations were int was used vas not great ensity was sh tial growth h	present in thi as a solvent er than it's s nown as a un ad not kept t ed using limi	is study. T t although olubility. it of lux in hroughout ted data w	These are the concer stead of E/ t the test per vithout value	ntration of test m2/s eriod e pear EC5				
Result	:	- Measured Concentrations : The tested concentrations were measured at the start and the 72nd hour.									
		 All the error ranges of measured concentration were not less than +/- 20% of nominal concentration. Especially the concentrations of 72 hours after were low. Those were 4 - 8% of nominal. 									
		Nominal conc.	Measured	Conc., mg/L	Percent of nominal		Mean*				
		mg/L	0 Hour	72 Hour	0 Hour	72 Hour					
		Control	<0.05	<0.05							
		Solvent Cor	trol <0.05	<0.05							
		1.8	2.02	0.0686	112	4	0.37				
		3.2	3.37	0.133	105	4	0.67				
		5.0 10	6.72 10.0	0.458	120	8	1.8				
		18	17.2	0.484	96	4	3.6				
		*Geometric	Mean								
		 Water chemistry (pH) in test: pH was measured for control and each concentration at the start and end of test pH: 8.0 - 10.6 									
		-Effect Data:biomass Area Method EbC50(0-72hr) not available NOEC (0-72hr) = 1.8 mg/L (mc)									
		Rate Method ErC50(24-48hr) = not available NOEC (24-48hr) not available ErC50(0-72hr) not available NOEC (0-72hr) = 0.67 mg/L (mc) mc: mean measured concentration									
		- Percent G	rowth Inhibiti	on of Selena	strum cap	ricornutum	-				
		Measured	Area un	der the grow	th curves	(Average)					
• (~							

	Conc. Area	Inhibition (%)*		
			, 		
	Solvent Control 23,176	6,000			
	0.37 26,960	,000 -16.3			
	0.67 21,976	,000 5.2			
	1.8 20,328	,000 12.3			
	2.2 19,504, 3.6 18,312	000 15.8° 000 21.0*			
	Mean Growth r	ates and percent	inhibition (Average)	
	Conc. Rate mg/L (24-48hr	Inhibition(%)) (24-48hr) (Rate 0-72hr)	Inhibition(%) (0-72hr)	
	Solvent Control 0.0695	(0.044231		
	0.37 0.07289	91 -4.82 (0.043983	0.56	
	0.67 0.06397	76 8.00 (0.039025	11.8	
	1.8 0.06815	53 1.99 (0.038331	13.3**	
	2.2 0.0615	19 11.53 (0.038339	13.3*	
	3.6 0.05958	32 14.32 (0.036012	18.5**	
	**: alpha = 0.01 (signific comparing result in the	cant difference)In solvent control	hibition(%)	was calculated	by
	- Growth Curves: Log p	hase during the t	est period		
	- Growth Curves: Until rate during 48-72 was s concentrations.	48 hrs, logarithmi maller than that o	c growth w of first 48 h	as occurred, bu r slightly at all	t growth
	- Calculation of toxicity EC50s because the hig Inhibition rates by a are and 18.5% at the highe	value: Did not ca hest inhibition rat a method and a r st concentration o	alculate for e was belo ate metho of 3.6 mg/L	ow 50 %: d were calculate . respectively.	ed 21%
	-For N(L)OECs, measu control were confirmed then Dunnett's multiple shown in the above tab	red relative conce their homogeneit comparison test les as indicated b	entrations t y of varian were carrie by asterisks	to those in solve ces by Bartlett's ed out. The resu 3.	ent s test and lts were
Source	- : Ministry of Environment National Institute of Env	t, Japan (2000) ⁄ironmental Studi	es, Enviror	nment Agency	Tsukuba-
Reliability	Ibaraki : (2) valid with restriction:	S			
	- Remark: There are some deviation as below.	on from OECD T	G 201 and	guidance docur	ment 23
	 The test substance v the test was conducted due to use vessels whic expected as a volatile a loss of the substance. 	vere removed dur by closed systen ch had a too large ind it should be u	ing test pe n. One of tl headspac sed smalle	riod up to 96% ne reason for th ce. This substan r vessels to pre	however at was ice was vent to
	2) Any EC50s could no	t be deriven. At th	ne highest	concentration th	ie

ECD SIDS	CYCLOHEXENE
ECOTOXICITY	ID: 110-83-8
	DATE: 08.01.03
Flag	 Inhibition rate was showed only 18.5 % based on rate method calculation. Critical study for SIDS endpoint
20.12.2002	(23)
Species Endpoint Exposure period Unit Analytical monitoring NOEC EC50 Method Year GLP Test substance Method	 Chlorella pyrenoidosa (Algae) biomass 48 hour(s) mg/l no = .22 = 3.8 other: NEN6501, 6502, 6504 and 6506 (1980) Dutch Standardization Organization 2000 yes other TS: Fluka, Purity>99.5% -Test substance: Cyclohexene a) Empirical Formula: C6H10 b) Molecular Weight: 82.15g/mol
	 Test Conditions: a) Compounds of standard media: Total hardness (°DH): = 30.2 CaCl2·H2O = 35mg/L MgSO4·7H2O = 75mg/L K2HPO4 = 52mg/L Citric acid = 6mg/L Na2CO3 = 500mg/L Na2CO3·H2O = 54mg/L Ferricitrate = 6mg/L NH4NO3 = 330mg/L b) Test Volume: 300mL test solution per group c) Nominal Concentrations: factor=1.8 d) Algae per Group: 10,000 cells/L e) Water Temperature: 24+/-1°C f) Light Condition: 5,000 lux, continuously Analytical Procedure: No analyses were performed.
	- Water chemistry (pH and DO) and temperature in test: The pH and Oxygen content of the test solutions were checked at 0 hour and 48th hour.
Result	 -Effect Data:Area Method (biomass) EbC50(48hr) =3.5 mg/L (nc) NOEC (48hr) = 0.22 mg/L (nc) nc: based on nominal concentration
Source	 Canton, J. H. And Wegman, R. C. C. National Institute of Environmental Studies, Environment Agency Tsukuba- Ibaraki
Reliability Remark 20.12.2002	: (4) not assignable - Test substance concentration was no measured. (6)

4.4 TOXICITY TO MICROORGANISMS E.G. BACTERIA

Type Species Exposure period Unit Analytical monitoring Method Year GLP Test substance Method		aquatic Chilomonas sp. (Protozoa) 48 hour(s) mg/l 1980 - Test Conditions: a) Exposure Vessel: 300mL Erlenmeyer Flask with metal cap b) Number of Replicates: 2 c) pH of test solution: adjusted to 6.9 d) Water Temperature: 20°C -Effect of end point: If cell counts in the test cultures are 5% below the average of the counts in reference cultures free of toxic influence, this may be considered as an initial inhibition of protozoan cell multiplication by pollutant and thus serve for determining the toxicity threshold for that particular pollutant.
Result	:	-Effect Data: The threshold toxicity concentration for initial influence of the cyclohexene at the exposure period for 48th hour was >160 mg/L.
Source	:	National Institute of Environmental Studies, Environment Agency Tsukuba-
Reliability Remark 20.12.2002	:	(4) not assignable - Insufficient information on test condition (4)
Type Species Exposure period Unit Analytical monitoring Method Year GLP Test substance Method		aquatic Uronema parduzci (Protozoa) 20 hour(s) mg/l 1980 - Test Conditions: a) Exposure Vessel: 300mL Erlenmeyer Flask with metal cap b) Number of Replicates: 2 c) pH of test solution: adjusted to 6.9 d) Water Temperature: 20°C -Effect of end point: If cell counts in the test culturesare 5% below the average of the counts in reference cultures free of toxic influence, this may be considered as an initial inhibition of protozoan cell multiplication by pollutant and thus serve for determining the toxicity threshold for that particular pollutant.
Result	:	-Effect Data: The threshold toxicity concentration for initial influence of the cyclohexene at the exposure period for 20th hour was >50 mg/L.

OECD SIDS		CYCLOHEXENE
4. ECOTOXICITY		ID: 110-83-8
		DATE: 08.01.03
Source	:	- National Institute of Environmental Studies, Environment Agency Tsukuba- Ibaraki

Reliability	: (4) not assignable	
Remark	- Insufficient information on test condition	
20.12.2002		(2)

4.5.1 CHRONIC TOXICITY TO FISH

4.5.2 CHRONIC TOXICITY TO AQUATIC INVERTEBRATES

Species Endpoint Exposure period Unit	 Daphnia magna (Crustacea) reproduction rate 21 day mg/l
Analytical monitoring NOEC LCEC EC50 Method Year GLP Test substance Method	 yes = .53 = .74 = 1 other: OECD Guide-line 211 2000 yes other TS:Kanto Kagaku, Lot. No.; 204D2060, Purity >= 99 % -Test Organisms: a) Age: < 24 hours old b) Supplier/Source: Test organisms were obtained from National Institute for Environmental Studies (JAPAN) and had been reproduced in the testing laboratory for 2 years and 6 months. c) Any pretreatment: Parental daphnids were acclimated for at least 21
	days on test conditions before testing, any groups showing high mortality were not used for testing. -Test substance: Cyclohexene a) Empirical Formula: C6H10 b) Molecular Weight: 82.15g/mol c) Purity: >=99 %
	 Test Conditions: a) Dilution Water Source: Dilution water was prepared from tap water. The tap water was dechlorinated. After that Residual Chlorine was removed from the water. Before using the dilution water, aeration was fully carried out. b) Dilution Water Chemistry: pH: = 8.0 Total hardness (as CaCO3): = 81 mg/L c) Exposure Vessel Type: 80 mL test solution in a heat-resistance glass jar with glass screw cap d) Nominal Concentrations: control, solvent control, 1.0, 1.5, 2.2, 3.2, 4.6, 6.8 and 10 mg/L e) Vehicle/Solvent and Concentrations: 100mL of Solvent was prepared by dissolving 3g polyoxyethylene sorbitan fatty acid ester in acetone and it was made 100mL. In all concentrations except contol, 100uL/L of solvent solution was added. The final concertration of polyoxyethylene sorbitan fatty acid ester was 3ug/L

OECD SIDS										С	YCLOH	EXENE
4. ECOTOXICITY											ID: 1 DATE: (10-83-8)8.01.03
		 f) Stock Solutions Preparations and Stability: prepared with the test substance using the solvent solution (3 g polyoxyethylene sorbitan fatty acid ester in per 100 ml acetone) as the dilutant. Stability was not checked. g) Number of Replicates: 10 h) Individuals per Replicates: 10 i) Renewal Rate of Test Water: Every 48 hours j) Water Temperature: 20+/-10C k) Light Condition: 16:8 hours, light-darkness l) Feeding: 0.1 - 0.2 mg carbon/day/individual (Chlorella vulgaris: Green Algae) - Analytical Procedure: The test concentrations were measured for both renewal and old test solution at the start of test and 2nd, 6th 8th, 14th and 16th day. 										t fatty Green both Ith and
		- Stati a) Da t-tes Dou b) Me mean	stic Ita A Ita fo Idor Idor Itho , ge	al Meth Analysi or NOE off met od of Ca cometric	nod: s: C and thod fo alculati c mear	LOEC r EC50 ing Mea n, etc.):	n Mea: Time-v	sured C veighte	Concen d Mear	trations า	s (i.e. arith	nmetic
Remark	:	- NOEC	C wa	as dete	ermined	d based	on the	cumula	ative n	umber	of alive ju	veniles
Result	 Result : - Effect: reproduction- Measured Concentrations : The test concer were measured for both renewal and old test solution at the start of and 2nd, 6th 8th, 14th and 16th day. For some of them, the devia the nominal concentration was not less than ±/- 20% 								st concent he start of he deviati	rations test on from		
		Nomir	nal		Меа	asured (Conc., I	mg/L				
		mg/L	Da	te 0 Fresh	2 Old	6 Fresh	8 Old	14 Fresh	16 Old	TWM* mg/L	% of Nominal	
		Contro Solve	ol nt C	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05			
		10		1 15	<0.05 0.05	<0.05 1.08	<0.05	<0.05 1 15	<0.05	0 27	 27	
		1.5		1.69	0.08	1.58	0.06	1.67	0.13	0.53	35	
		2.2		2.49	0.13	2.27	0.08	2.31	0.13	0.74	34	
		3.2		3.40	0.22	3.55	0.18	3.54	0.21	1.17	37	
		4.6 6.8		4.90	0.38	4.67	0.31	5.42	0.37	1.75	38	
		10		11.5	0.77					3.97	40	
		Fresh Old: E *: Tim : No	: St Ind e-w	art of rene of rene reighted easured	enewa wal pe d meai d was	l period eriod n of mea made b	asured ecause	concer e all dap	ntration ohnids	during were d	21days ead at this	s time.
		- Measured Concentration as a Percentage of Nominal									_	
		Nomir Conce	nal entra	Me - ation	easure	d Conce	entratio	n as a	Percer	itage o	f Nominal	
		mg/L		Date Fre	e 0 esh O	2 6 Id Fres	8 sh Olc	14 1 I Fresl	6 h Old			
		1.0		1	15 5	5 108	<1	112	<1			-

1.5	113	5	105	4	111	9
2.2	113	6	103	4	105	6
3.2	106	7	111	6	111	7
4.6	107	8	102	7	118	8
6.8	118	8	100	19		
10	115	8				

Fresh: Start of renewal period

Old: End of renewal period

---: No measured was made because all daphnids were dead at this time.

- Water chemistry (pH and DO) and temperature in test: Water chemistry and temperature were measured for control and each concentration at the start of test and before and after renewal of the test solutions.

pH: 7.7 - 8.8 DO: 8.4 - 10.2 mg/L Water Temperature: 19.6 - 20.8°C

- Total hardness: 80 - 82 mg/L

-Effect Data:

EC50 (21day) = 1.0 mg/L (mc) NOEC (21day) = 0.53 mg/L (mc) LOEC (21day) = 0.74 mg/L (mc)

mc: based on measured concentration (Time weighted mean)

- Cumulative Number of Died Parental Daphnids: No test organism was killed at control solvent control, 1.0, 1.5 and 2.2 mg/L. The lowest concentration that test organisms were dead was at 3.2 mg/L after 4days. All test organisms were dead at 6.8 mg/L after 9days and at 10 mg/L after 4days.

Nominal Conc.	Cu	mu	lativ	e N (d	umb ays)))	of D	ead	l Pa	renta	l Da	aphnids	i
(mg/L)	1	2	3	4	5	6	7	8	9	10			
Control Solvent Contro 1.0 1.5 2.2 3.2 4.6 6.8	0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 2 4	0 0 0 0 1 5 5	0 0 0 0 1 6 5	0 0 0 0 1 6 7	0 0 0 0 1 6 9	0 0 0 0 1 6 10	0 0 0 0 1 6 10			
10 Nominal Conc. (mg/L)	Cu) (mu 11) 7 	10 e N (d 13	10 umb ays) 14	10 oer c) · 15	10 of D 5 16	10 ead	10 I Pa 7 1	10 renta 8 19	 I Da 20	aphnids 21	
Control Solvent Contro 1.0 1.5 2.2 3.2 4.6 6.8	ol	0 0 0 1 6	0 0 0 1 8 10	0 0 0 1 8 10	0 0 0 0 1 9 10	0 0 0 1 9	0 0 0 1 9 10	0 0 0 1 9	0 0 0 1 9 10	0 0 0 1 9 10	0 0 0 0 2 9 10	0 0 0 0 2 9 10	

OECD SIDS												CY	CLO	HEX	ENE
4. ECOTOXICITY													ID:	110-	-83-8
												D	ATE	: 08.0	01.03
	10	10	10	10	10	10	10	10	10	10	10	10			

-Effect Data(reproduction):Juveniels were first producted on the 8th day control and all concentrations. At 4.6 mg/L, no juveniele was producted.

Nomina Conc. mg/L	al J 0 6	Mear uvenie 7	n Cum eles P 8	ulative roduce 9	Numb d per / 10	ers of Adult (c 11	lays) 12	13	
Control Solvent	0 0 t Control 0 0	1.9 5.6	6.1 10.7	7.3 12.3	18.9 29.3	25.4 31.4	29.4 34.0	50.3 62.9	
1.0 1.5 2.2 3.2 4.6 6.8 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.3 1.1 0.0 0 0.0 0 0.0 0 0.0 [D	6.2 6.7 .5 1.4 .0 0.0 .0 0.0 D E	9.3 8.4 4 11.9 0 1.5 0 0.0 0 D D D	18.7 14.1 13.9 2.0 0.0 D D	26.0 3 26.8 3 19.8 3 3.5 6. 0.0 0. D [D [32.2 30.2 30.8 8 0 0 0	49.9 44.4	
Nomina Conc. mg/L	al 14	Me Juve 15	ean Cu nieles 16	ımulati Produ 17	ve Nur ced pe 18	mbers o r Adult 19	of (days) 20	21	
Control Solvent	58.9 t Control 65.9	62.1 69.7	82.8 99.5	91.7 102.9	94.7 106.8	110.3 137.0	123.1 140.5	127.2 144.3	
1.0 1.5 2.2 3.2 4.6 6.8 10	60.4 61.8 34.7 8.4 0.0 D D	65.6 64.8 44.7 11.9 0.0 D	84.0 78.3 67.3 18.8 0.0 D D	94.4 95.9 70.8 20.5 0.0 D D	101.8 98.6 83.3 25.6 0.0 D D	120.2 112.7 105.3 31.4 0.0 D D	131.1 129.8 109.8 37.3 0.0 D D	138.4 133.2 119.7 43.3 0.0 D	

D: The parental daphnids were dead during a 21-day testing period

-Cumulative numbers of juveniles produced per adult alive for 21days

		Nomin (Meas	al Cono ured Co	c., mg/l onc.1) ,	mg/L)	1			
Vesse No.	el Solv : Cont.	2) 1.0 (0.27)	1.5 (0.53)	2.2 3 (0.74)	5.2 4. (1.17)	6 6 (1.75	.8 10) (3.0))2) (3.97)
1	146	129	149	144	47	D	D	D	
2	146	145	131	104	27	D	D	D	
3	151	144	131	93	55	D	D	D	
4	161	154	130	118	54	D	D	D	
5	152	124	134	109	D	D	D	D	
6	140	135	139	148	47	0	D	D	
7	128	133	108	136	D	D	D	D	
8	143	135	128	105	14	D	D	D	
9	127	147	140	102	55	D	D	D	
10	149	138	142	138	47	D	D	D	
Mean	144.3	138.4	133.2	119.3	43.3	0.0			

OECD SIDS	CYCLOHEXENE
4. ECOTOXICITY	ID: 110-83-8
	DATE: 08.01.03
	S. D. 10.5 9.1 11.0 20.0 14.9
	 1): Time-wighted mean measured concentration 2): Solvent control; Inhibition rate was calculated versus solvent control. *: significant (alpha = 0.05) **: significant at alpha = 0.01 level D: Were not included for calculation because the parental daphnids died.
	- Calculation of toxicity values: The calculation of toxicity values was the mean measured concentrations. The reason is that some of the error ranges of measured concentration were not less than +/-20% of nominal concentration.
Source Reliability	 Ministry of Environment, Japan (2000) National Institute of Environmental Studies, Environment Agency Tsukuba- Ibaraki (1) valid without restriction
Flag	: Critical study for SIDS endpoint
19.12.2002	(23)
Species Endpoint Exposure period Unit Analytical monitoring NOEC LCEC EC50 Method Year GLP Test substance Method	 Daphnia magna (Crustacea) reproduction rate 15 day mg/l yes = 2.4 = 2.9 = 4 other: NEN6501, 6502, 6504 and 6506 (1980) Dutch Standardization Organization 1982 other TS: Fluka, Purity>99.5% Test Organisms: The 24 hours old daphnids were used fortest. -Test substance: Cyclohexene a) Empirical Formula: C6H10 b) Molecular Weight: 82.15g/mol c) Purity: >99.5 %
	 -Test Conditions: a) Dilution Water Chemistry: Total hardness (°DH): = 11.7 NaHCO3 = 100 mg/L CaCl2·H2O = 200mg/L KHCO3 = 20mg/L MgSO4·7H2O = 180mg/L b) Test Volume: 1 L test solution per group c) Renewal Rate of Test Water: Once per 2 - 3 days d) Nominal Concentrations: ratio=1.8 e) Individuals per Group: 15 f) Water Temperature: 19+/-1°C g) Light Condition: 12:12 hours, light-darkness cycle -Analytical Procedure: At 0 hour and 48th hour, samples were taken from the lowest and the highest concentrations for analysis to get an impression about the actual concentrations during test.

OECD SIDS		CYCLOHEXENE
4. ECOTOXICITY		ID: 110-83-8
		DATE: 08.01.03
		- Water chemistry (pH and DO) and temperature in test: The pH and Oxygen content of the test solutions were checked at 0 hour and 48th hour.
Result	:	-Effect Data: EC50 (15days) = 2.9 mg/L LC50 (15days) = 4.0 mg/L NOEC (15days) = 2.4 mg/L
Source	:	National Institute of Environmental Studies, Environment Agency Tsukuba- Ibaraki
		National Institute of Environmental Studies, Environment Agency Tsukuba- Ibaraki
Reliability Bemark	:	(4) not assignable Method has a deviation from an aditional standard, and the detail was not
Remark		available to assess reliability.
20.12.2002		(6)
	אח	
4.6.2 TOXICITY TO TERR	ES	TRIAL PLANTS
4.6.3 TOXICITY TO OTHE	RN	NON-MAMM. TERRESTRIAL SPECIES
4.7 BIOLOGICAL EFFE	СТЗ	S MONITORING

- 4.8 BIOTRANSFORMATION AND KINETICS
- 4.9 ADDITIONAL REMARKS

5.1.1 ACUTE ORAL TOXICITY

Type Species Strain Sex Number of animals Vehicle Method Year GLP Test substance Remark Result	 LD50 rat Crj: CD(SD) male/female 5 other:corn oil OECD Guide-line 401 "Acute Oral Toxicity" 2002 yes other TS Doses were 0, 500, 1000, and 2000mg/kgbw for both sexes. LD50 value was greater than 1,000 mg/kg bw. Each 3 of 5 animals of male and female rats at 2,000 mg/kg bw showed abnormal gait, adoption of a prone position, salivation, piloerection and tremor, and then died within 3 days after dosing. Hypoactivity was observed in all male and female rats given the test substance. Lacrimati was also observed in both sexes just after dosing at 1,000 mg/kg bw an more. Necropsy of the dead animals revealed pulmonary congestion. Mortality: Dose(mg/kgbw) 0 500 1000 2000 No.of animals 5 5 5 5 No.of death Male 0 0 0 3 	ion d
Source	 Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa 	
Test substance Reliability Flag 17.07.2002	 Purity:98.6% (1) valid without restriction Critical study for SIDS endpoint 	(18)
Type Species Strain Sex Number of animals Vehicle Value Method Year GLP Test substance Result Source 12.07.2002 Type Species	 LD50 mouse no data no data > 3.2 ml/kg bw other no data no data Toxic effects: Altered sleep time including change in righting reflex, somnolence (general depressed activity) and ataxia. Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa LD50 rat 	(26)
Species Strain Sex Number of animals Vehicle Value Method Year	no data no data t t t t t t t t t t t t t t t t t t	

OECD SIDS		CYCLOHEXENE
5. TOXICITY		ID: 110-83-8
		DATE: 08.01.03
GLP	:	no data
Test substance	:	no data
Result	:	Toxic effects: Somnolence (general depressed activity), tremor and ataxia
Source	:	Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa
12.07.2002		(25)
Source	:	Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa
03.06.2002		5
5.1.2 ACUTE INHALAT	ION T	ΟΧΙCITY
Туре	:	other:Lethal concentration
Species	:	rat
Strain	:	no data
Sex	:	no data
Number of animals	:	
Vehicle	:	no data
Exposure time	:	4 hour(s)
Value	:	> 6370 ppm
Method	:	other
Year	:	
GLP	:	no data

GLP	: no data
Test substance	: no data
Result	: Toxic effects: Tremor and ataxia.
Source	: Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa

12.07.2002

5.1.3 ACUTE DERMAL TOXICITY

Type Species Strain	:	LD50 guinea pig no data	
Sex	÷	no data	
Number of animals	÷		
Vehicle	:	no data	
Value	:	> 20 ml/kg bw	
Method	:	other	
Year	:		
GLP	:	no data	
Test substance	:	no data	
Result	:	Details of toxic effects were not reported other than lethal dose value.	
Source	:	Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa	
12.07.2002			(28)

5.1.4 ACUTE TOXICITY, OTHER ROUTES

Туре	:	LC50
Species	:	rat
Strain	:	no data
Sex	:	no data
Number of animals	:	
Vehicle	:	no data

(27)

OECD SIDS	CYCLOHEXENE
5. TOXICITY	ID: 110-83-8 DATE: 08.01.03
Route of admin. Exposure time Value Method Year GLP Test substance Result Source 12.07.2002	 other:no data = 2000 mg/kg bw 1985 no data no data Details of toxic effect were not reported other than lethal dose value. Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa (10)
5.2.1 SKIN IRRITATION	
5.2.2 EYE IRRITATION	
5.3 SENSITIZATION	
5.4 REPEATED DOSE	ΤΟΧΙΟΙΤΥ
Species Sex Strain Route of admin. Exposure period Frequency of treatment Post obs. period Doses Control group NOAEL Method Year GLP Test substance Remark	 rat male/female other:Crj:CD(SD)IGS gavage Males:48 days Females:42-53 days from 14 days before mating to day 4 of lactation Once a day None 50, 150, 500 mg/kgbw yes, concurrent vehicle = 50 mg/kg bw OECD combined study TG422 2002 yes other TS This study was conducted to examine both repeated dose toxicity and reproductive/developmental toxicity as an OECD screening combined study (Test guideline: 422). Study design: Vehicle: Corn oil Clinical observation performed and frequency: General condition was observed once a day, body weights were determined at days 1(before

for males and females.

dosing),8,15,22,29,36,43 and 49 of treatment for males and at days 1, 8 and 15 of treatment and at days 0,7,14,and 20 of gestation period and at days 0 and 4 of lactation period and at autopsy for females, food consumption was determined at days 1,8,15,22,29,36,43 and 48 of treatment for males and at days 1,8 and 15 of treatment and at days 0, 7,14 and 20 of gestation period and at days 0 and 4 of lactation for females, but food consumption were not determined during mating period

For 5 males per group, urinalysis was carried out at 43-48 days of administration period. For all males and all females after childbirth, hematology and biochemistry were carried out at time of necropsy after 49

OECD SIDS	CYCLOHEXENE
5. TOXICITY	ID: 110-83-8
	DATE: 08.01.03
	days for males and at 5 days after delivery for females. Organs examined
	Organ weight: Brain, liver, kidney, spleen, adrenal, thymus, testis and enididymis
	Microscopic examination: Brain, pituitary, thymus, thyroid, parathyroid, adrenal, spleen, heart, thoracic aorta, tongue, esophagus, stomach, liver, pancreas, duodenum, jejunum, ileum, cecum, colon, rectum, larynx, trachea, lung, kidney, urinary bladder, testis, epididymis, prostate, seminal vesicle, ovary, uterus, vagina, eye, harderian gland, mammary gland, skin, sternum, femur, spinal cord, skeletal muscle, mesentery lymph node, mandibular lymph node, submandibular gland, sublingual gland, parotid gland, ischiadic nerve, bone marrow, Statistical methods: Dunnett's test for continuous data and Steel test for guantal data
Result	 Mortality: There was no mortality related to the test substance treatment. Clinical signs: Salivation was apparent in three animals of 150 mg/kg bw group and in twelve animals of 500 mg/kg bw group for males and in two animals of 150 mg/kg bw group and twelve animals of 500 mg/kg bw group for females. Although the grades of salivation were not reported, the sign was observed for about 5 minutes after dosing at 150 mg/kg bw , and for 30 minutes to 5 hours after dosing at 500 mg/kg bw during treatment period. In addition, lacrimation was observed in two animals of 500 mg/kg bw groups for females. The onsets and grades of lacrimation were not reported. Body weight: No statistically significant changes for males and females. Food consumption: No effects for males and females. Urinalysis: No statistically significant changes.
	Blood biochemistry: Males: Decreases in triglyceride in 150 and 500 mg/kg bw groups, increases in total bilirubin in 500 mg/kg bw group, and total bile acid in 150 and 500 mg/kg bw.
	Dose (mg/kg bw) 0 50 150 500 No.of animals 12 11 12 12 Triglyceride (mg/dL) Mean39.2 6.8 27.7 22.5 SD 22.4 18.8 16.7 7.7 T.bilirubin (mg/dL) Mean 0.03 0.04 0.05 0.05* SD 0.01 0.01 0.01 0.01 T.bile acid (umol/L) Mean 18.8 20.8 39.9* 32.6 SD 15.0 16.6 21.0 25.5 Note:*,P<0.05
	Females: Increase in total bile acid in 50, 150, and 500 mg/kg bw.
	Dose (mg/kg bw) 0 50 150 500 No. of animals 10 10 10 10 T.bile acid (umol/L) Mean19.3 49.2* 31.2 82.2* SD 8.6 28.8 19.7 81.1 Note:*,p<0.05
	Necropsy and histopathology: No adverse effects for males and females Organ weights: Males: Increase in a relative kidney weight in 500 mg/kg bw group.
	Dose (mg/kg bw) 0 50 150 500 No.of animals 12 11 12 12 Kidney Absolute (g) Mean 3.21 3.09 3.20 3.31 SD 0.33 0.27 0.27 0.27 Relative (g%)Mean 0.652 0.619 0.667 0.705*

DECD SIDS	CYCLOHEXENE
. TOXICITY	ID: 110-83-8
	DATE: 08.01.03
	SD 0.057 0.031 0.059 0.053
	Note:*, p<0.05
	Females: No statistically significant changes.
	Histonathology: No changes related to test substance
Source	: Research Institute for Animal Science in Biochemistry and Toxicology
	Sagamihara Kanagawa
Test substance	: Purity:98.6%
Conclusion	: Increase in total bile acid noted in females of 50 mg/kg bw was not
	considered as an adverse effect because of no accompanying changes.
	Therefore, based on salivation observed at 150 mg/kg bw, the NOAEL for
Delichility	repeated dose toxicity was considered to be 50 mg/kg bw/day.
Flag	Critical study for SIDS endnoint
12 07 2002	. Childai study for SIDS endpoint (19)
12.07.2002	
Species	: rat
Sex	: male
Strain	: no data
Route of admin.	: inhalation
Exposure period	: 6 months
Frequency of	: 6 hrs/day, 5 days /week
Post obs period	, none
Doses	: 75 150 300 600 ppm
Control group	: ves, concurrent vehicle
Method	: other
Year	: 1976
GLP	: no data
Test substance	: no data
Remark	: Animal: 20 rats per group.
	Cyclohexene levels were determined by continuous monitoring of the
	champers, using an automatic sampling system connected to a Cano Erba
	monitored inside and outside the chambers. Body weight of all animals was
	recorded weekly. Hematological profile (WBC, RBC, PI, Hb, Ht, differential
	count) was obtained before, during, and after exposure. Biochemical profile
	(glucose, BUN, cholesterol, SGOT, SGPT, LDH, alkaline phosphatase,
	electrolytes, etc.) and gross pathology of the hemopoietic organs were
	carried out after 6 months of exposure.
Result	: Significant increase in body weight(p<0.05) was observed in the rats
	exposed 600 ppm, and significant increase in alkaline
	phosphatase(P<0.01-0.02) was observed in all groups of rats exposed to
Source	Research Institute for Animal Science in Riochemistry and Toxicology
Oource	Sagamihara Kanagawa
12.07.2002	(11)
Species	: guinea pig
Sex	: male
Strain	no data
Route of admin.	: inhalation
Exposure period	: 6 hrs/day 5 days/week
freatment	. Oniorday, 5 dayorween
Post obs. period	: none
Doses	: 75, 150, 300, 600 ppm
Control group	: yes, concurrent vehicle
Method	: other
Year	: 1976
GLP	: no data

OECD SIDS		CYCLOHEXENE
5. TOXICITY		ID: 110-83-8
		DATE: 08.01.03
Test substance	:	no data
Remark	:	Animal: 10 guinea pigs per group.
		Cyclohexene levels were determined by continuous monitering of the
		chambers, using an automatic sampling system connected to a Carlo Erba
		gas chromatograph. Humidity, temperature, and pressure were also
		monitored inside and outside the chambers. Body weight of all animals was
		recorded weekly. Hematological profile (WBC, RBC, PI, HD, Ht, differential
		(ducose BLIN cholesterol SCOT SCPT LDH alkaline phosphatase
		electrolytes, etc.) and gross pathology of the hemopoletic organs were
		carried out after 6 months of exposure.
Result	:	No significant changes were observed in all groups of guinea pigs
		exposed to cyclohexene.
Source	:	Research Institute for Animal Science in Biochemistry and Toxicology
40.07.0000		Sagamihara Kanagawa
12.07.2002		(11)
Species	:	rabbit
Sex	:	male
Strain	:	no data
Route of admin.	:	inhalation
Exposure period	:	6 months
Frequency of	:	6 hrs/day, 5 days/week
treatment Post obs pariod		nono
Post obs. periou	:	75 150 300 600 ppm
Control group	:	ves, concurrent vehicle
Method	:	other
Year	:	1976
GLP	:	no data
Test substance	:	no data
Remark	:	Animal: 6 rabbits per group.
		Cyclonexene levels were determined by continuous monitoring of the
		chambers, using an automatic sampling system connected to a Cano Erba
		monitored inside and outside the chambers. Body weight of all animals was
		recorded weekly. Hematological profile (WBC, RBC, PI, Hb, Ht, differential
		count) was obtained before, during, and after exposure. Biochemical profile
		(glucose, BUN, cholesterol, SGOT, SGPT, LDH, alkaline phosphatase,
		electrolytes, etc.) and gross pathology of the hemopoietic organs were
Popult	-	carried out after 6 months of exposure.
Result	:	cyclohexene.
Source	:	Research Institute for Animal Science in Biochemistry and Toxicology
12 07 2002		Sayaniniara Nahayawa (11)
.2.01.2002		
5.5 GENETIC TOYIC		

Туре	: Ames test
System of testing	 Test spicies/strain: Salmonella typhimurium TA100, TA1535, TA98, TA1537. Escherichia coli WP2 uvrA
Concentration	: See "Remark"
Cycotoxic conc.	:
Metabolic activation	: with and without
Result	: negative
Method	: other:Chemical Substance Control Law of Japan and OECD Test Guideline 471
Year	: 2002

OECD SIDS		CYCLOHEXENE
5. TOXICITY		ID: 110-83-8
		DATE: 08.01.03
GLP	yes	
Test substance	other TS	
Remark	Procedures: Pre-incubation method	
	Solvent: Ethanol	<u></u>
	-S9 mix: 0 19 5 39 1 78 1 156 31	59 3 625 1250 ug/plate
	(TA100, TA1535, TA98, TA1537); 0, 1	78.1. 156. 313. 625. 1250. 2500. 5000
	ug/plate (WP2 uvrA)	, , , , ,
	+S9 mix: 0, 19.5, 39.1, 78.1, 156, 31	3, 625, 1250 ug/plate (all strain)
	*Maximum concentration was establi	ished based on the result of the
	preliminary test up to 5000 ug/plate.	In this test, the growth inhibition was
	typhimurium TA100 TA98 TA1535	TA1537 and with S9 mix in Salmonella
	Escherichia coli WP2 uvrA.	
	Positive control: without S9 mix:	
	2-(2-furyl)-3-(5-nitro-2-furyl)acrylamid	e (TA100, TA98, WP2 uvrA), Sodium
	azide (TA 1535),	
	2-methoxy-6-chloro-9-[3-(2-chloroeth)	yi)-aminopropyiaminojacriine 2HCi
	2-aminoanthracene (TA1535 WP2 u)	vrA TA1537)
	S9: Rat liver, induced with phenobarb	bital and 5,6-benzoflavone
	Plates/test: 3	
Result	There were no precipitations in any te	est concentration.
	Cytotoxic concentration: Growth inhib	nollo typication was observed at 625 ug/plate or
	TA98 TA1537 and at 1250 ug/plate	or more with S9 in Escherichia coli
	WP2 uvrA.	
	Genotoxic effects:	
	With metabolic activation: negative	
Source	Without metabolic activation: negativ	Ve
Source	Sagamihara Kanagawa	and Toxicology
Test substance	Purity:98.63%	
Reliability	(1) valid without restriction	
Flag	Critical study for SIDS endpoint	
17.07.2002		(20)
Type	Chromosomal aberration test	
System of testing	Type of cell used: Chinese hamster lu	ung(CHL/IU) cell
Concentration	0, 100, 150, 200, 250, 300, 350, 400	ug/mL
Cycotoxic conc.	400 ug/mL	
Metabolic activation	with and without	
Method	other: Chemical Substances Control L	aw of Japan and OECD Test
	Guideline 473	
Year	2002	
GLP	yes	
lest substance	other 15 Solvent: Ethanol	
Remark	Solveni. Ethanol S9: Rat liver induced with phenobarh	nital and 5.6-benzoflavone
	Plates/test: 2	
	The maximum concentration was esta	ablished, based on the growth
	inhibition test. In this test, 50% growt	th inhibition was observed between
	250 and 300 ug/mL for short-term trea	atment and continuous treatment with
Result	UI WILLIUUL 39. No increase in chromosomal aberrati	ons was observed after short-term or
NGGUIL	continuous treatment with or without !	S9 mix.
	Cell toxicity was observed at 400 ug/r	mL after continuous treatments for 24
	and 48 hrs.	

5. TOXICITY	ID: 110-83-8
	Clastogenicity Polyploidy
	+ ? - + ? - Without metabolic activation [] [] [*]
Source	With metabolic activation [] [] [*] [] [] [*] Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa
Test substance	: Purity: 98.63%
Reliability	: (1) valid without restriction
12.07.2002	: Childal study for SIDS enupoint (21)
5.6 GENETIC TOXICI	ΓΥ 'ΙΝ VIVO'
5.7 CARCINOGENITY	
5.8 TOXICITY TO REP	RODUCTION
Type	• other
Species	: rat
Sex	: male/female
Strain	: other:Crj:CD(SD)IGS
Route of admin.	: gavage
Exposure period	: Males:48 days, females:42-53 days from 14 days before mating to day 4 of
Frequency of	lactation
treatment	: Once a day
Bromating exposure	
neriod	
Male	: 14 days
Female	: 14 days
Duration of test	: Males: 49 days, females: from 14 days before day 5 of lactation
Doses	: 50, 150, 500 mg/kgbw
Control group	: yes, concurrent vehicle
NOAEL Parental	: = 500 mg/kg bw
NOAEL F1 Offspr.	: = 500 - mg/kg bw
Method	: other:OECD Test guideline 422
Year	: 2002
GLP	: yes
Test substance	: other IS
Remark	 This study was conducted to examine both repeated dose toxicity and reproductive/developmental toxicity as an OECD screening combined study (Test guideline: 422). Study design: Vehicle: Corn oil
	Clinical observation performed and frequency: General condition was observed once a day, body weights were determined at days 1(before dosing),8,15,22,29,36,43 and 49 of treatment for males and at days 1, 8 and 15 of treatment and at days 0,7,14,and 20 of gestation period and at days 0 and 4 of lactation period and at autopsy for females, food consumption was determined at days 1,8,15,22,29,36,43 and 48 of treatment for males and at days 1,8 and 15 of treatment and at days 0, 7,14 and 20 of gestation period and at days 0 and 4 of lactation for females. but food consumption were not determined during mating period for males and females.
	For 5 males per group, urinalysis was carried out at 43-48 days of administration period. For all males and all females after childbirth per
	$\mathbf{LINED} \mathbf{D} \mathbf{L} \mathbf{D} \mathbf{L} \mathbf{C} \mathbf{A} \mathbf{T} \mathbf{L} \mathbf{O} \mathbf{N} $

OECD SIDS

CYCLOHEXENE

OECD SIDS	CYCLOHEXENE
5. TOXICITY	ID: 110-83-8 DATE: 08 01 03
	aroup, hematology and biochemistry were carried out at time of necropsy
	after 49 days for males and at 5 days after delivery for females. Organs
	examined at necropsy.
	epididymis
	Microscopic examination: Brain, pituitary, thymus, thyroid, parathyroid,
	adrenal, spleen, heart, thoracic aorta, tongue, esophagus, stomach, liver,
	trachea, lung, kidney, urinary bladder, testis, epididymis, prostate, seminal
	vesicle, ovary, uterus, vagina, eye, harderian gland, mammary gland, skin,
	sternum, femur, spinal cord, skeletal muscle, mesentery lymph node,
	dand, ischiadic nerve, bone marrow
	Reproductive and developmental parameters: No.of pairs with successful
	copulation, No. of pregnant females, copulation index (No. of pairs with
	successful copulation/No. of pairs mated x 100), fertility index (No. of pregnant animals/No. of animals with successful copulation x 100), estrous
	cycle, No. of dams delivered live pups, duration of gestation, No. of total
	corpora lutea, No. of total implants, No. of total pups born, No. of total live
	pups born, sex ratio, No. of total dead pups, No. of total cannibalism,
	100), implantation index (No. of implants/No.of corpora lutea x 100),
	delivery index (No. of pups born/No. of implants x 100), live birth index (No
	of live pups born/No. of pups born x 100), and viability index on day 4 (No.
	methods: Dunnett's test for continuous data and Steel test for guantal data
Result	: Mortality: There was no mortality related to the test substance treatment.
	Clinical signs: Salivation was apparent in three animals of 150 mg/kg bw
	animals of 150 mg/kg by group and twelve animals of 500 mg/kg by group for males and in two
	for females. Although the grades of salivation were not reported, the sign
	was observed for about 5 minutes after dosing at 150 mg/kg bw , and for
	period. In addition, lacrimation was observed in two animals of 500 mg/kg
	bw group for males and in one animal each of 150 and 500 mg/kg bw
	groups for females. The onsets and grades of lacrimation were not
	Body weight: No statistically significant changes for males and females.
	Food consumption: No effects for males and females.
	Urinalysis: No statistically significant changes.
	Blood biochemistry:
	Males: Decreases in triglyceride in 150 and 500 mg/kg bw groups,
	increases in total bilirubin in 500 mg/kg bw group, and total bile acid in 150
	Females: Increase in total bile acid in 50, 150, and 500mg/kg bw.
	Necropsy and histopathology: No adverse effects for males and females.
	Organ weights: Maleeu laareese is a raletive kidneu weight is 500 mg/kg hu group
	Females: No statistically changes.
	Histopathology: No changes related to test substance.
	Reproductive and developmental parameters: No effects observed on reproductive performance in males and females given each dose, and
	developmental performance of the newborns.
	Dose(mg/kg bw) 0 50 150 500
	No. of pairs mated 12 12 12 12 No. of pairs conulated 12 11 12 12
	No. of pregnant females 11 10 10 10
	Copulation index (%) 100.0 91.7 100.0 100.0

OECD SIDS	CYCLOHEXE	NE
5. TOXICITY	ID: 110-8	3-8
	DATE: 08.01	.03
	Fertility index (%) 91.7 90.9 83.3 83.3	
	No of dams observed 11 10 10 10	
	No. of dams delivered live pups 11 10 10 10	
	Duration of gestation: Mean 22.5 22.2 22.3 22.5	
	SD 0.5 0.4 0.5 0.5	
	No. of total corpora lutea:Mean 19.2 17.4 18.4 20.1	
	SD 2.6 3.3 3.2 3.8	
	No. of total implants: Mean 13.7 14.4 14.3 14.3	
	SD 3.0 1.6 1.5 1.6	
	No. of total pups born: Mean 12.8 13.4 13.5 12.5	
	SD 3.5 1.0 2.1 2.2 Sex ratio: Mean 0.80 1.32 1.14 0.81	
	SD 0.23 0.68 1.60 0.56	
	No. of total live pups on day 4	
	Male: Mean 5.5 6.9 6.7 5.0	
	SD 2.2 1.9 2.4 2.0	
	Female: Mean 6.8 6.2 6.7 7.2	
	SD 2.8 1.9 2.4 2.0	
	No. of total dead pups: Mean 0.3 0.1 0.1 0.0	
	SD 0.6 0.3 0.3 0.0	
	Gestation Index (%): 100.0 100.0 100.0 100.0	
	SD 20.3 97 10.6 13.1	
	Delivery index (%): Mean 93 2 93 8 97 3 90 0	
	SD 11.9 6.1 4.7 10.3	
	Live birth index (%): Mean 98.0 99.3 96.9 97.0	
	SD 4.7 2.3 9.7 9.5	
	Viability index day 4	
	Male: Mean 90.9 95.3 100.0 96.7	
	SD 30.2 10.0 0.0 10.5 Female: Mean 88.6 100.0 08.2 08.2	
	SD 29.8 0.0 5.3 5.3	
Source	: Research Institute for Animal Science in Biochemistry and Toxicology	
	Sagamihara Kanagawa	
Test substance	: Purity:98.6%	
Reliability	: (1) valid without restriction	
Flag	: Critical study for SIDS endpoint	(40)
12.07.2002		(19)

5.9 DEVELOPMENTAL TOXICITY/TERATOGENICITY

See 5.8.

5.10 OTHER RELEVANT INFORMATION

Type Remark	 Toxicokinetics Hydroxylation of cyclohexene at the allylic position has been shown to occur in hepatic microsomes and 9000 g supernatant fractions of male Holtzman rats and male New Zealand White rabbits (incubation time was 10 to 60 min). After 10-min incubation of 9000 g supernatant fractions from rats with 40 mM cyclohexene, 2-cyclohexen-1-ol at 0.93 ± 0.10 umol/g liver, cyclohexene oxide at 0.06 ± 0.02 umol/g liver and transcyclohexanediol at 0.89 ± 0.05 umol/g liver was produced in preparations from rats. Pretreatment of rats with phenobarbital induced cyclohexene oxidation by more than 3.5 times (2-cyclohexen-1-ol at 5.14 ± 0.64 umol/g liver, trans-cyclohexanediol at 3.08 ± 0.24 umol/g liver and cyclohexene oxide 4.47 ± 0.75 umol/g liver). A small amount of 2-cyclohexen-1-one
	oxide 4.47 \pm 0.75 umol/g liver). A small amount of 2-cyclohexen-1-one (0.03 \pm 0.01 umol/g liver) was also formed in preparations from

OECD SIDS		CYCLOHEXENE
5. TOXICITY		ID: 110-83-8
		DATE: 08.01.03
		phenobarbital-pretreated rats . The formation of the product, 2-cyclohexen- 1-ol, requires the presence of a NADPH-generating system, is inhibited by CO, metyrapone, and SKF 525-A. In in vivo study, two male Holtzman rats (300 g) were each given 0.1 mL (0.07 mmol) of cyclohexene, followed by 1 mL of water, by stomach tube. Urine was collected at room temperature for 24 hr, after which it was filtered. To 5 mL samples of filtered urine were added 0.8 mL of 1 M acetate buffer, pH 5.0, and 2.5 mL of a preparation containing 2500 Fisherman units of beta-glucuronidase. After incubation overnight at 37 • C, the mixtures were extracted with ether and assayed by gas chromatography. One week later, control 24-hr urine samples from the same rats were collected. Part of the urine was allowed to stand at room temperature for an additional 18 hr, and another, 5-mL aliquot, to which 1 mg of 2-cyclohexen-1-ol had been added, was incubated for 18 hr at 37 • C. Ether extracts of the samples were then examined by gas chromatography. The urine of the two rats contained no detectable material hydrolyzable to 2-cyclohexen-1-ol by beta-glucuronidase. These rats, however, excreted 636 and 750 nmol of 2-cyclohexen-1-one in 24 hr.
Source	:	Chromatography of extracts of control urine revealed no peak corresponding in retention time to this ketone, and allowing control urine mixed with 2-cyclohexen-1-ol to stand at room temperature for 18 hr did not result in any formation of ketone. The presence of the ketone and absence of the alcohol was therefore probably not an artifact caused by the oxidation of one to the other in the voided urine. Although only 0.1 % of the oral dose of cyclohexene was excreted as the ketone, it is not known how much of the dose was absorbed nor how much was excreted by the pulmonary route. Research Institute for Animal Science in Biochemistry and Toxicology
00.07.0000		Sagamihara Kanagawa
26.07.2002		(14)
Type Remark	::	Toxicokinetics Male F344/N rats (200-300 g, 8-12 weeks old) were exposed nose-only to the gaseous cyclohexene at 600 ppm (2,015 mg/m3) or cyclohexene oxide at 30 ppm (120 mg/m3). Blood samples were collected at various times during the 60-minute exposure. For hepatic cytochrome p-450 analyses, tissue samples were taken after 20 or 360 minutes of exposure, or after 20 or 60 minutes of exposure for the epoxide. RESULT:
		During exposure of rats to 600 ppm cyclohexene, blood concentrations of cyclohexene oxide were below detection limits. During this exposure, however, cyclohexene blood levels increased to 2 ug/g blood. When rats were exposed to 30 ppm cyclohexene oxide, blood concentrations of the epoxide increased during the first 25 minute of exposure and then leveled off at up to 20 ug/g blood. No significant effect was observed on the p-450 concentration.
Source	:	Research Institute for Animal Science in Biochemistry and Toxicology
23.07.2002		(15)
Type Remark	::	Metabolism The oxidation of cyclohexene was studied in vitro using hepatic microsomes isolated from male Newzealand white rabbits (1.3-2.0 kg bw) pretreated for 3 days with sodium-phenobarbital, 15 mg/kg/day i.p Microsomes were incubated with 20 mM cyclohexene for up to 20 minutes. The reaction mixtures were analyzed by gas chromatography and thin layer chromatography.
		RESULTS: Peaks were observed corresponding in retention time to those given by authentic samples of cyclohexene oxide (about 1.3 minutes);

OECD SIDS	CYCLOHEXENE
5. TOXICITY	ID: 110-83-8 DATE: 08.01.03
	 there were in areas which were devoid of peaks in chromatograms of blank experiments in which cyclohexene was added at the end of the incubation, immediately before extraction. Chromatograms of blank extracts to which cyclohexene oxide had been added were very similar to those of experimental extracts. As for the time course of appearance and disappearance of cyclohexene oxide, the amount recovered reached a maximum after about 10 minutes and then declined until the level was no longer detectable. No peaks with the retention times of cyclohexene oxide were observed when diols were injected in the gas chromatograph; under the conditions used, the retention times of trans-cyclohexanediol were 9.0 minutes. No peaks, or only very slight peaks, corresponding to cyclohexene oxide could be found in experiments in which the NADPH-generating system was absent. When isolated microsomes, free of cytosol, were used in place of 9000 x g supernatant fraction, and NADPH was added instead of NADP and glucose 6-phosphate, cyclohexene oxide products could be demonstrated by gas chromatography. As results of thin-layer chromatography of picrate derivatives of the oxidation products of cyclohexene oxide. Neither cyclohexene itself nor its glycol yielded any picrate derivative visible either with or without ammonia treatment, at concentrations over 100 times that which afforded detectable spot in case of the epoxide.
Source	 cyclohexene was studied in the presence of styrene oxide. The presence of a low concentration of styrene oxide allowed the recovery of about 3 times as much cyclohexene oxide as was recovered in its absence. Higher concentrations of styrene oxide, however, inhibited the cyclohexene-epoxidizing system. Research Institute for Animal Science in Biochemistry and Toxicology
17.07.0000	Sagamihara Kanagawa
17.07.2002	(12)
Type Remark	 Metabolism The conversion of cyclohexene to trans diols in liver microsomes was studied. Liver of male Holtzmann rats (100-150 g bw) or Newzealand White rabbits (1.5-2.5 kg bw) pretreated with phenobarbital (rats, 75 mg/kg/day; rabbits, 15 mg/kg/day) i.p. for 3 days were homogenized in 4 vol. of 0.1M tris buffer, pH 7.5. The supernatant fraction derived from centrifugation for 15 min. at 9000 g was used immediately, or was lyophilized and stored at - 15 degree C. Microsomes were prepared from, the 9000 g supernatant fraction by centrifugation at 105,00 g for 1 hr, followed by resuspension in tris buffer and recentrifugation. Cyclohexene were introduced as 10 per cent solutions in absolute ethanol (0.2 mL). Incubation time was 1 hr at 37 degree C, and30 min. in those described in Table 1. The oxidation products were identified by gas or thin-layer chromatography.
	Table 1 Cyclohexene oxidation in rabbit liver preparations
	Preparation Nucleotide Diol produced\$
	9000 g SupernatantNADPH3.23fraction(freshly prepared)9000 g SupernatantNADP+G6P3.14fraction(freshly prepared9000 g Supernatant1.42fraction(lyophilized)NADP+G6P1.42MicrosomesNADPH1.19MicrosomesNADH0.41MicrosomesNADP0.04

Microsomes

Note:

Concentration when used: NADH or NADPH, 0.3 mM; ADP, 0.06 mM; G6p, 5 mM. \$: Amounts were estimated from gas chromatographic peak heights.

RESULTS:

		As gas chromatographic evidence for the production of trans-1,2- cyclohexanediol by oxidation of cyclohexene in reconstituted lyophilized 9000 g supernatant fraction of rat liver, a peak identical in retention time to that produced upon injection of a reference sample of trans-1,2- cyclohexanediol was found in the experimental chromatogram, in an area devoid of peaks in a corresponding chromatogram of an extract of a similar reaction mixture in which cyclohexene was not added until the end of the incubation, immediately preceding extraction. No peak was found corresponding in reaction time to cis-1,2-cyclohexanediol.Oxidation of cyclohexene to the trans-diol was also demonstrated in rabbit liver preparations. As shown in Table 1, the diol was formed in freshly prepared 9000 g supernatant fraction of rabbit liver as well as in the reconstituted lyophilized preparation produced from the same fraction. The lyophilized prepared supernatant fraction. Activity was also found in the microsomes prepared from the fresh supernatant fraction. About one-third of the activity was exhibited when NADH was substituted equimolarly for NADPH. Very little activity was found when NADP was substituted for NADPH or when no pyridine nucleotide was present. In no case was any peak corresponding to cis-1,2-cyclohexanediol found in gas chromatogram. Further evidence of the nature of the diol products of oxidation of the cyclohexene was afforded by thin-layer chromatography, in which one metabolite spot was found, corresponding in Rf value to the trans-1,2-cyclohexanediol. The product of cyclohexene oxidation was chromatographed both as the free diol and as its benzoyl ester. In no case did a spot appear with the Rf of a cis- cyclohexanediol.
Source	:	Research Institute for Animal Science in Biochemistry and Toxicology Sagamihara Kanagawa
23.07.2002		(13)
Type Remark	:	Cytotoxicity The effect of cyclohexene on oncogenic cell transformation with 3- methylcholanthrene in C3H 10T1/2 CL8 mouse embryofibroblast was examined. Cyclohexene enhanced cell transformation by inhibiting epoxide-hydratase activity, allowing increased concentrations of arene oxides to accumulate in cells
Source	:	Research Institute for Animal Science in Biochemistry and Toxicology
24.07.2002		(24)
Туре	:	other:Eye irritation of photo-oxidizing cyclohexene-nitrogen oxide mixture in
Remark	:	The broad objective of this research was to investigate the existence of such a synergistic effect on eye irritation, using aerosols produced by the addition of trace amount of sulfur dioxide to photo-oxidizing cyclohexene- nitrogen oxide mixtures in air. Subjects, who were males between the ages of 21 and 31, underwent one 5 minute eye exposure at chamber ports and then subjectively evaluated eye irritant effects on a scale from 0(no irritation) to 3(very severe irritation) and the time to initial eye irritation. Subjects were exposed to photo-oxidizing cyclohexene-nitrogen oxide mixture (cyclohexene at 0.05 ppm and nitrogen dioxide at 0.18 to 0.19 ppm with or without sulfur-dioxide at

OECD SIDS	CYCLOHEXENE
5. TOXICITY	ID: 110-83-8
	DATE: 08.01.03
	0.05 ppm) (measured concentration before irradiation: cyclohexene: 1.0 ppm, nitrogen dioxide: 0.44 ppm, sulfur-dioxide: 0.05 ppm).
Source	 The effect of adding sulfur dioxide to photo-oxidizing mixtures on eye irritation was found to be barely significant. The trace concentration of cyclohexene could produce significant amounts of eye irritants other than formaldehyde, which is a major irritant obtained from most of the olefins. Research Institute for Animal Science in Biochemistry and Toxicology Sagamibara Kanagawa
12.07.2002	(9)
Type Remark	 other:Inhibition of tumour induction In the previous study carried out by the author (Berenblum 1929), it was shown that the induction of warts in mice by the repeated application of tar could be almost completely prevented by the addition to the tar of 0.1 percent. mustard gas. The same effect was obtained when the tar and a 0.1 percent. mustard gas in acetone were applied separately to the same area of skin at alternate intervals of 3 and 4 days. It was therefore suggested that the inhibition was due to some direct effect of the mustard gas on the animal, preventing the latter from responding to the carcinogenic tar, and not to an inactivation of the tar itself. Cyclohexene, which is not chemically related to the mustard gas but is known to be a skin irritant, was dissolved at 50 percent. concentration in dry acetone freshly before application, thereby avoiding any risk of decomposition. The tar was applied to a small area of skin in the region of the shoulder blades; the acetone solution including the test substance was applied by touching the skin with the end of a thick-walled capillary tube containing a small quantity of the appropriate solution. The survival rate and the time of appearance of warts were determined for 19 weeks. In control group using 50 mice, acetone was applied in place of the solution of the test substance. Preliminary tests were undertaken on small groups of mice to determine the degree of irritation produced by the test substance in different concentration. Each dilution was applied 3 times at weekly intervals to the skin of 4 mice, and a week after the last application the skins were examined both macroscopically and microscopically. In the group treated with tar and 50 percent. cyclohexene, a slight but definite inhibition was obtained followed by 7th degree of irritant action. There was a tendency for some of the established warts to disappear.
	Group: Control 50 percent. cyclohexene No. of animals 50 50 Survivors after 15 weeks 45 40 Total number of animals with warts after 15 weeks 18 11 Time taken for 50 percent. of survivors to develop tumors 16 weeks >19 weeks Inhibition of tumor induction - ++* Irritant action - 7**
Source	 Note: *: A delay of 4-6 weeks in reaching the 50 percent. level can be accepted as definite evidence of inhibition. **: Marked thickening of the skin with loss of hair but little or no evidence of ulceration. : Research Institute for Animal Science in Biochemistry and Toxicology

OECD SIDS	D SIDS CYCLOHEX	
5. TOXICITY	ID: 110-83-8	
	DATE: 08.01.03	
	Sagamihara Kanagawa	
12.07.2002	(1)	
Туре	: other:Ovarian Toxicity	
Remark	Twenty-eight day old female B6C3F1 mice were administered cyclohexene 7.5mmol/kgbw ip daily for 30 days. Following day 30, mice were killed by CO2 inhalation on the first day of diestrus of their cycle. Ovaries were removed, weighed, fixed in Bouin's solution for 24 hours, and transferred to 70 % ethanol. Serial sections were prepared and stained with hematoxylin and eosin. Oocytes contained in small and growing pre-antral follicles were counted microscopically. No alteration of small ovarian follicle counts occurred following treatment with cyclohexene that contain only a single unsaturated site. Cyclohexene, which is converted to monoepoxides both in vitro and in vivo, was not ovotoxic in mice Purity: 95-99%	
Source	: Research Institute for Animal Science in Biochemistry and Toxicology	
12.07.2002	(8)	

5.11 EXPERIENCE WITH HUMAN EXPOSURE

OECD SIDS	CYCLOHEXENE
6. REFERENCES	ID: 110-83-8
	DATE: 08.01.03

(1)	Berenbium I (1935) Journal of Pathology and Bacteriology, 40, 549-558.
-----	--

- (2) Bringmann, G., and R. Kuhn; Determination of the biological efect of water pollutants in protoza. II Bacteriovorous ciliates., Z.Wasser-Abwasser-Forsch. 13(1):26-31; (1980)
- Bringmann, G., and R. Kuhn; Results of toxic action of water pollutants on Daphnia magna Straus tested by an improved standardized procedure., Z.Wasser-Abwasser-Forsch. 15(1):1-6; (1982)
- (4) Bringmann, G., R. Kuhn, and A. Winter; Determination of biological effect of the water pollutants in protozoa. III. Saprozoic flagellates., Z.Wasser-Abwasser-Forsch. 13(5):170-173, (1980)
- (5) Canton, J. H. and Wegman, R. C. C.; Studies on the toxicityof Tribromoethene, Cyclohexene and Bromocyclohexane todifferent freshwater organisms., Water Res.;17: 743-747;(1983)
- (6) Canton, J. H. and Wegman, R. C. C.; Studies on the toxicity of Tribromoethene, Cyclohexene and Bromocyclohexane to different freshwater organisms., Water Res.;17: 743-747; (1983)
- (7) DAUBERT, TE & DANNER, RP(1989)
- (8) Doerr JK, et al. (1995) Chemical Research in Toxicology, 8(7), 963-969.
- (9) Doyle,GJ, et al.(1961) Archives of Environmental Health, 3(6), 657-667.
- (10) Gigiena Truda (1985) Labor Hygiene and Occupational Diseases, 29(12), 53.
- (11) Laham S (1976) Toxicology and Applied Pharmacology, 37(1), 155-156.
- (12) Leibman KC and Ortiz E (1970) Jourmnal of Pharmacology and Experimental Therapeutics, 173(2), 242-246.
- (13) Leibman KC and Ortiz E (1971) Biochmical Pharmacology, 20(1), 232-236.
- (14) Leibman KC and Ortiz E (1978) Drug Metab. Dispos., 6, 375-378.
- (15) Maples KR and Dahl AR (1993) Inhalation Toxicology, 5, 43-54.
- (16) METI Report on Hazard data collection for HPV chemicals (2001).
- (17) METI Report on Hazard data collection for HVP chemicals (2001).
- (18) MHLW (Ministry of Health, Labour and Welfare), Japan (2002) Toxicity Testing Reports of Environmental Chemicals, 9, 233-234.
- (19) MHLW (Ministry of Health, Labour and Welfare), Japan (2002) Toxicity Testing Reports of Environmental Chemicals, 9, 235-243.
- (20) MHLW (Ministry of Health, Labour and Welfare), Japan (2002) Toxicity Testing Reports of Environmental Chemicals, 9, 251-254.
- (21) MHLW (Ministry of Health, Labour and Welfare), Japan (2002) Toxicity Testing Reports of Environmental Chemicals, 9, 255-259.
- (22) MOE, Japan (2000) Ministry of the Environment, unpublisheddata.
- (23) MOE, Japan (2000) Ministry of the Environment, unpublished data.

OECD SID	DS	CYCLOHEXENE
6. REFERENCES		ID: 110-83-8
		DATE: 08.01.03
(24)	Nesnow S. et al. (1985) Carcinogenesis, 10, 225-234.	
(25)	NTIS (National Technical Information Service): OTS054026	
(26)	NTIS (National Technical Information Service): OTS0546026	
(27)	NTIS (National Technical Information Service): OTS0555329	
(28)	NTIS (National Technical Information Service): OTS0556686	
(29)	The Merk Index (12th edition).	
(30)		