FOREWORD

INTRODUCTION

2,4-Diamino-6-phenyl-1,3,5-triazine

CAS N°: 91-76-9

SIDS Initial Assessment Report

For

SIAM 13

Bern, Switzerland, 6-9 November 2001

1.	Chemical Name:	2,4-Diamino-6-phenyl-1,3,5-triazine
2.	CAS Number:	91-76-9
3.	Sponsor Country:	Japan National SIDS Contact Points in Sponsor Country: Mr. Yasuhisa Kawamura, Ministry of Foreign Affairs
4.	Shared Partnership with:	
5.	Roles/Responsibilities of the Partners:	
•	Name of industry sponsor /consortium	ICCA Initiative work lead by NIPPON SHOKUBAI CO.,LTD., Japan
•	Process used	
6.	Sponsorship History	
•	How was the chemical or category brought into the OECD HPV Chemicals Programme ?	
7.	Review Process Prior to the SIAM:	
8.	Quality check process:	
9.	Date of Submission:	
10	. Date of last Update:	
11	. Comments:	History: The original IUCLID documents were prepared by European Commission. NIPPON SHOKUBAI CO.,LTD., Japan reviewed the Documents after incorporation of Japanese testing results. Testing: No testing (x) Testing ()

SIDS INITIAL ASSESSMENT PROFILE

CAS No.	91-76-9	
Chemical Name	2,4-diamino-6-phenyl-1,3,5-triazine	
Structural Formula	NH2 N N NH2	
RECOMMENDATIONS The chemical is currently of low priority for further work.		

SUMMARY CONCLUSIONS OF THE SIAR

Human Health

There is no available information on toxicokinetics and metabolism of this substance. The oral LD_{50} of rats was 933 mg/kg for males and 1231 mg/kg for females [OECD TG 401]. The major toxicity was edema in the forestomach. The LC_{50} value in the acute inhalation toxicity was 2.932 mg/L (4 hr, rat) [OECD TG 403]. This substance was not irritating to the skin in rabbits [OECD TG 404] and mildly irritating to the eyes in rabbits. There is no information on skin sensitization.

In the OECD combined repeat dose and reproductive/developmental toxicity screening test by gavage [OECD TG 422], this substance was given at 0, 4, 20 and 100 mg/kg/day to rats for at least 39 days. One male and one female rat died and the body weight gain was decreased in the 100 mg/kg group. Hematological and blood chemical examination showed decreases in the erythrocyte counts and hematocrit values with increased reticulocyte counts, and increases of GOT, GPT and total bilirubin with centrilobular hypertrophy of hepatocyte in the 100 mg/kg group. The severity of these changes, however, were toxicologically not significant or adaptive changes, except for the increase in reticulocyte count whose significance was equivocal. The NOAEL in this study was considered as 20 mg/kg/day.

In the 90-day feeding study of rats at 0, 1.9, 19.0, and 173.0 mg/kg/day [OECD TG 408], the body weight gain was decreased in the high dose group. In the histopathological examination, centrilobular hepatocyte enlargement, an increased severity of extramedullary hemopoiesis in the spleen and hemosiderin pigment accumulation in the kidneys and the spleen, hypertrophy and vacuolation of adrenal zona glomerulosa cells, and degeneration of pancreatic exocrine cells together with associated inflammatory cell infiltrates were observed in the high dose group. At the mid dose, the severity of hemosiderin pigment accumulation in the spleen was also increased moderately in males. This change in the spleen was considered not to be an adverse effect because no other changes were observed at this dose level. Therefore, the NOAEL in this study was considered to be 19 mg/kg/day.

On basis of these two studies, the NOAEL for repeated dose toxicity was considered to be 20 mg/kg/day.

For genotoxicity of this substance, there were two Ames tests, three non-bacterial *in vitro* studies, and two genotoxic *in vivo* studies reported. This substance was not mutagenic in bacteria [OECD TG 471 & 472]. It induced chromosomal aberration in CHL/IU cells with and without an exogenous metabolic activation system even under the soluble concentrations. It also gave a positive response in the human lymphocyte test [OECD TG 473] and the mouse lymphoma TK assay [OECD TG 476] but only under the insoluble dose levels. The cytogenetic effect observed in *in vitro* assays however, could not be reproduced in the micronucleus tests *in vivo* [OECD TG 474]. Based on the weight of evidence, it could be concluded that this substance was not genotoxic *in vivo*.

For carcinogenicity, two dietary studies using male rats and male/female mice for 18 months showed no tumorigenic activity of this substance. However, these studies were considered to be insufficient for assessment of the carcinogenicity because of insufficient testing protocol compared to current test guidelines.

In the OECD combined repeat dose and reproductive/developmental (one generation) toxicity screening test [OECD TG 422], this substance was given for 49 days from 14 days before mating in males and from 14 days before mating to day 3 of lactation in females. At 100 mg/kg, one female died in gestation and another female was not impregnated. Birth index was decreased with increase in stillborns at 100 mg/kg. All pups of two dams at 20 mg/kg and seven dams at 100 mg/kg died due to the lack of nursing activity, and the viability index on day 4 after birth was consequently decreased in these groups. The body weights of pups were also decreased at birth and at day 4 of lactation in the 100 mg/kg group. The decrease of litter size observed at 100 mg/kg seems to be the chemical-induced effect although it is not statistically significant. No malformations or variations were observed in the pups.

From these results, the parental NOAEL of reproductive toxicity was considered to be 100 mg/kg/day for males, and 4 mg/kg/day for females, based on the lack of nursing activity, and the NOAEL of developmental toxicity was considered to be 20 mg/kg/day, based on the decrease of birth index and body weight of pups.

Environment

This substance (2,4-diamino-6-phenyl-1,3,5-triazine) is slightly soluble in water (320 mg/L at 25°C). The vapour pressure of this substance is estimated as very low ($1.6x10^{-5}$ Pa at 25°C). This substance would be released into the aquatic environment from waste water, and distributed almost entirely in the water compartment from the calculation using the fugacity model [Mackey level III]. Although this substance is stable in water biotically and abiotically, this substance has a low potential of bioaccumulation based on BCF = 6.4, estimated from log Pow = 1.38.

In acute toxicity to aquatic species, the toxicity to algae [OECD TG 201] was 53.7 mg/L for EC50 (72 hr, *Selenastrum capricornutum*, biomass) and the toxicity to daphnids [OECD TG 202] was 52.0 mg/L for EC50 (48 hr, *Daphnia magna*, immobility). The toxicity to fish [other method] was 99 mg/L for LC₅₀ (48 hr, *Leuciscus idus* (L.)).

In chronic toxicity to aquatic species, the toxicity to daphnids [OECD TG 211] was 1.91 mg/L for NOEC (21 day, *Daphnia magna*, reproduction). The toxicity to algae [OECD TG 201] was 24.4 mg/L for NOEC (72 hr, *Selenastrum capricornutum*, biomass).

PNEC = 0.0191 mg/L for the aquatic organisms was calculated from the 21 day – NOEC (1.91 mg/L) for *Daphnia* magna using an assessment factor of 100, because two chronic data (*Daphnia magna* and alga) were available.

Exposure

Production volume of this substance (2,4-diamino-6-phenyl-1,3,5-triazine or benzoguanamine) is estimated 3,000 t/y in Japan and 5,000 t/y world-wide in 2000. The producing countries are Japan, Germany and the People's Republic of China. This substance can be produced in closed systems. The main use is as an intermediate in benzoguanamine-formaldehyde resins whose applications are coatings, paints, thermosetting resins and others. In the case of coatings, the resins are used as outside and/or inside coatings of cans for storing foods and beverages.

The fugacity model suggests that if released from air or soil, the majority of this substance would distribute into the water and soil. It would not distribute into the air and soil from water. From the uses and properties of this substance, estimated exposures are considered in the following three scenarios. The effects are as follows:

(1) Occupational exposure scenario: inhalation of dust without breathing protection in the factory; Dust level was 0.25 mg/m^3 by measurement at the packing workplace; EHEinh = 0.027 mg/kg/day and EHEder = 1.7 mg/kg/day (estimate).

In Japan, this substance has been manufactured since 1964, and no persons handling or contacting this substance have experienced any adverse symptoms regarding skin or respiratory organs.

(2) Environmental exposure scenario: emission to aquatic compartment from waste water; PEClocal water = 0.0176 mg/L (calculation).

(3) Consumer use exposure scenario: intake through migration from can coating of benzoguanamine-formaldehyde resins for storing foods and beverages;

EHE for consumer use was calculated as 0.076 mg/kg/day at the worst scenario based on the migration tests.

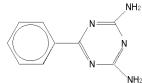
NATURE OF FURTHER WORK RECOMMENDED

No recommendation.

CAS N	O: 91-76-9	SPECIES	PROTOCOL	RESULTS
PHYS	ICAL-CHEMICAL			
2.1	Melting Point		Unknown	228 °C
2.2	Boiling Point		OECD TG 103	> 350 °C (at 1,013 hPa)
2.3	Density		Unknown	1.425 g/cm ³ (at 15 °C)
2.4	Vapour Pressure		OECD TG 104	$<4.1 \times 10^{-5}$ Pa (at 100 °C) 1.6 x 10 ⁻⁵ Pa (at 25 °C) estimate
2.5	Partition Coefficient		OECD TG 107	Log Pow = 1.38 (at 25 °C)
2.6 A.	Water Solubility		OECD TG 105	320 mg/L (at 25 °C)
B.	рН		Unknown	6.5 (at 20°C, 300 mg/L)
	рКа		OECD TG 112	3.91 (at 25 °C)
2.12	Henry's Law constant		Unknown	4.1×10^{-11} atm-m ³ /mol
				(at 25 °C) estimate
	CONMENTAL AND PATHWAY			
3.1.1	Photodegradation		Unknown	$\mathbf{t}_{1/2} = 4.4$ day in air (calculation)
3.1.2	Stability in Water		OECD TG 111	Stable ($t_{1/2}$ > 5 day at 50 °C, pH 4, 7 and 9)
3.2	Monitoring Data			No data
3.3	Transport and Distribution		Fugacity Model (Mackay level III)	Distribution to the compartment (estimate) Release 100%; to air to water to soil air 0.0% 0.0% 0.0% water 29.3% 99.5% 24.9% soil 70.5% 0.0% 75.0% sediment 0.2% 0.5% 0.1%
			PEClocal.water	PEClocal.water = 0.0176 mg/L
3.5	Biodegradation		OECD TG 301C	Not readily biodegradable (2% based on BOD)
3.7	Bioaccumulation			BCF = 6.4 (calculation)
ECOT	OXICOLOGY			
4.1	Acute/Prolonged toxicity to Fish	Oryzias latipes	OECD TG 203	LC ₅₀ (96 hr) > 100 mg/L
		Leuciscus idus (L.)	DIN38412 part 15	$LC_0 (48 \text{ hr}) = 56 \text{ mg/L}$ $LC_{50} (48 \text{ hr}) = 99 \text{ mg/L}$ $LC_{100} (48 \text{ hr}) = 180 \text{ mg/L}$
4.2	Acute Toxicity to aquatic Invertebrates	Daphnia magna	OECD TG 202	EC50 (24 hr) = 112 mg/L EC50 (48 hr) = 52 mg/L
4.3	Toxicity to Aquatic Plants e.g. Algae	Scenedesmus subspicatus	Unknown	EC50 (72 hr) = 22 mg/L
		Selenastrum capricornutu m	OECD TG 201	EC50 (72 hr) = 53.7 mg/L NOEC (72 hr) =24.4 mg/L
4.5.2	Chronic Toxicity to aquatic Invertebrates	Daphnia magna	OECD TG 211	EC50 (21 day, reproduction) = 5.91 mg/L NOEC (21 day, reproduction) = 1.91 mg/L LOEC (21day, reproduction) = 3.43 mg/L

FULL SIDS SUMMARY

CAS N	NO: 91-76-9	SPECIES	PROTOCOL	RESULTS
4.6.1	Toxicity to Soil Dwelling Organisms			No data
4.6.2	Toxicity to Terrestrial			No data
4.6.3	Plants			No data
TOXI	COLOGY			
5.1.1	Acute Oral Toxicity	Rat	Unknown	$LD_{50} = 1,050 \text{ mg/kg}$
0.1.1	ficule of all forhery	Rat	OECD TG 401	$LD_{50} = 933 \text{ mg/kg} \text{ (male)}$
				$LD_{50} = 1,231 \text{ mg/kg} \text{ (female)}$
		Rat	Other	$LD_{50} = 1,470 \text{ mg/kg}$
5.1.2	Acute Inhalation Toxicity	Rat	OECD TG 403	LC_{50} (4 hr) = 2.932 mg/L
5.1.3	Acute Dermal Toxicity			No data
5.2.1	Skin Irritation	Albino rabbit	OECD TG 404	Not irritating, Primary irritating index $= 0$
5.2.2	Eye Irritation	Albino rabbit	Directive 84/ 449/EEC, B.5	Mildly irritating, Draize score = 4 (1 hr)
5.3	Skin Sensitization			No data
5.4	Repeated Dose Toxicity	Rat male 49 day Female 39-53 day	OECD TG 422 (gavage)	NOAEL = 20 mg/kg/day
		Rat 90 day	OECD TG 408 (dietary)	NOAEL = 19 mg/kg/day
5.5	Genotoxicity in vitro			
A.	Bacterial Test (Gene mutation)	S. typhimurium, E. coli	Japanese TG and OECD TG 471 & 472	 (With metabolic activation) (Without metabolic activation)
		S. typhimurium	OECD TG 471	 (With metabolic activation) (Without metabolic activation)
B.	Non-Bacterial invitro Test (Chromosomal aberrations)	CHL cells	Japanese TG and OECD TG 473	+ (With metabolic activation)+ (Without metabolic activation)
		Human lymphocyte	OECD TG 473	 (Without metabolic activation, within the solubility limit) + (Without metabolic activation, above the solubility limit)
	Test (Mammalian cell gene mutation)	Mouse lymphoma cells L5178Y	OECD TG 476	 (With metabolic activation, within the solubility limit) + (With metabolic activation, above the solubility limit) - (Without metabolic activation)
5.6	Genetoxicity <i>invivo</i> (Micronucleus assay)	Mouse	Directive 92/69/ EEC, B.12	Inconclusive
		Mouse	OECD TG 474	Negative
5.7	Carcinogenicity	Male rat (18 month)	Other	No tumorigenicity
		Mouse (18 month)	Other	No tumorigenicity


CAS N	O: 91-76-9	SPECIES	PROTOCOL	RESULTS
5.8	Toxicity to Reproduction	Rat	OECD TG 422	NOAEL Parental = 100 mg/kg/day (male) NOAEL Parental = 4 mg/kg/day (female)
5.9	Developmental Toxicity/ Teratogenicity	Rat	OECD TG 422	NOAEL F_1 offspring = 20 mg/kg/day No external anomalies of pups
5.11	Experience with Human Exposure			No data

SIDS Initial Assessment Report

1 IDENTITY

1.1 Identification of the Substance

CAS Number:	91-76-9
IUPAC Name:	2,4-Diamino-6-phenyl-1,3,5-triazine
Molecular Formula:	C ₉ H ₉ N ₅
Structural Formula:	

Synonyms:

(Chemical Names) 1,3,5-Triazine-2,4-diamine, 6-phenyl- (9CI) 2,4-Diamino-6-phenyl-1,3,5-triazine 2,4-Diamino-6-phenyl-s-triazine 2-Phenyl-4,6-diamino-1,3,5-triazine 4,6-Diamino-2-phenyl-s-triazine 6-Phenyl-1,3,5-triazine-2,4-diamine Benzoguanamine s-Triazine, 2,4-diamino-6-phenyl-

(Trade Names) ENT 60118 USAF RH-5

1.2 Purity/Impurities/Additives

Purity:	\geq 98% weight/weight		
Impurities:	Melamine	max. 2%	
	Dicyandiamide	max. 0.1%	
	Benzamide	ca. 0.01%	
Additives:	None		

1.3 Physico-Chemical properties

Property	Protocol	Results
Melting Point	Unknown	228 °C
Boiling Point	OECD TG 103	> 350 °C (at 1,013 hPa)
Density	Unknown	1.425 g/m ³ (15 °C)
Vapor Pressure	OECD TG 104 Unknown	< 4.1 x 10 ⁻⁵ Pa (at 100 °C) 1.6 x 10 ⁻⁵ Pa (at 25 °C) (estimate)
Henry's Law constant	Unknown	4.1x10 ⁻¹¹ atm-m ³ /mol (at 25 °C) (estimate)
Partition Coefficient (Log Pow)	OECD TG 107 (Flask shaking method)	1.38 (at 25 °C)
Water Solubility	OECD TG 105	320 mg/L (at 25 °C)
рН	Unknown	6.5 (at 20 °C, 300 mg/L)
рКа	OECD TG 112	3.91 (at 25 °C)

Table 1: Summary of physico-chemical properties

2 GENERAL INFORMATION ON EXPOSURE

Regarding the physical and chemical properties, this substance (2,4-diamino-6-phenyl-1,3,5-triazine or benzoguanamine) has a powder appearance and is slightly soluble in water. This substance is not readily biodegraded and stable in water. Its vapor pressure is very low.

The production volume of this substance is estimated to be 3,000 t/y in Japan and 5,000 t/y worldwide in 2000. The producing countries are Japan, Germany and the People's Republic of China. This substance can be produced in closed systems.

The main use is as an intermediate as benzoguanamine-formaldehyde resins whose applications are coatings, paints, varnishes, printing inks and thermosetting resins. In the case of coatings, the resins are used as outside and/or inside coatings of cans for storing foods and beverages which is the major existing usage.

In the case of thermosetting resins, this substance is a monomeric intermediate in order to produce several amino resins whose fine sphere particles can support dyes or pigments on this particle's surface. This method can be expected to reduce the usage volume of the colouring dyes and pigments. These amino resins are useful for plastics admixtures and LCD spacers. Migration test results based on THE FOOD SANITATION LAW in Japan show that these resins including coloured resins are in line with this law's requirement.

Pharmaceutical, herbicide and colouring agent usage volume are not identified in both Japan and Germany, however there were several patents showing medical actions such as antiulcer agent [USP 3629467] or stomatititis [JP H4-295427] by using this substance or its derivatives.

The exposures of the substance were mainly relevant to three scenarios as following.

- (1) Occupational exposure: inhalation and dermal route by dusts in the factory
- (2) Environmental exposure: emission to the aquatic environment from waste water

(3) Consumer use exposure: intake through migration from can coating of benzoguanamineformaldehyde resins for storing foods and beverages

2.1 Environmental Exposure and Fate

A generic fugacity model (Mackay level III) suggests that if released to air or soil, the majority of this substance would distribute into soil and/or water. It would not distribute into the air and soil if released to water. These data are shown in Table 2 below.

Table 2:	Environmental distribution using the fugacity model (Mackay level III) for three emission
	scenarios

Compartment	Release: 100% to air	Release: 100% to water	Release: 100% to soil
Air	0.0%	0.0%	0.0%
Water	29.3%	99.5%	24.9%
Soil	70.5%	0.0%	75.0%
Sediment	0.2%	0.5%	0.1%

This substance would be released into the aquatic environment from waste water, and remain almost entirely in the water compartment based on the above calculation results.

This substance is not readily biodegraded (OECD TG 301C: 2% based on BOD and 0% based on HPLC analysis during 28 days) and stable in water [OECD TG 111]. The BCF = 6.4 estimated from log Pow = 1.38 suggests that the potential for bioaccumlation in aquatic organisms is low [HSDB 2000].

Some of this substance might be released from the production facility through the waste water. Based on data from Japan, a PEC (Predicted Environment Concentration) in the local surface water is calculated as 0.0176 mg/L (see Appendix 1).

If released into soil, this substance is expected to have high mobility in soil based upon an estimated Koc of 130. It is not expected to volatilise from moist and dry soil surfaces based upon an estimated Henry's Law constant of 4.1×10^{-11} atm-m³ /mol and this substance's vapor pressure, respectively [HSDB 2000].

If released into air, this substance (in its vapour phase) will be degraded in the atmosphere by reaction with photochemically produced hydroxyl-radical; the half time for this degradation reaction in air is estimated to be 4.4 days [HSDB 2000].

2.2 Human Exposure

2.2.1 Occupational Exposure

Occupational exposure to this substance's dust may occur by the inhalation and dermal route. This substance has a powder appearance and has an extremely low estimated vapour pressure $(1.6 \times 10^{-5} \text{ Pa})$, so that the vapour exposure is practically negligible.

The atmospheric concentration was measured at the Japanese production site in 1996. The monitored data is shown in Table 3.

Industrial activity	Sampling area	Operating conditions	Monitoring	Source
(country)	(equipment)	(work time)	data	
Manufacturing of this substance (Japan)	Packing workplace	The packing equipment was operated automatically for paper bags and semi- automatically for container bags. (6 hr /person/day)	0.25 mg/m ³ as respirable dust (smaller than 7.07 um)	Nippon Shokubai (1996), unpublished report

 Table 3:
 Workplace monitoring data for 2,4-diamino-6-phenyl-1,3,5-triazine

(Monitoring method)

Air sample was suctioned at the breathing zone (1.0 m in height) of the worker at a suction rate of 500 L/min for 5 or 10 min and was passed through a filter after an impactor. The substance collected on the filter was weighted with the filter.

The process is a closed batch system, both in Japan and Germany, the dust level can therefore be measured only at the packing workplace.

This dust level was 0.25 mg/m^3 as respirable dust (smaller than 7.07 um) at the packing workplace. When the sampling of dust is implemented without an impactor, the monitoring data might be higher than this measured level.

The EHE (Estimated Human Exposure) for inhalation is calculated as follows, using the measured dust level at the packing workplace, worker's body weight = 70 kg, respiratory volume = $1.25 \text{ m}^3/\text{hr}$, and exposure period = 6 hr/day;

EHEinh = $0.25 \text{ mg/m}^3 \text{ x } 1.25 \text{ m}^3/\text{hr x } 6 \text{ hr/day} / 70 \text{ kg} = 0.027 \text{ mg/kg/day}$

The EHE for dermal exposure by means of the EASE model is estimated as follows using worker's body weight = 70 kg, open face area is 1180 cm^2 , and an exposure of 0 - 0.1 mg/cm²/day;

EHEder = $0.1 \text{ mg/cm}^2/\text{day x } 1180 \text{ cm}^2/70 \text{ kg} = 1.7 \text{ mg/kg/day}$

Normally, workers wear protective clothing, gloves and breathing protection during the packing work. Hence, the EHEs are considered to be substantially lower than the calculated value.

In Japan, this substance has been manufactured since 1964, and no persons handling or contacting this substance have experienced any adverse symptoms regarding skin or respiratory organs.

Dust levels and EHEs at processing operations/formulators are estimated to be lower that at the packing place due to a lower number of operations.

2.2.2 Consumer Exposure

As for consumer products, this substance is used as chemical intermediate for amino resins including coloured amino resins such as benzoguanamine-formaldehyde resins, which is used as crosslinking agent in can coatings intended to come into contact with foods and beverages. After polimerisation into resins, release of this substance is low. The maximum migration of this substance is 0.53 mg/dm^2 and the EHE for consumers was calculated to be 0.076 mg/kg/day at the worst scenario based on migration tests (see Appendix 2).

3 HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

3.1.1 Toxicokinetics, Metabolism and Distribution

There is no available information on toxicokinetics and metabolism of this substance.

3.1.2 Acute Toxicity

There is no available information on humans. Available studies are shown in Table 4.

Table 4:	Acute toxicity of 2,4-diamino-6-phenyl-1,3,5-triazine in experimental anima	ls
----------	---	----

Route	Animals	Values	Туре	References
Oral				
	Rat	933 mg/kg for male 1231 mg/kg for female	LD ₅₀	MHW, Japan (1999c)
	Rat	1050 mg/kg	LD ₅₀	Usden (1972)
	Rat	1470 mg/kg	LD ₅₀	TNO (1972)
	Bird	100 mg/kg	LD ₅₀	Schafer (1972)
Inhalation		•	•	
	Rat	2932 mg/L (4 hr)	LC ₅₀	Hazleton U.K. (1989)

Among several oral acute toxicity studies shown in Table 3, the oral rat study [MHW, Japan (1999c)] was identified as the best quality and the key study because it was well conducted and described in detail.

In this study, this substance was studied for oral toxicity in rats in a single dose toxicity test at doses of 0, 250, 500, 1000, and 2000 mg/kg for both sexes. Deaths occurred in both sexes from the 1000 and 2000 mg/kg groups. In the dead animals, thickening of the mucosa in the forestomach, atrophy and decoloration in the thymus, atrophy of the spleen, and retention of dark green urine in the urinary bladder were noted at necropsy. Histopathological examination showed edema of the submucosal tissue in the forestomach and atrophy in the thymus and spleen.

In the surviving animals, white spots of the mucosa in the forestomach were noted at necroscopy, and histopathological examination showed hyperplasia of squamous epithelial cells. These changes were consistent with corrosivity at the stomach.

As a result, the oral LD50 values were 933 mg/kg (male rat) and 1231 mg/kg (female rat). The major toxicity was edema in the forestomach.

As for the acute inhalation study with 5 male and 5 female rats exposed for 4 hr, the LC50 value was 2.932 mg/L.

Conclusion

The lowest LD_{50} value by oral exposure routes in rats was 933 mg/kg (male) and 1231 mg/kg (female). The major oral toxicity was edema in the forestomach. The LC_{50} value by inhalation exposure was 2.932 mg/L (4 hr, rat).

3.1.3 Irritation

Mildly irritating to eyes in rabbits [RCC-NOTOX (1988c)]. In this study, 94 mg of this substance was instilled in one eye of three albino rabbits. The estimated Draize score was 4 (1 hr).

No skin irritation in rabbits was reported [RCC-NOTOX (1988d)]. Based on the study, the calculated primary irritation index was 0.

3.1.4 Sensitisation

There is no available information on sensitization.

3.1.5 Repeated Dose Toxicity

There is no available information on human toxicity. Two oral rat studies are available on 2,4-diamino-6-phenyl-1,3,5-triazine.

(Oral gavage) The first study is an OECD combined repeat dose and reproductive/developmental toxicity screening test [MHW, Japan (1999d)]. This substance was administered to three groups, each 12 males and 12 females Sprague-Dawley (Crj: CD) rats at doses of 0 (vehicle: 0.5% CMC-Na solution), 4, 20, 100 mg/kg/day respectively. Males were dosed for 49 days and females were dosed from 14 days before mating, throughout pregnancy to day 3 of lactation in females.

One male and female rat died, and the body weight gain was decreased in the 100 mg/kg group. Histopathological examination of dead animals revealed cellular infiltration of neutrophils and granulation in the ileum, atrophy and hemorrhage in the thymus, necrosis of the zona fasciculata to zona reticularis in the adrenals, erosion in the glandular stomach, and edema in the lung and atrophy in the spleen.

Increases of reticulocyte counts and the A/G ratio were observed in the survived males of the100 mg/kg group, and histopathological examination revealed centrilobular hypertrophy of the hepatocytes in both sexes given 100 mg/kg. The severity of these changes, however, were toxicologically not significant or adaptive change, except increase in reticulocyte count whose significance was equivocal.

A suppression of body weight gain and a decrease of food consumption were observed in both sexes of the 20 mg/kg or more groups. As the gains of body weight at the 20 mg/kg were not less than 90% compared by the control group, the toxicological meaning was less profound.

The NOAEL for repeated dose toxicity by oral gavage was considered to be 20 mg/kg (rat, male 49 day, female 39-53 day, gavage).

(Oral dietary) The second study is a repeat dose oral toxicity 90-day test conducted by OECD TG 408 [SafePharm (1993)]. The substance was administered to three groups of 10 male and 10 female Sprague-Dawley (CD strain) rats at dietary concentrations of 0 (vehicle; basal laboratory diet), 25, 250 and 2000 ppm (equivalent to a mean achieved dosage of 0, 1.9, 19 and 173 mg/kg/day respectively).

There were no deaths during the study. At the high dose (173 mg/kg/day), hunched posture and pilo-erection were observed, and a substantially lower body weight gain and lower food consumption were observed compared to the control during the treatment in either sex.

Many changes such as clinical observations, hematology/blood chemistry and necropsy/histopathology were observed. In blood chemistry, in either sex, slight but statistically significant increases in plasma alanine aminotransferase and bilirubin were shown compared with

controls. Regarding organ weights, in females, a statistically significant increase in liver weight was shown, relative to body weight, compared with controls. In the histopathology, centrilobular hepatocyte enlargement, an increased severity of splenic extramedullary hemopoiesis, hypertrophy and vacuolation of adrenal zona glomerulosa cells, and degeneration of pancreatic exocrine cells together with associated inflammatory cell infiltrates were shown.

An increased severity and/or incidence of hemosiderin pigment accumulation was observed in both the kidneys and the spleen of either sex.

At the dose of 19 mg/kg/day, in the histopathology, the sole treatment-related change was confined to males and identified as an increase in the severity of hemosiderin pigment accumulation in the spleen. Because such changes were graded up to moderate changes other substantial hematopoietic spleen changes subsided, the change was considered unlikely to be indicative of any damage to the health of the animals because no other changes were observed at this dose level.

Based on the above results, the NOAEL for repeated dose toxicity by oral diet was considered to be 19 mg/kg/day (rat, 90 day, dietary).

Conclusion

On basis of these two studies, the NOAEL for repeated dose toxicity was considered to be 20 mg/kg/day.

3.1.6 Mutagenicity

There are two bacterial studies, three non-bacterial *in vitro* studies, and two genotoxic *in vivo* studies available with 2,4-diamino-6-phenyl-1,3,5-triazine. The summary of the results is shown in Table 5.

Genotoxicity	Species	Protocol	Dose	MA*	Result	Reference
Bacterial test						
Ames test	S. typh. (strains TA98, TA100, TA1535, TA1537)		Up to 5,000 ug/plate	+	Negative	MHW, Japan (1999a)
	E. coli WP2uvrA			-	Negative	
Ames test	S. typh. (strains TA98,		Up to 5000	+	Negative	Microtest Res.
	TA100, TA1535, TA1537, TA1538)		ug/plate	-	Negative	-(1988)
Non-bacterial	in vitro test					
Chromosomal aberration test	CHL/IU cells		Up to 5000 ug/ml	+	Positive	MHW, Japan (1999b)
abenation test				-	Positive	(19990)
	Human lymphocyte		Up to 1250 ug/ml	+	Negative	SafePharm (1994a)
				-	Negative within solubility	
				-	Positive above solubility	
Mammalian	Mouse lymphomacells (L5178Y)	OECD TG 476	Up to 1250 ug/ml	+	Negative within solubility	SafePharm
cell gene mutation				+	Positive above solubility	(1994b)
				-	Negative	
In vivo test						-
Micronucleus test	Mouse	92/69/EEC, B.12	Up to 500 mg/kg bw		Inconclusive	SafePharm (1996)
	Mouse		Up to 300 mg/kg bw		Negative	RCC (2000)

Table 5:	Summary of genotoxicity studies of 2,4-diamino-6-phenyl-1,3,5-triazine
----------	--

*MA: metabolic activation

Key studies on 2,4-diamino-6-phenyl-1,3,5-triazine are described below because they are well conducted and give detailed information.

In vitro Studies

Bacterial test

The study by MHW, Japan (1999a) was well conducted and according to Japanese Guideline for Screening Mutagenicity Testing of Chemicals, and OECD TG 471 & 472. All results were negative in *Salmonella typhimurium* TA98, TA100, TA1535, TA1537, *Escherichia coli*. WP2 uvrA with and without an exogenous metabolic activation system.

Non-bacterial in vitro test

In the chromosomal aberration test with CHL cells [MHW, Japan (1999b)], this substance induced structural chromosomal aberrations under the 48 hr continuous treatment (0.2, 0.4 and 0.8 mg/ml, 11.0, 35.5 and 29.1%) and with a short-term treatment with an S9 mix (0.0781 mg/ml, 41.5%).

There were many metaphases that showed c-mitosis at the dose of 0.8 mg/ml for a 48 hr continuous treatment, and some spreads showed polyploidy. Accordingly a confirmative examination was conducted. Chromosome preparations were made after 24 hr recovery subsequent to the 48 hr

exposure. As a result, polyploidy was induced dose-dependently (0.8 and 1.6 mg/ml, 11.5% and 14.5%). In this study, visible precipitation was shown at the end of exposure period at about 400 ug/ml or more.

In the chromosomal aberration test with Human lymphocytes [SafePharm (1994a)], the dose range was 78.125, 156.25, 312.5, 625, 1250 ug/ml and additionally 2500 ug/ml for the 20 hr and 30 hr cell harvest with and without metabolic activation.

As a result, this substance did not induce chromosomal aberrations at doses within the solubility limit of the substance. It produced a statistically significant but modest increase in the frequency of cells with chromosomal aberrations at dose levels of 625 ug/ml or more (exceeding the solubility) limit without S9 mix.

In the genotoxicity test with Mouse lymphoma cells [SafePharm (1994b)], the dose range was selected on the preliminary toxicity test and was 78.1, 156.25, 312.5, 625, and 1250 ug/ml in the first experiment. In the second experiment the dose range was 156.25, 312.5, 625, 1250, and 2500 ug/ml.

The results were negative within the solubility limits of the substance but modestly positive only at dose levels of 625 ug/ml or more (exceeding the solubility limit) with S9 mix.

In vivo Studies

A first micronucleus assay with bone marrow cells of the mouse according to directive 92/69/EEC, B12 [SafePharm (1996)] was performed with sampling times of 24 and 48 hr, dosing of 125, 250 and 500 mg/kg based on a range-finding toxicity study and scoring of 1000 Polychromatic erythrocytes (PCEs).

In this test, the test result was inconclusive for two reasons:

Firstly, there were small deviations in the value of PCEs with micronuclei/1000PCEs = 2.1, 2.4 at the 48 hr in the 500, 250 mg/kg groups respectively.

Secondly, the mean value of positive control had two low scores which were very much lower than SafePharm's historical control values conducted by the further evaluation of the replica slides.

The above test result was inadequate as advised by the Scientific Committee on Food (SCF) of the European Commission (EC); SCF/CS/PM (GEN) 3334 final, adopted at the 118th SCF meeting on September 23 1999.

Accordingly, the second study by OECD TG 474 [RCC (2000)] was performed with sampling times of 24, 48 and 72 hr, dosing of 75, 150 and 300 mg/kg male mice, 50, 100 and 200 mg/kg female mice based on five studies of range-finding toxicity and scoring of at least 2000 PCEs per animal.

As a result, the number of NCEs was not substantially increased as compared to the mean value of NCEs of the control thus indicating that this substance at the indicated concentrations had no cytotoxic effects in the bone marrow. There was no biologically and statistically relevant enhancement in the frequency of the detected micronuclei after administration of this substance at any dose level or sampling time as compared to the vehicle control.

In conclusion, this substance did not induce micronuclei as determined by the micronucleus test with bone marrow cells of the mouse.

Based on the above results, the micronucleus test with bone marrow of mouse was negative

Conclusion

This substance was not mutagenic in bacteria [OECD TG 471 & 472]. It induced chromosomal aberration in CHL/IU cells with and without an exogenous metabolic activation system even at soluble concentrations. It also gave a positive response in the human lymphocytes test [OECD TG 473] and the mouse lymphoma TK assay [OECD TG 476] but only at insoluble dose levels. The cytogenetic effect observed in *in vitro* assays however, could not be reproduced in the micronucleus tests *in vivo* [OECD TG 474].

Based on the weight of evidence, it can be concluded that this substance is not genotoxic in vivo.

3.1.7 Carcinogenicity

In vivo Studies in Animals

Two chronic toxicity studies of 18 months were available as shown in Table 6. These studies were reported from the early National Cancer Institute program, currently the National Toxicology Program in the US. However, these studies were considered to be insufficient for assessment of the carcinogenicity because of insufficiencies of the testing protocol compared to current test guidelines (half the number of animal in each dose group, shorter exposure period in the rat study, only males used in the rat study).

Oral	Animal	Period (month)	Doses (mg/kg/day)	Toxic effects Tumorigenicity	Reference
Dietary	Rat male	18 (dose) 4 - 6 (post dosing)	0, 37.5, 75	Negative	Weisburger et al. Bio-Reserch (1973)
Dietary	Mouse male & female	18 (dose) 4 –6 (post dosing)	0, 300, 600	Negative	Weisburger et al. Bio-Reseach (1973)

Table 6: Carcinogenicity of 2,4-diamino-6-phenyl-1,3,5-triazine

The first [Weisburger et al. (1973)] was a study with male Charles River CD rats (25/sex/dose). This substance was fed at levels of 0 (control), 500 and 1000 ppm (0, 37.5, 75 mg/kg/day). Feeding was stopped after 18 months. The survival curve was not affected although there was a dose-related inhibition of growth. The incidence of tumors was no greater than in controls. Four tumors were seen which had not been observed in the simultaneous control. These events, however, have no significant frequency.

The second [Weisburger et al. (1973)] was a study with male and female albino CD-1 mice (25/sex/dose) fed at levels of 0 (control), 2000, 4000 ppm (0, 300, 600 mg/kg/day) for 18 months. This substance had no significant effects on survival and body weight gain, and did not cause a significant number of tumors including mammary tumors and bladder tumors.

Studies in Humans

There is no information available on humans.

Conclusion

Two dietary studies using male rats and male/female mice for 18 months showed no tumorigenic activity of this substance. However, these studies were considered to be insufficient for assessment of the carcinogenicity because of insufficiencies of the testing protocol compared to current test guidelines.

3.1.8 Toxicity for Reproduction/Development

One study [MHW 1999d] is considered to be a key study as shown in Table 7. The study was conducted according to a well-designed protocols (an OECD combined repeat dose and reproductive/developmental toxicity screening test), and is provides detailed information.

Toxicity	Item		Dose (n	Dose (mg/kg)			
			0	4	20	100	
Reproductive	No. of copulated	Male	12	12	12	12	
		Female	12	12	12	12	
	No. of impregnated	Female	11	12	12	11	
	No. of dams	Dam	11	12	12	10	
	No. of poor nursing dams	Day 0	0	0	0	2 ¹⁾	
		Day 4	0	0	2 ²⁾	7 ²⁾	
Developmental	Gestation index	#a)	100%	100%	100%	91%	
	Mean no. of litter size	#b)	15.5	14.4	13.3	10.9	
	S.D. of no. of litter size		3.1	1.6	3.5	5.1	
	Birth index	#c)	100%	98%	98%	72%**	
	Body weight of pups	Day 0	6.2 g	6.7g	6.0g	4.9g**	
		Day 4	9.4g	10.4g	9.6g	6.3g**	
	Viability index	#d)	99%	99%	76%*	12%**	
	No. of external anomalies	Pups	0	0	0	0	

 Table 7:
 Reproductive/developmental toxicity of 2,4-diamino-6-phenyl-1,3,5-triazine

* : P<0.05; ** : P<0.01

#a): Gestation index = (Number of dams with live newborns/Number of pregnant females) x 100

#b): No. of litter size = Number of live newborns pups/litter

#c): Birth index = (Number of live newborns/Number of (stillborns + live newborns)) x 100

#d): Viability index = (Number of live newborns on day 4 after birth/Number of live newborns) x 100

¹⁾: All newborns were dead and counted as stillborn

²⁾: All newborns were dead before day 4 of lactation

2,4-Diamino-6-phenyl-1,3,5-triazine was administered to each 12 male and 12 female Sprague-Dawley (Crj: CD) rats by gavage at doses of 0 (vehicle; 0.5% CMC-Na solution), 4, 20 and 100 mg/kg from 14 days before mating to 14 days after mating in males, and from 14 days before mating to day 3 of lactation in females [MHW, Japan (1999d)]. At 100 mg/kg, one female died during gestation and another female was not impregnated.

As for reproductive performance, no effects related to this substance were observed for the estrous cycle, numbers of corpora lutea and implantation, copulation index, conception index and duration of mating. On the findings of delivery of F_0 dams in the 100 mg/kg group, decreases of birth index and viability index on day 4 of lactation due to poor nursing of seven dams out of 10 were observed. The body weights of pups were also decreased at birth and day 4 of lactation in the 100 mg/kg group.

A dose-related decrease of litter sizes (number of live newborn pups/litter) was observed. However, the value at 20 mg/kg group is within the historical control values (13.67 +/- 3.08, 14.25 +/- 1.22, 14.73 +/- 2.65, 13.83 +/- 1.40). Therefore, the decrease at 4 and 20 mg/kg is not considered to be due to chemical-related effects.

The decrease of litter size observed at 100 mg/kg seems to be a chemical-induced effect although it is not statistically significant. In the 20 mg/kg group, a decrease in the viability index due to poor nursing on two dams out of 12 was observed. All live newborns of poor nursing dams died after three days.

There were no external anomalies of pups.

From these results, the parental NOAEL of reproductive toxicity was considered to be 100 mg/kg/day for males, and 4 mg/kg/day for females, based on the lack of nursing activity. And the NOAEL for developmental toxicity was considered to be 20 mg/kg/day, based on decrease of birth index and body weight of pups.

There is no available information on humans.

Conclusion

The parental NOAEL of reproductive toxicity was considered to be 100 mg/kg/day for males, and 4 mg/kg/day for females, based on the lack of nursing activity. And the NOAEL of developmental toxicity was considered to be 20 mg/kg/day, based on decreases of birth index and body weight of pups.

3.1.9 Information of structure-toxicity relationship (Triazine compounds)

Triazine compounds such as metribuzin (4-amino-6-t-butyl-3-methylthio-1,2,4-triazine-5(4H)-one), simazine (2-chloro-4,6-bis(ethylamino)-1,3,5-triazine), or atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) are suspected to be endocrine disruptors, although no toxicological information hinting at endocrine disruption is available in this substance (2,4-diamino-6-phenyl-1,3,5-triazine).

The skeletal structure (1,2,4-triazine-5(4H)-one) of metribuzin is considered to be chemically different from the skeletal structure (1,3,5-triazine) of this substance.

Chloro-1,3,5-triazine-triazine compounds such as atrazine and simazine are reported to affect mammary tumors in rat [Wetzel, L.T. et al], and also a long-term carcinogenicity study (test period was more than 24 month) on herbicide atrazine has been published [Pinter,A, et al].

3.2 Initial Assessment for Human Health

In the acute toxicity studies [OECD TG 401] for acute oral toxicity for rat, the dead animals showed thickening of the mucosa in the forestomach and edema in submucosal tissue of forestomach. These changes were consistent with corrosivity at the stomach and thought to be the case of death. The value of LD50 of this substance (2,4-diamino-6-phenyl-1,3,5-triazine) was 933 mg/kg (male) and 1231 mg/kg (female). The major oral toxicity was edema in the forestomach. The LC50 value in acute inhalation toxicity was 2.932 mg/L (4 hr, rat) [OECD TG 403]. , This substance was not irritating to the skin of rabbits [OECD TG 404].It is mildly irritating to the eyes in rabbits. There is no information on skin sensitisation.

In the OECD combined repeat dose and reproductive/developmental toxicity screening test by gavage [OECD TG 422], this substance was given at 0, 4, 20 and 100 mg/kg/day to rats for at least 39 days. One male and female rats died, and the body weight gain was decreased in the 100 mg/kg group. Hematological and blood chemical examination showed decreases in the erythrocyte counts

and hematocrit values with increased reticulocyte counts, and increases of GOT, GPT and total bilirubin with centrilobular hypertrophy of hepatocyte in the 100 mg/kg group. The severity of these changes, however, were toxicologically not significant or they were adaptive changes, except for the increase in reticulocyte count whose significance was equivocal. The NOAEL in this study was considered as 20 mg/kg/day.

In the 90-day feeding study with rats at 0, 1.9, 19.0, and 173.0 mg/kg/day [OECD TG 408], the body weight gain was decreased in the high dose group. In the histopathological examination, centrilobular hepatocyte enlargement, an increased severity of extramedullary hemopoiesis in the spleen and hemosiderin pigment accumulation in the kidneys and the spleen, hypertrophy and vacuolation of adrenal zona glomerulosa cells, and degeneration of pancreatic exocrine cells together with associated inflammatory cell infiltrates were observed in the high dose group. At the mid dose, the severity of hemosiderin pigment accumulation in the spleen was also increased moderately in males. This change in the spleen was considered not to be adverse effect because no other changes were observed at this dose level. Therefore, the NOAEL in this study was considered to be 19 mg/kg/day.

On basis of these two studies, the NOAEL for repeated dose toxicity was considered to be 20 mg/kg/day.

Regarding the genotoxicity of this substance, there were two Ames tests, three non-bacterial in vitro studies, and two genotoxic in vivo studies reported. This substance was not mutagenic in bacteria [OECD TG 471 & 472]. It induced chromosomal aberration in CHL/IU cells with and without an exogenous metabolic activation system even at soluble concentrations. It also gave a positive response in the human lymphocytes test [OECD TG 473] and the mouse lymphoma TK assay [OECD TG 476] but only at insoluble dose levels. The cytogenetic effect observed in in vitro assays however, could not be reproduced in the micronucleus tests in vivo [OECD TG 474].

Based on the weight of evidence, it could be concluded that this substance was not genotoxic in vivo.

Two dietary studies using male rats and male/female mice for 18 months showed no tumorigenic activity of this substance. However, these studies were considered to be insufficient for assessment of the carcinogenicity because of insufficiencies of the testing protocol compared to current test guidelines.

In the OECD combined repeat dose and reproductive/ developmental (one generation) toxicity screening test [OECD TG 422], this substance was given for 49 days from 14 days before mating in males and from 14 days before mating to day 3 of lactation in females. At 100 mg/kg, one female died in gestation and another female was not impregnated. Birth index was decreased with increase in stillborns at 100 mg/kg. All pups of two dams at 20 mg/kg and seven dams at 100 mg/kg died due to the lack of nursing activity, and the viability index on day 4 after birth was consequently decreased in these groups. The body weights of pups were also decreased at birth and day 4 of lactation in the 100 mg/kg group. The decrease of litter size observed at 100 mg/kg seems to be the chemical-induced effect although it is not statistically significant. No malformations or variations were observed in the pups.

From these results, the parental NOAEL of reproductive toxicity was considered to be 100 mg/kg/day for males, and 4 mg/kg/day for females, based on the lack of nursing activity, and the NOAEL of developmental toxicity was considered to be 20 mg/kg/day based on decreases of birth index and body weight of pups.

As for other human related information, this substance was not irritating to the skin and mildly irritating to the eyes in rabbits. There is no available information on toxicokinetics and metabolism of 2,4-diamino-6-phenyl-1,3,5-triazine.

4 HAZARDS TO THE ENVIRONMENT

4.1 Aquatic Effects

The most relevant results from acute and chronic tests with aquatic organisms are shown in Table 8.

 Table 8:
 Aquatic toxicity of 2,4-diamino-6-phenyl-1,3,5-triazine

Organism	Test method	Result (mg/L)	Reference
Algae			
Green alga (Selenastrum capricornutum ATCC 22662)	OECD TG 201 72 hr (cl)	EC50 (72 hr, bms) = 53.7 (nc*) NOEC (72 hr, bms) = 24.4 (nc*) EC50 (24-48 hr, gr) = 68.2 (nc*) EC50 (24-72 hr, gr) = 69.3 (nc*) NOEC (48 hr, gr) = $39.1(nc*)$ NOEC (72 hr, gr) = $39.1(nc*)$	MOE, Japan (1999c)
(Scenedesmus subspicatus)	Unknown	EC50 (72 hr) = 22	KBwS (1991)
Invertebrates			·
Water flea (<i>Daphnia magna</i>)	OECD TG 202 24, 48 hr (op,s) OECD TG 211 21 d (op, ss)	EC50 (24 hr, imm) = 112 (mc) EC0 (48 hr, imm) = 7.68 (mc) EC50 (48 hr, imm) = 52.0 (mc) EC100 (48 hr, imm) = 300 (mc) LC50(21 d, par)=13.4 (mc) EC50 (21 d, rep) = 5.91 (mc) NOEC (21 d, rep) = 1.91 (mc) LOEC (21 d, rep) = 3.43 (mc)	MOE, Japan (1999b) MOE, Japan (1999d)
Fish			
Medaka (Oryzias latipes)	OECD TG 203 96 hr (op, ss)	$LC_0 (96 \text{ hr}) = 50 (\text{nc*})$ $LC_{50} (96 \text{ hr}) > 100 (\text{nc*})$ $LC_{100} (96 \text{ hr}) > 100 (\text{nc*})$	MOE, Japan (1999a)
Goldorfe (Leuciscus idus (L.))	DIN 38412 Teil 15 48 hr (op,s)	$LC_0 (48 \text{ hr}) = 56 \text{ (nc)}$ $LC_{50} (48 \text{ hr}) = 99 \text{ (calc)}$ $LC_{100} (48 \text{ hr}) = 180 \text{ (nc)}$	TNO (1988)

cl; closed system, op; open system s; static, ss; semi-static nc; nominal concentration (actual concentration not measured), mc; measured concentration, nc*; nominal concentration (actual concentration measured and greater than 80% of the nominal), calc; calculated concentration using parametric model developed by Kooijiman, bms; biomass, gr; growth rate, imm; immobility, rep; reproduction, par; parental,

There are two additional results regarding toxicity to microorganisms e.g. Bacteria. One test with *Photobacterium phosphoreum* reported a EC50 = 210 mg/L [KBwS 1991]. The other test with *Pseudemonas putida* reported a EC10 = 3.4 mg/L (18hr) [RCC-NOTOX(1988a)].

There is no available information on the toxicity towards sediment dwelling organisms.

4.2 Terrestrial Effects

There is no available information.

4.3 Other Environmental Effects

There is no available information.

4.4 Initial Assessment for the Environment

This substance (2,4-diamino-6-phenyl-1,3,5-triazine) would be released into the aquatic environment from waste water, and remain almost entirely in the water compartment according to a calculation using the fugacity model [Mackey level III]. Although this substance is stable in water biotically and abiotically, this substance has a low potential of bioaccumulation (BCF = 6.4), estimated from the log Pow (1.38).

Regarding acute toxicity to aquatic species, the toxicity to algae [OECD TG 201] was 53.7 mg/L for EC50 (72 hr, *Selenastrum capricornutum*, biomass) and the toxicity to daphnids [OECD TG 202] was 52.0 mg/L for EC50 (48 hr, *Daphnia magna*, immobility). The toxicity to fish [other method] was 99 mg/L for LC₅₀ (48 hr, *Leuciscus idus* (L.)).

Regarding chronic toxicity to aquatic species, the toxicity to daphnids [OECD TG 211] was 1.91 mg/L for NOEC (21 day, *Daphnia magna*, reproduction). The toxicity to algae [OECD TG 201] was 24.4 mg/L for NOEC (72 hr, *Selenastrum capricornutum*, biomass).

A PNEC = 0.0191 mg/L (Predicted No Effect Concentration) for the aquatic organisms was calculated from the 21 d - NOEC (1.91 mg/L) for *Daphnia magna* using an assessment factor of 100 according to the ICCA HPV guidance, because two chronic data (*Daphnia magna* and alga) and one acute data (*Daphnia magna*) were available.

5 **RECOMMENDATIONS**

The chemical is currently of low priority for further work.

6 **REFERENCES**

Bio-Research Consultants, Inc. (1973): Carcinogenicity of chemicals present in man's environment, Final report, 31, 271-285 (Weisburger, E.K. et al.) (@2)

Central Institute for Nutrition and Food Research, TNO (1972): Determination of the acute oral toxicity of this substance in rats, October 9, 1972 (@4)

Hazleton U.K. (1989): this substance: Acute inhalation toxicity study - LC50 rats, Report No. 5907-556/4, April 1989 (@14)

HSDB (through 2000/9) (@15)

Japan Chemical Industry Association (1998): The guidance of initial risk assessment (rev.).

Kommission Bewertung wassergefachrdender Stoffe (KBwS), Datenblatt 785, Stoffname Benzoguanamin, vom 06.11.1991 (@16)

Microtest Research LTD (1988): Study to determine the ability of this substance to induce mutation in five histidine - requiring strains of Salmonella typhimurium, Study No. STG 1/S (@25)

Ministry of Environment, Japan (1999a), unpublished report on acute toxicity to fish (@9)

Ministry of Environment, Japan (1999b), unpublished report on acute toxicity to Daphnids (@10)

Ministry of Environment, Japan (1999c), unpublished report on toxicity to algae (@11)

Ministry of Environment, Japan (1999d), unpublished report on chronic toxicity (@12)

Ministry of Health & Welfare (1999a), Toxicity Testing Reports of Environmental Chemicals, vol 7, 258-261, Japan, "Reverse Mutation Test of 2,4-Diamino-6-phenyl-s-triazine on Bacteria" (@26)

Ministry of Health & Welfare (1999b), Toxicity Testing Reports of Environmental Chemicals, vol. 7, 262-266, Japan, "In Vitro Chromosomal Aberration Test of 2,4-Diamino-6-phenyl-s-triazine on Cultured Chinese Hamster Cells" (@27)

Ministry of Health & Welfare (1999c), Toxicity Testing Reports of Environmental Chemicals, vol 7, 243-246, Japan, "Single Dose Oral Toxicity Test of 2,4-Diamino-6-phenyl-s-triazine in Rats" (@28)

Ministry of Health & Welfare(1999d), Toxicity Testing Reports of Environmental Chemicals, vol 7, 247-256, Japan, "Combined Repeat Dose and Reproduction / Development Toxicity Screening Test of 2,4-Diamino-6-phenyl-s-triazine by Oral Administration in Rats" (@29)

Nippon Shokubai (1996), unpublished report on workplace monitoring (A report prepared by Nippon Shokubai Himeji plant)

Pinter, A, *et al.* Neoplasma 37 533-544 (1990): Long-term carcinogenicity bioassay of the herbicide atrazine in F344 rats.

RCC (2000): Micronucleus assay in bone marrow cells of the mouse with This substance, RCC-CCR Project 658000,July 17.2000 (@36)

RCC-NOTOX (1988c): Eye irritation / corrosion study of This substance in the rabbit Study Ref. No. 0913 / 1141 July 1988 (@39)

RCC-NOTOX (1988d): Primary skin irritation / corrosion study of This substance in the rabbit Study Ref. No. 0913 / 1140 July 1988 (@40)

SafePharm Laboratories Ltd., Derby (1993): This substance, Ninety Day Repeat dose Oral (Dietary) Toxicity Study in the Rat. Project No. 521/3 (@41)

SafePharm Laboratories Ltd., Derby (1994a): This substance, Metaphase Analysis in Human Lymphocytes in Vitro. Project No. 521/1 (@42)

SafePharm Laboratories Ltd., Derby (1994b): This substance: Mutation of L5178Y Mouse Lymphoma Cells at the Thymidine Kinase TK+/-Locus. Fluctuation Assay Project no. 521/2 (@43)

SafePharm Laboratories Ltd., Derby (1996): This substance, Micronucleus Tes in the mouse. Project No.521/004 (@44)

TNO Division of Technology for Society (1988): The acute toxicity of This substance to *Leuciscus idus*, Report No. R88/240, June 22, 1988 (@52)

Usden, Psychrotropic Drugs and Related Compounds 2nd ed.,1972 (@54)

Weisburger, E.K. et al. (1978): J. Environ. Pathol. Toxicol. 2, 325-356 (@58)

Wetzel, L.T., *et al.* J.Toxicol.Environ.Health,102(11),169-82(1994): Factors affecting mammary tumor incidence in chlorotriazine-treated rats.

(@Reference No.: correspond to the No. on the Dossier Report of this substance)

APPENDIX 1: PREDICTED EMISSION CONCENTRATION (PEC) FROM WASTE WATER TO LOCAL SURFACE WATER ESTIMATED IN JAPAN AND CALCULATED PEC/PNEC RATIO

PEC

PEClocal.water described in section 2.1. is calculated to be 0.0176 mg/L as follows;

PEClocal.water = $3000 \text{ t/y} \ge 0.00019 \text{ t/t} \ge (1 - 0.01) / (200 \text{ d/y} \ge 4000 \text{ m}^3/\text{d} \ge 4 \ge 10) \ge 10^6$

= 0.0176 mg/L

Remark;

3000 t/y	production volume of Benzoguanamine in Japan
0.00019 t/t	emission unit versus production volume
0.01	elimination based on biodegradable portion
200 d/y	annual production days
$4000 \text{ m}^{3}/\text{d}$	flow rate per day of waste water in the treatment plant
4	internal dilution factor
10	dilution factor in surface water

PNEC

PNEC described in section 2.1. is calculated to be 0.0191 mg/L as follows;

PNEC = 0.0191 mg/L for the aquatic organisms was calculated from the 21 d – NOEC (1.91 mg/L) for *Daphnia magna* using an assessment factor of 100 according to the ICCA HPV guidance, because two chronic data (*Daphnia magna* and alga) and one acute data (*Daphnia magna*) were available.

PEC/PNEC

PEC/PNEC ratio is below 1 as follows:

PEClocal.water = 0.0176 mg/L

PNEC = 0.0191 mg/L

Hence, PEC/PNEC = 0.92, and this ratio is close to one but below 1.

APPENDIX 2: ESTIMATED HUMAN EXPOSURE (EHE) FOR CONSUMER USE BY INTAKE THROUGH MIGRATION FROM COATING CAN

(1) Sample of coating:

Base metal ; tin and silver foils

Dry conditions; 200°C, 15 min

Coating resin ; No.1 Epoxy resin/Benzoguanamine resin = 80/20

No.2 Polyester resin/Benzoguanamine resin = 80/20

No.3 Polyester resin/Epoxy resin/Benzoguanamine-formaldehyde resin = 55/20/25

Coating weight; 8-9 g/m

(2) Test condition

Solvent extraction tests:

Area of coated sample	; 2 dm^2
Solvent	; Methanol, 400 ml
Extraction	; Reflux during 2 hr

Migration tests:

Area of coated sample ; 2 dm^2

(3) Result of Migration tests

Foods	ls Condition for migration		Results of migration (mg/dm ²)		
Simulates	Temperature, Time	No.1	No.2	No.3	
Distilled water	121°C, 30 min + 40°C, 10 day	0.04	0.04	0.04	
3% acetic acid	121°C, 30 min + 40°C, 10 day	<u>0.53</u>	0.05	0.29	
15% ethanol	121°C, 30 min + 40°C, 10 day	0.14	0.03	0.05	
50% ethanol	40°C, 10 day	0.24	0.07	0.07	

(4) EHE for consumer use is calculated to be 0.076 mg/kg/day as follows;

 $EHE consumer = 0.53 mg/dm^2 x 5 dm^2/L x 2 L/day / 70 kg$

= 0.076 mg/kg/day

Remark;

0.53 mg/dm^2	maximum migration of Benzoguanamine	(at as shown above)
$5 \text{ dm}^2/\text{L}$	area of contact to food in coated can	(default)
2 L/day	daily drinking volume	(default)
70 kg	adult body weight	(default)

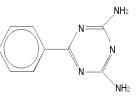
SIDS Dossier

Existing Chemical CAS No. EINECS Name EINECS No. TSCA Name Molecular Formula	 ID: 91-76-9 91-76-9 6-phenyl-1,3,5-triazine-2,4-diyldiamine 202-095-6 1,3,5-triazine-2,4-diamine, 6-phenyl- C9H9N5
Producer Related Part Company Creation date	: NIPPON SHOKUBAI CO., LTD. : 29.11.2000
Substance Related Part Company Creation date	: NIPPON SHOKUBAI CO., LTD. : 29.11.2000
Memo	: 2,4-diamino-6-phenyl-1,3,5-triazine
Printing date Revision date Date of last Update	: 04.05.2001 : 13.09.2001 : 08.02.2002
Number of Pages	: 60
Chapter (profile) Reliability (profile) Flags (profile)	 Chapter: 1, 2, 3, 4, 5, 6, 8 Reliability: without reliability, 1, 2, 3, 4, 5 Flags: SIDS

DATE: 08.02.2002

1.0.1 OECD AND COMPANY INFORMATION

Type Name Partner Date Street Town Country		lead organisation NIPPON SHOKUBAI CO., LTD. SKW Trostberg AG 24.08.2001 4-1-1, Koraibashi, Chuo-ku Osaka 541-0043 Japan
Phone		+81-6-6223-9166
Telefax	:	+81-6-6202-1766
16.01.2001		


1.0.2 LOCATION OF PRODUCTION SITE

1.0.3 IDENTITY OF RECIPIENTS

Name of recipient	: Mr. Koji Tomita, Ministry of Foreign Affairs, Economic Affairs Bureau, Second International Organisations Div.
Street	: 2-2-1 Kasumigaseki, Chiyodaku
Town	: 100 Tokyo
Country	: Japan
Phone	: +81-3-3581-0018
Telefax 25.12.2000	: +81-3-3581-9470

1.1 GENERAL SUBSTANCE INFORMATION

Remark Source	 Organic Solid >= 98% w/w COMPANY: SKW Trostberg AG Trostberg
Attached doc.	:

04.05.2001

(21)

1.1.0 DETAILS ON TEMPLATE

Production	:	Production	volume and emissic	n rate in 2000.		
		Contry	Company	Production (T/y)	Process	Emmision (g/T)
	-	Japan	Nippon Shokubai	3,000	Closed batch	190
		Germany	SKW	1,500	Closed batch	
	_	China	Shanghai	200+		
				5,000		
Source	:	COMPAN	Y: NIPPON SHOKUE	BAI CO., LTD.	Osaka	
30		UN	VEP PUBLICATIO	NS		

OECD SIDS 1. GENERAL INFORM	2,4-DIAMINO-6-PHENYL-1,3,5-	ID: 91-76-9
I. GENERAL INFORM		08.02.2002
08.02.2002		(32)
1.1.1 SPECTRA		
Type of spectra Remark Source	: IR : NO.: 6423 (Coblentz Society Spectral Collection) : HSDB (2001)	(50)
12.02.2001 Type of spectra Remark Source 12.02.2001	 : UV : NO.: 3855 (Sadtler Research Laboratories Spectral Collection) : HSDB (2001) 	(56)
Type of spectra Remark Source 12.02.2001	 NMR NO.: 544(Sadtler Research Laboratories Spectral Collection) HSDB (2001) 	(56)
Type of spectra Remark	 mass spectrum NO.: 1005 (National Bureau of Standards EPA-NIH Mass Spec Base, NSRDS-NBS-63) 	tra Data
Source 12.02.2001	: HSDB (2001)	(56)
Type of spectra Result	 IR SPECTROSCOPIC DATA (KBR): 3507(w), 3411(m), 3299(m), 1624(s), 1529(w), 1539(s), 1493(sh), 1452(w), 1393(s), 825(m) 691(m), 679(sh), 618(w) /cm 	
20.02.2001 Type of spectra	: UV	(47)
Result 20.02.2001	: UV max absorption (ethanol): 249 nm (epsilon. 25,000)	(51)
1.2 SYNONYMS		
1,3,5-Triazine-2,4-diar Source 05.08.1993	nine, 6-phenyl- : SKW Trostberg AG Trostberg EUROPEAN COMMISSION - European Chemicals Bureau Isp	ora (VA)
1,3,5-Triazine-2,4-diar Source	nine, 6-phenyl- (9CI) : BASF AG Ludwigshafen EUROPEAN COMMISSION - European Chemicals Bureau Isp	ora (VA)
29.08.1996		
2,4-diamino-6-phenyl- Source	1,3,5-triazine : TRANSOL Chemicals BV Ridderkerk EUROPEAN COMMISSION - European Chemicals Bureau Isp	ora (VA)
17.09.1997		
2,4-Diamino-6-phenyl- Source	: BASF AG Ludwigshafen	$(1/\Lambda)$
29.08.1996	EUROPEAN COMMISSION - European Chemicals Bureau Isp	ла (VA)

2,4-Diamino-6-phenyl-s-triazine

ECD SIDS	TION	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZIN
GENERAL INFORM	ATION	ID: 91-76 DATE: 08.02.20
Source	: BASF AG Ludwigs SKW Trostberg AG	Trostberg
29.08.1996	EUROPEAN COM	MISSION - European Chemicals Bureau Ispra (VA)
2-Phenyl-4,6-diamino-1, Source	: SKW Trostberg AG	Trostberg MISSION - European Chemicals Bureau Ispra (VA)
05.08.1993		
4,6-Diamino-2-phenyl-s- Source	: SKW Trostberg AG	Trostberg MISSION - European Chemicals Bureau Ispra (VA)
05.08.1993	LUNOFLAN COM	
6-Phenyl-1,3,5-triazin-2, Source	: SKW Trostberg AG	Trostberg MISSION - European Chemicals Bureau Ispra (VA)
05.08.1993	EUROPEAN COM	VISSION - European Chemicais Bureau Ispia (VA)
6-Phenyl-1,3,5-triazin-2, Source	: SKW Trostberg AG	Trostberg MISSION - European Chemicals Bureau Ispra (VA)
05.08.1993	LUNOFLAN COM	
6-Phenyl-1,3,5-triazine-2 Source	: BASF AG Ludwigs SKW Trostberg AG	
29.08.1996		
6-Phenyl-1,3,5-triazine-2 Source	: SKW Trostberg AG	Trostberg MISSION - European Chemicals Bureau Ispra (VA)
05.08.1993		
Benzoguanamin Source	: SKW Trostberg AG EUROPEAN COM	Trostberg MISSION - European Chemicals Bureau Ispra (VA)
05.08.1993		
benzoguanamine Source	: DSM Resins BV Z EUROPEAN COM	wolle MISSION - European Chemicals Bureau Ispra (VA)
29.04.1998		······································
Benzoguanamine Source	: BASF AG Ludwigs SKW Trostberg AG	Trostberg
29.08.1996	EUROPEAN COM	MISSION - European Chemicals Bureau Ispra (VA)
ENT 60118 Source	: BASF AG Ludwigs SKW Trostberg AG	
29.08.1996		NIGGION - European Chemicais Buleau Ispia (VA)
s-Triazine, 2,4-diamino- Source	: SKW Trostberg AG	Trostberg MISSION - European Chemicals Bureau Ispra (VA)

DECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
. GENERAL INFORM	ATION ID: 91-76-9 DATE: 08.02.2002
05.08.1993	
s-Triazine, 2,4-diamino-	6-phenyl- (6CI, 8CI)
Source	: BASF AG Ludwigshafen
29.08.1996	EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA)
USAF RH-5	
Source	: SKW Trostberg AG Trostberg EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA)
05.08.1993	
.3 IMPURITIES	
CAS-No	: 461-58-5
EINECS-No	: 207-312-8
EINECS-Name Contents	: dicyandiamide : < 0.1% w/w
Reliability	: (2) valid with restrictions
03.05.2001	(42) (47)
CAS-No	: 108-78-1
EINECS-No EINECS-Name	: 203-615-4 : melamine
Contents	\therefore $= 2\% \text{ w/w}$
18.12.2000	(43) (47)
CAS-No	: 55-21-0
EINECS-No EINECS-Name	: 200-227-7 : benzamide
Contents	: ca. 0.01% w/w
03.05.2001	(27)
4 ADDITIVES	
I.5 QUANTITY	
Quantity produced	: 5,000 tonnes in 2000
12.02.2001 Source	: NIPPON SHOKUBAI CO., LTD. Osaka
04.05.2001	(32)
.6.1 LABELLING	
Labelling	: as in Directive 67/548/EEC
Symbols	: Xn
Nota Specific limits	: no data
R-Phrases	: (22) harmful if swallowed
	(52/53) harmful to aquatic organisms, may cause long-term adverse effects
S-Phrases	in the aquatic environment : (2) keep out of reach of children
	(61) Avoid release to the environment. Refer to special instructions/safety
Source	data sets. : EUROPEAN COMMISSION – European Chemicals Bureau Ispra (VA)

1. GENERAL INFORMATION

03.05.2001

1.6.2 CLASSIFICATION

Classification Class of danger R-Phrases Source 03.05.2001	as in Directive 67/548/EEC harmful (22) harmful if swallowed EUROPEAN COMMISSION – European Chemicals Bureau Ispra ((VA)
Classification Class of danger R-Phrases	as in Directive 67/548/EEC (52) harmful to aquatic organisms (53) may cause long-term adverse effects in the aquatic environme	int
Source 11.02.2000	EUROPEAN COMMISSION – European Chemicals Bureau Ispra (

1.7 USE PATTERN

Type Category Source 08.02.2002	:	industrial chemical intermediate: amino resins NIPPON SHOKUBAI CO., LTD. Osaka	(32)
Type Category Source 08.02.2002	:	industrial chemical intermediate: coloured amino resins NIPPON SHOKUBAI CO., LTD. Osaka	(32)
Type Category Source 08.02.2002	:	industrial chemical intermediate: materials for fine sphere particle NIPPON SHOKUBAI CO., LTD. Osaka	(32)
Type Category Source 08.02.2002	:	industrial chemical intermediate: materials for coloured fine sphere particle NIPPON SHOKUBAI CO., LTD. Osaka	(32)
Type Category Source 08.02.2002	:	industrial chemical intermediate: support materials for dye or pigment NIPPON SHOKUBAI CO., LTD. Osaka	(32)
Type Category Source 08.02.2002	:	industrial chemical intermediate: materials for plastics admixture NIPPON SHOKUBAI CO., LTD. Osaka	(32)
Type Category Source 08.02.2002	:	industrial chemical intermediate: materials for liquid crystal display spacer NIPPON SHOKUBAI CO., LTD. Osaka	(32)
Type Category Source 08.02.2002	:	industrial chemical intermediate: materials for coating, paint, vanish and printink NIPPON SHOKUBAI CO., LTD. Osaka	(32)

ECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIA	
GENERAL INFOR	RMATION ID: 91 DATE: 08.02	
Type Category Source 08.02.2002	 Industrial chemical intermediate: materials for can coatings NIPPON SHOKUBAI CO., LTD. Osaka 	(32
Type Category Source 11.02.2000	: type : non dispersive use : EUROPEAN COMMISSION – European Chemicals Bureau Ispra (V	A)
Type Category Source 11.02.2000	 industrial basic industry: basic chemicals EUROPEAN COMMISSION – European Chemicals Bureau Ispra (V 	A)
Type Category Source 11.02.2000	 industrial chemical industry: used in synthesis EUROPEAN COMMISSION – European Chemicals Bureau Ispra (V 	A)
Type Category Source 11.02.2000	 industrial other: Aminoplastharzmodifizierung EUROPEAN COMMISSION – European Chemicals Bureau Ispra (V 	A)
Type Category Source 11.02.2000	: use : Colouring agents : EUROPEAN COMMISSION – European Chemicals Bureau Ispra (V	A)
Type Category Source 11.02.2000	: use : pharmaceuticals : EUROPEAN COMMISSION – European Chemicals Bureau Ispra (V	A)
Type Category Source 09.12.2000	 use other: Lackrohstoffe für Härter, für Klebe- und Bindemittel EUROPEAN COMMISSION – European Chemicals Bureau Ispra (V 	A)
.7.1 TECHNOLOG	Y PRODUCTION/USE	
Type Remark	 production This substance (2,4-diamino-6-phenyl-1,3,5-triazine or benzoguanam can be produced by the reaction of benzonitrile (C6H5-CN: CAS No. 47-0) and dicyandiamide (NH2C(=NH)-NHCN: CAS No. 461-58-5) in Japan. 	
Source 04.05.2001	: NIPPON SHOKUBAI CO., LTD. Osaka	(3
.8 OCCUPATION	IAL EXPOSURE LIMIT VALUES	
Type of limit Limit value Remark Source	 BAT (DE) Kein MAK-Wert festgelegt BASF AG Ludwigshafen EUROPEAN COMMISSION - European Chemicals Bureau Ipra (VA))

OECD SIDS

30.04.2001

(53)

1.9 SOURCE OF EXPOSURE

1. GENERAL INFORMATION

1.10.1 RECOMMENDATIONS/PRECAUTIONARY MEASURES

- 1.10.2 EMERGENCY MEASURES
- 1.11 PACKAGING
- 1.12 POSSIB. OF RENDERING SUBST. HARMLESS

1.13 STATEMENTS CONCERNING WASTE

1.14.1 WATER POLLUTION

Classified by	KBwS (DE)
Labelled by	KBwS (DE)
Class of danger	2 (water polluting)
Source	BASF AG Ludwigshafen
09.12.2000	EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA)
Classified by Labelled by Class of danger Source	KBwS (DE) KBwS (DE) 2 (water polluting) SKW Trostberg AG Trostberg EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA) (46) (48)

1.14.2 MAJOR ACCIDENT HAZARDS

Legislation Substance listed	: Stoerfallverordnung (DE) : no
No. in directive Source	: BASF AG Ludwigshafen EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA)
19.11.1997	(49)

1.14.3 AIR POLLUTION

Classified by	:	other: SKW Trostberg AG Trostberg
Labelled by	:	other: SKW Trostberg AG Trostberg
Number	:	3.1.7 (organic substances)
Class of danger	:	
Source	:	SKW Trostberg AG Trostberg
		EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA)

1. GENERAL INFORMATION

05.08.1993

1.15 ADDITIONAL REMARKS

Memo Result	:	imupurities of sample; lot no. 93/12840 of SKW Trostberg AG contents;			
		- sample; batch no.23	15/02 of SKW Trostberg A	G	
		CAS No.	Chemical name	Contents	
	-	91-76-9	benzoguanamine	98.2 wt%	
		108-78-1	melamine	0.91 wt%	
		461-58-5	dicyandiamide	0.04 wt%	
30.04.2001	-		,		(42) (43)
Memo	:	• •	lot no. 7P11 of NIPPON S	HOKUBAI CO.,L ⁻	TD.
Result	:	contents;			
		- sample, lot no. 7PTT	of NIPPON SHOKUBAI C	O.,LTD.	
	-	CAS No.	Chemical name	Contents	
		91-76-9	benzoguanamine	more than 98	wt%
		108-78-1	melamine	0.1-0.2 wt%	
		461-58-5	dicyandiamide	0.04 wt%	
	_	55-21-6	benzamide	0.01 wt%	
30.04.2001					(30)
1.16 LAST LITERATU	RE SE	ARCH			

1.17 REVIEWS

1.18 LISTINGS E.G. CHEMICAL INVENTORIES

(6)

2.1 MELTING POINT

Value Source 04.05.2001	: = 226.5°C : SRC (2001)	(50)
Value Source	: = 227-228°C : HSDB (2000)	
Value Source 21.02.2001	: = 227°C : SKW Trostberg AG Trostberg EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA) ((48)
Value Sublimation Method Year GLP Test substance Source Test substance	 = 228°C No 1999 other TS: Wako Chemical Co. METI Japan Purity: 100% 	
Flag 04.05.2001	: Critical study for SIDS endpoint	(6)
2.2 BOILING POINT		

Value:> 350°C at 1,013 hPaDecomposition:Method:OECD Guide-line 103 "Boiling Point/boiling Range"Year:1999GLP:YesTest substance:other TS: Wako Chemical Co.Source:METI JapanTest substance:Purity: 100%Flag:Critical study for SIDS endpoint04.05.2001

2.3 DENSITY

Type Value Source Flag 21.02.2001	 density = 1.425 g/cm3 at 15°C SKW Trostberg AG Trostberg EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA) Critical study for SIDS endpoint 	(48)
Type Value Source 04.05.2001	: density : = 1.4 g/cm3 at 25°C : Merck (2001)	(51)
Type Value Method Year	: bulk density : = 680 kg/m3 :	

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZIN	E
2. PHYSICO-CHEMIC	AL DATA ID: 91-76- DATE: 08.02.200	
GLP		<u>'</u>
Test substance Source	 other TS SKW Trostberg AG Trostberg EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA) 	
21.02.2001	(4)	8)
2.3.1 GRANULOMETR	Y	
2.4 VAPOUR PRES	URE	
Value Method	: 1.6x10E-5 Pa at 25°C other (calculated)	
Source Flag	: HSDB (2001) : Critical study for SIDS endpoint	
02.04.2001	(20))
Value Decomposition	: < 4.1x10E-5 Pa at 100°C : no	
Method Year	OECD Guide-line 104 "Vapour Pressure Curve" : 1999	
GLP Test substance	: yes : other TS: Wako Chemical Co.	
Decomposition Source	: no : METI Japan	
Test condition	: number of apparatus: n = 1 flow rate: 37.9 ml/min	
Test substance Conclusion	 solvent for absorption: pure water ; carrier gas: extra pure (99.99%) purity: 100% less than the limmit of the quantity (= 0.000041 Pa) 	
Flag 04.05.2001	: Critical study for SIDS endpoint	6)
2.5 PARTITION COE	FFICIENT	
Log Pow Method	: = 1.36 other (measured): Flask Shaking Mesthod	
Year GLP	: 1980 : no	
Test substance Source	: SKW Trostberg AG Trostberg	
30.01.2001	EUROPEAN COMMISSION - European Chemicals Bureau Ispra (VA) (18) (34	4)
Log Pow Test substance	: = 1.36 : other TS	
Source 12.02.2001	: HSDB (2001) (1:	3)
Log Pow Method	 = 1.38 at 25°C OECD Guide-line 107 "Partition Coefficient (n-octanol/water), Flask- shaking Method" 	
Year GLP	: 1999 : yes	
Test substance Method Result	 other TS: Wako Chemical Co. flask-shaking method : 	

OECD SIDS 2. PHYSICO-CHEMICAL DATA

		Log F	Pow;					
		Test	А		В			Average
	_		pН	Log Pow	pН	Log	Pow	Log Pow
		1	6.3	1.41	6.3	1.	39	1.38
		2	6.2	1.36	6.2		37	
	_	3	6.1	1.38	6.1	1.	38	
		refere	ence: () is	pH at water lay	/er			
Source	:	METI Japai	n					
Test condition	:	sample weig		g (= 5 ml x 102 tion:	0 mg/L)			
			Case		No.1	No.2	No.3	6
					ml	ml	ml	
	-	1-octan	ol saturated	l by water	5	10	20	
	_		aturated by		30	25	15	
		temperature revolution: 2 number of re analysis: HF	20/min x 5 n eplicate: 2	,				
Test substance	:	purity: 100%	, D					
Flag		Critical stud		endpoint				
04.05.2001			,					(6)
Log Pow Method Year GLP Test substance Source		= 1.48 at 20 OECD Guid shaking Met 1988 yes as prescribe SKW Trostb	e-line 107 thod" ed by 1.1-1.4		efficient (n-	octanol/w	vater), F	-lask-
02.04.2001		EUROPEAN	N COMMISS	SION - Europe	an Chemio	cals Bure	au Ispr	a (VA) (38)

2.6.1 WATER SOLUBILITY

Value Source 21.02.2001	: = 600 mg/L at 22°C : HSDB (2001)		(51)
Value pH Source 21.04.2001	 = 300 mg/L at 25°C = 6.5 at 300 mg/L and 20°C SKW Trostberg AG Trostberg 		(48)
Value pKa Method Year GLP Test substance Result	 = 320 mg/L at 25°C = 3.91 at 25°C OECD Guide-line 105 "Water Solubility" 1999 yes other TS: Wako Chemical Co. solubility (at 25°C) 		
	Shaking time Concentration (hr) (mg/L)	Average (mg/L)	Total average (mg/L)
	24 310 320	320	320
	48 310 320	320	

OECD SIDS			2,4-DIAM	INO-6-PHENYL-1,	,
2. PHYSICO-CHEMICAL DA		ATA			ID: 91-76-9
				DA	ΓE: 08.02.2002
		72	310 320	320	
Source Test condition			r, 48 hr, 72 hr at 30 25°C ; vessel: flask	°C with a plug ; number c	of replicate: 2
Test substance Flag 04.05.2001	:	purity: 100% Critical study for \$			(6)
Value pH Year GLP Test substance			N SHOKUBAI CO.,		
Source 12.02.2001	:	NIPPON SHOKU	BAI CO.,LTD. Osa	ka	(32)
Value Source 21.02.2001	:	= 6 g/L at 100°C HSDB (2001)			(51)
2.6.2 SURFACE TEN	SION				

2.7 FLASH POINT

2.8 AUTO FLAMMABILITY

2.9 FLAMMABILITY

2.10 EXPLOSIVE PROPERTIES

Method	: other: Haltman	
Year	: 1994	
GLP	: no data	
Result	: other: lower limmit of explosion; 25 g/m3	
Remark	: electrified quantity of static electricity: 1.4x10E-9 c/g conductivity: 2.0x10E-14 S/m	
Test substance	: particle size: 200 mesh pass other TS: NIPPON SHOKUBAI CO.,LTD. Osaka	
Source	: NIPPON SHOKUBAI CO., LTD. Osaka	
04.05.2001		(33)

2.11 OXIDIZING PROPERTIES

2.12 ADDITIONAL REMARKS

Memo Method	:	Henry's Law constant = 4.1x10E-11 atm-m3/mol (at 25°C) estimation by the bond contribution method developed by Meylan and
		Howard (1991)

PHYSICO-CHEMI	CAL DATA	ID: 91-76-
		DATE: 08.02.200
Source	: SRC (2001), HSDB (200	,
02.04.2001		(24
Memo	: solubility in organic solve	ents (1)
Remark	in acetonitrile	; more than 1 g/L
	in tetrahydrofuran in 1-octanol	; more than 10 g/L ; more than 1 g/L
Source	: METI Japan	, more than 1 g/L
04.05.2001		(23
Memo	: solubility in organic solve	ents (2)
Remark	: in acetone	; 18.0 g/L at 20°C
	in benzene	; 0. 3 g/L at 20°C
	in dimethylformamide	; 120.0 g/L at 20°C ; more than 10%
	in ethanol in ethyl ether	; more than 10%
	in dilute hydrochloric aci	
	in Methyl Cellosolve	; soluble
	in chloroform	; practically insoluble
	in ethyl acetate in trifluoroacetic acid	; practically insoluble ; slightly soluble
Source	: HSDB (2000)	, signity soluble
03.02.2001		(15
Memo	: solubility in organic solve	ents (3)
Remark	: solubility (g/100g, 25°C)	
	in water	; 0
	in heptane	; 0
	in benzene in methylenedichloride	; 0.04 ; 0.08
	in ethyl ether	; 0.2
	in butyl acetate	; 0.7
	in methanol	; 1.4
	in acetone in tetrahydrofuran	; 1.8 ; 8.8
	in dimethylformamide	: 12.0
	in Methyl Cellosolve	; 13.7
Source	: NIPPON SHOKUBAI CC	•
29.01.2001		(32
Memo	: solubility in methanol; 14	
Source	: SKW Trostberg AG Tros	stberg ON – European Chemicals Bureau Ispra (VA)
21.02.2001	EUROPEAN COMMISSI	(48) (48) (48
Memo	: pKa = 3.7 by spectropho	
Source 03.04.2001	: Weber, J. B. 1967. Spec	trochimica Acta 23A: 458-461. (57
00.01.2001		(0)
Memo	: pKa = 3.86	
Source	: SKW Trostberg AG Tros	stberg ION – European Chemicals Bureau Ispra (VA)
Test condition	: temperature: 25°C	ON - European Chemicais Bureau Ispia (VA)
28.04.2001		(17
Memo	\cdot nKa = 3.01 by spectroph	atometric method
Method	 pKa = 3.91 by spectroph OECD TG 112 "Spectroph 	
Source	: METI Japan	
Test condition	: concentration: 10.0 mg/L	. (0.0534 mol/L)
30 04 2004	temperature: 25°C	
30.04.2001		(6

3. ENVIRONMENTAL FATE AND PATHWAYS

3.1.1 PHOTODEGRADATION

Type Light source Light spect. Rel. intensity Conc. of subst. Result	 air sun light based on intensity of sunlight at 25°C indirect photolysis type of sentitizer: OH
Remarks Source Flag 04.05.2001	 concentration of sentitizer: 50,000 hydroxyl radical/cm3 rate constant: 3.7x10E-12 cm3/molecule-sec at 25°C half-life of degradation: 4.4 day by calclulation no decomposition information HSDB (2000) Critical study for SIDS endpoint

(15)

3.1.2 STABILITY IN WATER

Type t1/2 pH4 t1/2 pH7 t1/2 pH9 Deg. Product Method Year GLP Test substance Result Source Test condition	 abiotic > 5 day at 50°C no OECD Guide-line 111 "Hydrolysis as a Function of pH" 1998 yes other TS: Wako Chemical Co. stable at pH 4, 7 and 9 (t1/2 > 5 day at 50°C) METI Japan concentration of test substance: 100 mg/L temperature: 50 (49-51) °C vessel: flask with a plug
Test substance	number of replicate: 2 period: 5 day : purity: 100%
Flag 04.05.2001	 Critical study for SIDS endpoint

3.1.3 STABILITY IN SOIL

Type Radiolabel Concentration Soil temp. Soil humidity Soil classif. Year Remark	 The Koc of 2,4-diamino-6-phenyl-1,3,5-triazine is estimated as approximately 130, using a log Pow of 1.36 and a regression-derived equation. According to a classification scheme, this estimated Koc values suggestes that this substance is expected to have high mobility in soil. Adsorption of this substance, 5x10E-5 M, by Na-montmorillonaite at four pH levels was approximately pH 1 310 umol/g pH 2 460 umol/g
	LINEP PUBLICATIONS 43

(23)

3. ENVIRONMENTAL FATE AND PATHWAYS

	DATE: 08.02.2002
pH 4 475 umol/g pH 6.5 200 umol/g and maximum adsorption by the clay occured at pH lev the pKa 3.7. This substance's pKa of 3.7, indicates it v predominantly in the unionized form under environmen bases, such as benzoguanamine, are more mobile in a because cations are much more strongly absorbed by organic and inorganic surfaces than the unionized base	will exist ital pHs. Weak alkaline solids ion exchange on

Source 03.05.2001

OECD SIDS

(15)

ID: 91-76-9

3.2 MONITORING DATA

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

matter. : HSDB (2000)

3.3.2 DISTRIBUTION

Media Method Year Result	: air-biota-sedime : a generic fugaci : 2001 :	ent(s)-soil-water ity model (Mackay leve	el III)	
	Compartment		Amount %	
		Release 100%	Release 100%	Release 100%
		to air	to water	to soil
	Air	0.0	0.0	0.0
	Water	29.3	99.5	24.9
	Soil	70.5	0.0	75.0
	Sediment	0.2	0.5	0.1
	Cited fro	om Appendix 8.		
Appendix	The Fugacity	Model (Mackay level	III)	
Source	: CERI Japan			
Flag		r SIDS endpoint		
04.05.2001	,			(7)

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 **BIODEGRADATION**

Туре	:	aerobic
Inoculum	:	activated sludge
Concentration	:	100 mg/L related to test substance
Contact time	:	28 day
Degradation	:	= 2% after 28 day (BOD)
Result	:	under test conditions no ready biodegradation observed
Kinetic of test	:	mean 2%, (2%, 3%, 0%, n = 3)
substance		
Control substance	:	aniline
Kinetic	:	66% (7 day), 77% (14 day)
Method	:	OECD Guide-line 301 C "Ready Biodegradability: Modified MITI Test (I)"
Year	:	1998
GLP	:	yes
Test substance	:	other TS: Wako Chemical Co.
Source	:	METI Japan

UNEP PUBLICATIONS

OECD SIDS

3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 91-76-9 DATE: 08.02.2002

(5)

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

BCF	: = 6.4	
Test substance	: as prescribed by 1.1-1.4	
Result	: An estimated BCF of 6.4 was calculated for 2,4-diamino-6-phenyl-1,3,5- triazine, using a log Pow of 1.36 and regression-derived equation.	
Source	: HSDB (2000)	
Flag 22.04.2001	: Critical study for SIDS endpoint (15)	

3.8 ADDITIONAL REMARKS

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Туре	:	semi-static					
Species	:	Medaka (Oryzias la	atipes)				
Exposure period	:	96 hr					
Unit	:	mg/L					
Analytical monitoring	:	yes					
LC50	:	c > 100					
Method	:	OECD Guide-line 203 "Fish, Acute Toxicity Test"					
Year	:	1993					
GLP	:	yes					
Test substance	:	other TS: Wako Chemical Co.					
Result	:	RESULTS: EXPOSED					
		- nominal/measured	d concentrations:				
		Nominal concentration	Measured concentration (mg/L) (Percentage of nominal)				

0011001111011011	,	i groonlag				
(mg/L)	0 hr ^{a)}		48	hr ⁶⁾	Me	an ^{c)}
Control	n.d.		n	.d.	n.	.d.
25.0	25.9	(104)	25.0	(100)	25.5	(102)
50.0	50.8	(102)	49.9	(99.9)	50.4	(101)
100	102	(102)	100	(100)	101	(101)

Remark: n.d.; less than 1.00 mg/L

- a); fresh solutions
- b); expired solutions

c); The values are expressed at time-weighted means calculated by the following equation:

 $(C_0 - C_{48}) / \ln C_0 - \ln C_{48})$

where C_0 : the measured concentration at 0 hr

C₄₈: the measured concentaration at 48 hr

- effect data (mortality):

96 hr LC50 > 100 mg/L

Highest test substance concentration resulting in 0% mortality = 50.0 mg/L $\,$

Lowest test substance concentration resulting in 100% mortality > 100 mg/L

Nominal concentration	C	Cumulative number of dead fish mortality(%) vs time						
(mg/L)	24	4 hr	4	8 hr	72	2 hr	96	6 hr
control	0	(0)	0	(0)	0	(0)	0	(0)
25.0	0	(0)	0	(0)	0	(0)	0	(0)
50.0	0	(0)	0	(0)	0	(0)	0	(0)
100.0	0	(0)	0	(0)	1	(10)	3	(30)

- other effects:

Nominal concentration	Sym	ptom				
(mg/L)	3 hr	24 hr	48 hr	72 hr	96 hr	
control	-	-	-	-	-	
25.0	-	-	-	-	-	
50.0	-	-	-	AB	AB	
100.0	AB	AB	AB	AB	AB, AR	
	A	AB; abnorr	nal behavi	or		

AR; abnomal respiration

ECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
ECOTOXICITY	ID: 91-76-9 DATE: 08.02.2002
Source Test condition	RESULTS: CONTROL: not described RESULTS: TEST WITH REFERENCE SUBSTANCE - concentrations: pure CuSO4·5H2O - results: 96 hr LC50 = 1.22 mg/L : NIPPON SHOKUBAI CO.,LTD. : TEST ORGANISMS - strain: not described - supplier: Nakajima fish farm (Kumamoto, Japan) - size/weight: 20 mm (18-21 mm), n = 10/0.11 g (0.083-0.13 g), n = 10 - feeding: "TETRAMIN" (TETRABERKE Co.) - pretreatment: acclimated for 12 days before testing - feeding during test: none STOCK AND TEST SOLUTION AND THEIR PREPARATION - dispersion: irradiation of ultrasound - vehicle, solvent: no solvent was used REFERENCE SUBSTANCE: CuSO4·5H2O DILUTION WATER - source: dechlorinated tap water - aeration: none - alkalinity: 33.0 mg/L - hardness: 52.0 mg/L as CaCO3 - chlorinity: less than 0.02 mg/L as Cl - pH: 7.5 - oxygen content: not described TEST SYSTEM - concentrations: 0, 25.0, 50.0, 100 mg/L - dosing rate: semi-static - renewal of test solution: 48 hr - exposure vessel type: size; 2.5 L test solution in a 3 L glass vessel (16cm diameter, 17 cm height) aeration; none - number of replicates, fish per replicate: 2, 5 - test temperature: 24.0-24.5 °C - dissolved oxygen: 6.8-8.3 mg/L - pH: 7.2-7.3 - Intensity of irradiation: room light - photoperiod: 16 hr-8 hr light-dark cycle DURATION OF THE TEST: 96 hr TEST PARAMETER: mortaliy, abnormal behavior, abnormal respiration SAMPLING: at 0 hr and 48 hr MONITORING OF TEST SUBSTANCE CONCENTRATION: measured by HPLC : (1) valid without restriction
Flag 28.04.2001	: Critical study for SIDS endpoint (9)
Type Species Exposure period Unit Analytical monitoring LC0 LC50 LC100 Method Year GLP Test substance	 Leuciscus idus (L.) (Goldorfe) 48 hr mg/L = 56 = 99 = 180 other: Bestimmung der Wirkung von Wasserinhaltsstoffen auf Fische, DIN 38412 Teil15 1988 yes as prescribed by 1.1-1.4

OECD SIDS 4. ECOTOXICITY

Result	: RESULTS: EXPOSED
	- effect data (mortality):
	24 hr LC50 = 99 mg/L (mortality)
	48 hr LC50 = 99 mg/L (mortality)
	48 hr LC100 =180 mg/L (mortality)
	48 hr NOEC = 56 mg/L (mortality, = 48 hr LC0)
	48 hr NOEC = 32 mg/L (swimming behaviour)
	Naminal Cumulative number of dead field
	NominalCumulative number of dead fishswimmingconcentrationMortality (%)behaviour
	concentration Mortality (%) behaviour (mg/L) 0 hr 2 hr 24 hr 48 hr 48 hr
	control 0 (0) 0 (0) 0 (0) 0 (0) normal *1)
	10 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) normal 2)
	18 0 (0) 0 (0) 0 (0) 0 (0) normal *2)
	32 0 (0) 0 (0) 0 (0) 0 (0) normal *2)
	56 0 (0) 0 (0) 0 (0) 0 (0) poor *3)
	100 0 (0) 0 (0) 6 (60) 6 (60) very poor *2)
	<u>180</u> 0 (0) 10 (100) 10 (100) -
	*1) normal (= good)
	*2) equal to that the control fishes*3) poorer than that of control fishes; they swam slowly and their reaction
	was poor; the conditions of two fishes wasvery poor and they swam
	upside-down
	*4) very poor; their reaction to stimulus was almost non-existant and they
	swam upside-down.
	- test substance solubility: 300 mg/L
	RESULTS: CONTROL
	 number/percentage of animals showing adverse effects: none
Source	 nature of adverse effects: none SKW Trostberg AG Trostberg
Test condition	: TEST ORGANISMS
	- strain: Leuciscus idus
	- supplier: P. Eggers
	 size, weight, korpulenzfactor: 5.6±0.3 cm, 1.5±0.3 g, 0.9±0.05 g/cm3
	- pretreatment: 15 days
	- feeding during test: none STOCK AND TEST SOLUTION AND THEIR PREPARATION
	- vehicle, solvent: no solvent was used
	STABILITY OF THE TEST CHEMICAL SOLUTIONS:
	REFERENCE SUBSTANCE:
	DILUTION WATER
	- pH: 7.6
	- oxygen content: 8.9 mg/L
	- holding water: 10 L
	TEST SYSTEM
	- concentrations: 0, 10, 18, 32, 56, 100, 180 mg/L - renewal of test solution: none
	- exposure vessel type: 10 L test solution in a 12 L all-glass aquaria
	- number of replicates, fish per replicate: 1, 10
	- test temperature: 20±1°C
	- dissolved oxygen: 5.4-8.9 mg/L
	- pH: 7.1-7.7
	- photoperiod: 12 hr-12 hr light-dark cycle
	DURATION OF THE TEST: 48 hr
	TEST PARAMETER: mortality
	SAMPLING: 0, 2, 24, 48 hr MONITORING OF TEST SUBSTANCE CONCENTRATION: not
	determined by chemical analysis
Reliability	: (1) valid without restriction

. ECOTOXICITY								91-76
						D	ATE: 08	.02.200
Flag 18.02.2001	:	Critical study for	r SIDS en	dpoint				(5
ACUTE TOXICITY	то	AQUATIC INVER	TEBRAT	ES				
Type Species Exposure period Unit Analytical monitoring EC50 EC100 Method Year GLP		static Daphnia magna 48 hr mg/L yes m = 52 m >= 300 OECD Guide-lir 1999 yes	ne 202, pa	irt 1 "Daph	nia sp., Ad	cute Immob	ilization 1	ſest"
Test substance Result	:	other TS: Wako RESULTS: EXF - nominal/meas	POSED					
		Nominal concentration (mg/L)	Measured concentration (mg/L)		Mean ^{c)}			
	-	Control		.d.	n	.d.	n	.d.
		7.68 19.2 48.0 120 300	7.65 19.1 47.1 119 296	(99.6) (99.5) (98.2) (99.5) (98.5)	7.40 18.3 46.0 116 286	(96.4) (95.3) (95.9) (96.3) (95.4)	7.52 18.7 46.6 118 291	(98.0 (97.4 (97.0 (97.9 (96.9
		where	a); fresh s b); expire c); The va calcula (C ₀ -C, C ₀ : the m C ₄₈ : the m	solutions d solutions alues are e: $ated by the_{48})/(InC0-Infleasured coleasured co$	xpressed following C ₄₈) oncentrati	•	-	ans
		effect data (imm 24 hr EiC50 = 48 hr EiC50 = 48 hr NOECi =	112 mg/L 52 mg/L ((95% c.l. = 95% c.l. =				
		Nominal Cumulative number of Immobilized Da, concentration (Percent immobility) (mg/L) 24 hr				bilized <i>Da</i> r	ohnia 48 hr	
		$ \begin{array}{c cccc} Control & 0 & (0) & 0 \\ 7.68 & 0 & (0) & 0 \\ 19.2 & 0 & (0) & 1 \\ 48.0 & 2 & (10) & 8 \\ 120 & 9 & (45) & 19 \\ 300 & 20 & (100) & 20 \\ \end{array} $						(0) (0) (5) (40) (95) (100)
			-	dead Dap		-		/
Source	:	RESULTS CON RESULTS: TES - concentrations - results: 48 hr MOE Japan	5T WITH F 5: K2Cr2O EiC50 = (7 pure gra		TANCE		
Test condition	:	TEST ORGANI						

UNEP PUBLICATIONS

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
4. ECOTOXICITY	ID: 91-76-9
	DATE: 08.02.2002
Reliability	 age: Juvenile Daphnia magna less than 24 hr old feeding in acclimation: Chlorella vulgaris, 0.1-0.2 mgC/day/indivisual pretreatment: 2-4 weeks feeding during test: none STOCK AND TEST SOLUTION AND THEIR PREPARATION vehicle, solvent: no solvent was used REFERENCE SUBSTANCE: K2Cr2O7 DILUTION WATER source: dechlorinated tap water alkalinity: not described hardness: 57.5 mg/L (as CaCO3) chlorinity: less than 0.02 mg/L (as Cl) TSS: none pH: 7.8 oxygen content: saturated with aeration TEST SYSTEM concentrations: 0, 7.68, 19.2, 48.0, 120, 300 mg/L renewal of test solution: none exposure vessel type: size; 200 ml test solution in a 300 ml tall vessel (8.5 cm diameter, 5.7 cm height) number of replicates, individuals per replicate: 4, 5 test temperature: 20.2-20.3°C dissolved oxygen: 7.9-8.8 mg/L pH: 7.6-7.7 intensity of irradiation: room light photoperiod: 16 hr-8 hr light-dark cycle DURATION OF THE TEST: 48 hr TEST PARAMETER: immobility SAMPLING: at start and end of test MONITORING OF TEST SUBSTANCE CONCENTRATION: measured by HPLC t) valid without restriction
Flag	: Critical study for SIDS endpoint
18.02.2001	(10)

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

Type Species Endpoint Exposure period Unit Analytical monitoring NOEC EC50 Method Year GLP Test substance Result		Selenastrum capricornutum (Algae) growth inhibition 72 hr mg/L yes m = 24.4 m = 53.7 OECD Guide-line 201 "Algae, Growth Inhibition Test" 1999 yes other TS: Wako Chemical Co. RESULTS: EXPOSED - nominal/measured concentrations:
--	--	---

Nominal concentration	Measured concentration (mg/L) (Percentage of nominal)					
(mg/L)	0	hr ^{a)}	72	hr ^{b)}	Me	an ^{c)}
Control	n	.d.	n.	.d.	n	.d.
15.3	14.8	(96.5)	15.6	(102)	15.2	(99.4)
24.4	23.8	(97.6)	24.5	(101)	24.2	(99.1)
39.1	39.2	(100)	39.5	(101)	39.4	(101)
62.5	62.1	(99.4)	61.7	(98.7)	61.9	(99.0)

OECD SIDS 4. ECOTOXICITY

	100	98.4	(98.4)	95.6	(95.6)	97.0	(97.0)	
	Remark: n.	d.; less tha			(0010)		(0110)	
		a); initial b); final						
			alues are ex	kpressed	at time-we	eighted mea	ans	
		calcula	ated by the	following		0		
	where		$_{72}$)/(InC ₀ -In(on at 0 hr			
	where	where C_0 : the measured concentration at 0 hr C_{72} : the measured concentaration at 72 hr						
	- effect data/ele	ement valu	les:					
	area method							
	EbC50 (0-72			% c.l.: nor	ne)			
	NOECb (0-7 rate method	2 nr) = 24.	4 mg/∟					
	ErC50 (24-4	8 hr) = 68.	2 mg/L (95	% c.l.: 59	.0-78.8 mg	g/L)		
	NOECr (24-4			0/				
	ErC50 (24-7) NOECr (24-7)			% C.I.: NO	ne)			
		,	U U					
	- average cell o exposure to 2					ring 72 hr		
	Nominal		Cell	density				
	Concenta		· ·	0E+4 ce	,			
	(mg/ Contro		0 hr 1.0	24 hr 4.2	48 hr 27.6	72 hr 113.1		
	15.3	<i>,</i> ,	1.0	4.2	29.5	120.0		
	24.4		1.0	3.6	27.1	117.4		
	39.1 62.5		1.0 1.0	3.4 2.6	22.8 7.6	105.1 13.7		
	100		1.0	1.2	1.7	2.5		
	arouth Inhihiti							
	- growth Inhibiti Nominal		Inhibition	Ini	nibition	Inhibitio	on	
	Concentarati	on ar	rea method	gro	wth rate	growth r	ate	
	(mg/L)	(0-72 hr) %		48 hr) %	(24-72 hr		
	15.3 24.4		-6.15 -1.18		-4.03 -8.63	-1.90 -6.50		
	39.1		11.3		-2.03	-4.73		
	62.5		83.1		43.4	49.6		
	100		98.1		84.6	78.0		
	RESULTS: TE	-			-			
C aumaa	- results: K2Cr2	2O7 pure g	grade; EbC	50 (0-72	nr) = 0.295	5 mg/L		
Source : Test condition :	MOE Japan TEST ORGAN	ISMS						
	- strain: ATCC							
	-source/supplie		an Type Cu	Iture Colle	ection			
	 pretreatment: iniitial cell cor 		: 1x10F+4					
	 - iniitial cell concentration: 1x10E+4 STOCK AND TEST SOLUTION AND THEIR PREPARATION 							
	- vehicle, solve							
	REFERENCE S GROWTH/TES					m		
	TEST SYSTEM							
	- exposure ves	• •		medium	in a 500 m	nl conical fla	ask with	
	a cap which all - number of rep							
				62.5, 10	0 mg/L			
	- concentrations: 0, 15.3, 24.4, 39.1, 62.5, 100 mg/L							

- test temperature: 24.6-24.9°C

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE			
4. ECOTOXICITY	ID: 91-76-9	9		
	DATE: 08.02.2002	2		
Reliability Flag 12.02.2001	 pH: 7.8-7.9 at start and 8.4-10.3 at end of the test intensity of irradiation: 4,400-4,500 lux photoperiod: continuous shaking: 100 rpm TEST PARAMETER: cells/ml MONITORING OF TEST SUBSTANCE CONCENTRATION (1) valid without restriction Critical study for SIDS endpoint 	1)		
Туре				
Species	: Scenedesmus subspicatus (Algae)			
Endpoint	:			
Exposure period	: 72 hr			
Unit	: mg/L			
Analytical monitoring				
EC10	: = 13 mg/L			
EC50	: = 22 mg/L			
Method	: other: Zellvermehrungshemmtest			
Year	: 1991			
GLP	: No			
Test substance	: as prescribed by 1.1-1.4			
Source	: SKW Trostberg AG Trostberg EUROPEAN COMMISSION – European Chemicals Bureau Ispra (VA)			
Reliability				
14.01.2001	(16	3)		

4.4 TOXICITY TO MICROORGANISMS E.G. BACTERIA

Method : ISO DIS 9509 "Method for assessing the inhibition of nitr activated sludge microorganisms by chemicals and waster the substance is as prescribed by 1.1-1.4 Year : 1991 GLP : No Test substance : as prescribed by 1.1-1.4 Source : SKW Trostberg AG Trostberg 21.04.1994 : Type : Species : Photobacterium phosphoreum (Bacteria) Unit : mg/L EC50 : = 210 EC20 : = 80 Method : other: Hemmung der Photolumineszenz	
Method: ISO DIS 9509 "Method for assessing the inhibition of nitr activated sludge microorganisms by chemicals and wasterYear: 1991GLP: NoTest substance: as prescribed by 1.1-1.4Source: SKW Trostberg AG Trostberg21.04.1994:Type:Species: Photobacterium phosphoreum (Bacteria)	e waters"
Method: ISO DIS 9509 "Method for assessing the inhibition of nitr activated sludge microorganisms by chemicals and wasterYear: 1991GLP: NoTest substance: as prescribed by 1.1-1.4Source: SKW Trostberg AG Trostberg	e waters"
Exposure period : 4 hr Unit : mg/L EC20 : = 100	
Unit : mg/L	
Type : Species : activated sludge, domestic Exposure period : 4 br	

OECD SIDS		2,4-DIAMINO-6-PHENYL-1,3,5-7	FRIAZINE
4. ECOTOXICITY		Ι	D: 91-76-9
		DATE:	08.02.2002
Year	: 1988		
GLP	: Yes		
Test substance	: as prescribed by 1.		
Remark	: Niedrigste Konzent	ration, bei der eine beginnende Hemmung	
		zu beobachten war.	
Source	: SKW Trostberg AG	i Trostberg	
Test condition	: 25 Grad C		
30.01.2001			(37)
4.5.1 CHRONIC TOXICIT	Y TO FISH		
4.5.2 CHRONIC TOXICIT	Y TO AQUATIC INVER	TEBRATES	
Туре			
Species	: Daphnia magna (C	rustacea)	
Endpoint	: reproduction		
Exposure period	: 21 day		
Unit	: mg/L		
Analytical monitoring	: Yes		
NOEC	: m = 1.91 (21 day)		
LOEC	m = 3.43 (21 day)		
EC50	: $m = 5.91 (21 day)$		
LC50	: m = 13.4 (21 day)	- line 044 IID subside an Departmention Testil	
Method		e-line 211 "Daphnia sp., Reproduction Test"	
Year	: 1999		
GLP	: Yes		
Test substance	: Other TS: Wako Cl		
Result	: RESULTS: EXPOS - nominal/measure		
	Nominal concentration	Measured concentration (mg/L) (Percent of nominal)	Time- weighted

concentr	concentration (Percent of nominal)					weighted	
							mean ^{c)}
(mg/L)	0day ^{a)}	2day ^{b)}	10day ^{a)}	13day ^{b)}	15day ^{a)}	17day ^{b)}	(mg/L)
control	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
1.91	1.91	1.88	1.85	1.83	1.77	1.75	1.83
	(100)	(98.2)	(97.1)	(96.0)	(92.8)	(91.7)	(96.1)
3.43	3.47	3.40	3.33	3.31	3.19	3.14	3.31
	(101)	(99.0)	(97.1)	(96.5)	(93.1)	(91.7)	(96.5)
6.17	6.14	5.96	5.93	5.97	5.84	5.75	5.93
	(99.6)	(96.7)	(96.0)	(96.7)	(94.7)	(93.2)	(96.2)
11.1	11.0	10.8	10.7	10.6	10.3	10.3	10.6
	(99.3)	(97.1)	(96.2)	(95.5)	(93.0)	(92.8)	(95.7)
20.0	20.0	19.3	-	-	-	-	19.7
	(100)	(96.5)					(98.3)
Ren	nark: n.d.	; less tha	n 0.200 mg	g/L			· · ·

a); fresh solutions

b); expired solutions

b), expired solutions c); The values are expressed at time-weighted means calculated by the following equation: ${2(C_0-C_2)/(InC_0-InC_2)+3(C_{10}-C_{13})/(InC_{10}-InC_{13})+2}$ $(C_{15}-C_{17})/(InC_{15}-InC_{17})} / 7$ where C_x: the measured concentration at X-day InC_x : the natural logarithm of C_x

- effect data (reproduction):

- 21 day LC50 = 13.4 mg/L (95% c.l.: 6.17-20.0 mg/L)
- 21 day EC50 = 5.91 mg/L (95% c.l.: 5.48-6.37 mg/L)
- 21 day NOEC = 1.91 mg/L
- 21 day LOEC = 3.43 mg/L
- concentration/response curve:
- cumulative reproduction:

(1) Cumulative number of dead parental *Daphnia* and mortality after exposure of 21day

Nominal concentration (mg/L)	Number of dead parentals	Mortality (%)	Comment
control	0	0	at 21th day
1.91	0	0	at 21th day
3.43	0	0	at 21th day
6.17	0	0	at 21th day
11.1	2	20	at 17th day
20.0	10	100	at 5th day

(2) mean days required to first brood production during exposure to 2,4-diamino-6-phenyl-1,3,5-triazine:

Nominal	concentration (mg/L)	Mean (day)	
	control	8.0	
	1.91	8.0	
	3.43	8.0	
	6.17	8.4	
	11.1	9.0	
	20.0	-	

(3) mean cumulative number of juveniles produced per adult during exposure:

No	ominal concentratio (mg/L)	on Mean (day)	
	control	148	
	1.91	136	
	3.43	101	
	6.17	76	
	11.1	48	
	20.0	0	

RESULTS: TEST WITH REFERENCE SUBSTANCE

	 results: K2Cr2O7 pure grade :48 hr EiC50 = 0.135 mg/L (immobility data)
Test condition	: TEST ORGANISMS
	 source/supplier: Sheffield University (United Kingdom)
	- age: juveniles less than 24 hr old
	- feeding in culture: Chlorella vulgaris, 0.1-0.2 mgC/day/individual
	- pretreatment: 2-4 weeks
	 feeding during test: Chlorella vulgaris, 0.1-0.2 mgC/day/individual
	STOCK AND TEST SOLUTION AND THEIR PREPARATION
	 vehicle, solvent: no solvent was used
	REFERENCE SUBSTANCE: K2Cr2O7
	DILUTION WATER
	 source: dechlorinated tap water
	- alkalinity: 33.0 mg/L
	- hardness: 42.4-49.6 mg/L (as CaCO3)
	- chlorinity: less than 0.02 mg/L (as Cl)

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
4. ECOTOXICITY	ID: 91-76-9
	DATE: 08.02.2002
Reliability : Flag : 12.02.2001	 TEST SYSTEM concentrations: 0, 1.91, 3.43, 6.17, 11.1, 20.0 mg/L renewal of test solution: 3 times a week exposure vessel type: size; 80 ml test solution in a 100 ml beaker number of replicates, individuals per replicate: 10, 10 test temperature: 20.0-20.5°C dissolved oxygen: 8.5-8.8 mg/L pH: 7.4-7.8 intensity of irradiation: room light (less than 1200 lux) photoperiod: 16 hr-8 hr light-dark cycle DURATION OF THE TEST: 21 day TEST PARAMETER: number of juveniles produced per adult during exposure number of dead parental <i>Daphnia magna</i> per day during exposure SAMPLING: 6 times during test MONITORING OF TEST SUBSTANCE CONCENTRATION: measured by HPLC (1) valid without restriction Critical study for SIDS endpoint
4.6.1 TOXICITY TO SOIL DW	ELLING ORGANISMS

4.6.2 TOXICITY TO TERRESTRIAL PLANTS

4.6.3 TOXICITY TO OTHER NON-MAMM. TERRESTRIAL SPECIES

4.7 BIOLOGICAL EFFECTS MONITORING

4.8 BIOTRANSFORMATION AND KINETICS

4.9 ADDITIONAL REMARKS

Remark	:	Stubenfliege (Musca domestica): LC100 = 0.25% (entspricht ca. 2500 mg/L) Konzentration, die die Verpuppung vollstaendig hemmt; Verabreichung im Fliegenfutter bzw. Zucker
Source 05.08.1993	:	SKW Trostberg AG Trostberg

(3)

5.1.1 ACUTE ORAL TOXICITY

Type Species Strain Sex Number of animals Vehicle Value Method Year GLP Test substance Remark		LD50 Rat Sprague-Dawley male/female 5 CMC = male, 933 mg/kg bw; female, 1231 mg/kg bw OECD Guide-line 401 "Acute Oral Toxicity" 1997 Yes Other TS: NIPPON SHOKUBAI CO.,LTD., purity: 98% Deaths occurred in both sexes of the 1000 and 2000 mg/kg groups from 2 days to 6 days. Treatment-related clinical signs were noted as follows: hypoactivity, staggering gait, bradypnea, a prone position, lacrimation, salivation, a lateral position, soiled perinaris, soiled perioculus, deep yellow urine and soiled lower abdomen. Decrease of body weight and/or depression of body weight gain were observed in all treated groups. In the dead animals, a) thickening of the mucosa in the forestomach at a female of 2000 mg/kg, b) retention of dark green urine in the urinary bladder at 3 males of 1000 mg/kg and 2 males and 3 females of 2000 mg/kg, c) atrophy of the spleen at a male and female of 1000 mg/kg and 2 males and a female of 2000 mg/kg, d) white coloration of the thymus at a male of 1000 mg/kg and a male and female of 2000 mg/kg, and e) atrophy in the thymus at a male of 2000 mgkg were noted at necropsy. Histopathological examination showed edema of the submucosal tissue in the forestomach and atrophy in the thymus and the spleen. There were no histopathological abnomalities in the urinary bladder. In the surviving animals, white spots of the mucosa in the forestomach were noted at necropsy at a female of 2000 mg/kg and histopathological examination showed hyperplasia of squamous epithelial cells. MORTALITY:			s follows: crimation, s, deep yellow nd/or groups. In the n at a female bladder at 3 /kg, c) atrophy es and a male of 1000 in the thymus ogical forestomach stopathological white spots of emale of 2000	
		- number of dea Concentration	mg BG	Number of animals	Number	of deaths
		w/v% *	/kg bw	per sex	male	female
	-	2.5	250	5	0	0
		5.0	500	5	0 0	Ő
		10.0	1000	5	3	1
		20.0	2000	5	3	4
	-					
				(2,4-diamino-6-ph	1011y1-1,3,5-tf182	2010)
		* at 10 ml	kg bw			
Source Test condition	:	- weight at study females	Chales Live old for the ma initiation: 10 nals/group: 5 ON:	ales and females 65.7-183.0 g for m 6 per male and fer		136.6 g for
Conclusion	:	 volume adminit post dose obse The lowest LD₅₀ 	stered or con evation perio value by ora	ncentration: 10 ml	in rats was 93	

ECD SIDS		2,4	4-DIAMINO-6-I	HENYL-1,3,	
TOXICITY					ID: 91-76-
				DAT	E: 08.02.200
Reliability	: (1) valid wit	nout restriction			
Flag		y for SIDS endp	oint		
13.02.2001					(2
_					
Туре	: LD50				
Species	: Rat				
Strain	: Wistar				
Sex Number of animals	: male/female : 5	;			
Vehicle	. 5				
Value	: = 1470 mg/	a bw			
Method	: other: not s				
Year	: 1972	Jeemea			
GLP	: No				
Test substance	-	ed by 1.1-1.4			
Remark			ted animals becar	ne sluggish and	d gradually lo
			als showed these		
			the first these day		
			rather quickly and		
	period, they	looked quite he	althy. No abnorm	alities were see	en in the
	survivors at				
Result	: MORTALIT				
	- number o	f deaths at each	dose:		
	ml	ma BC	Number of	Number	of deaths
	ml Suspension	mg BG	animals	Number	or deaths
	· · · · · ·	/ka bw		male	female
	<u>/kg bw</u> 6	/kg bw 1200	per sex 5	1	1
	7	1400	5	3	3
	8	1600	5	1	3
	9	1800	5	4	5
	BG		ne (2,4-diamino-6	-phenyl-1,3,5-ti	riazine)
Source		ora AC Trootha			
Source Test condition	: ADMINIST	erg AG Trostbe	ig		
rest condition	-	-	% (w/v) 2,4-diamin	o_6_nhenvl_1 3	5_triazine in a
			arboxy methyl cellu		
	stomach tub		arboxy metry cent		inistered via
30.01.2001					(*
					,
Туре	: LD50				
Species	: other: redwi	ng black bird			
Strain	:				
Sex	:				
Number of animals	:				
Vehicle	:	_			
Value	: = 100 mg/kg				
Source	: DIALOG FII	E: DOSE (2000))		-
12.02.2001					(4
Type					
Type Species	: LD50				
Species Strain	: rat				
Strain Sex					
Sex Number of animals					
Vehicle	:				
Venicie Value	: : = 1050 mg/	(a bw			
Source		LE: DOSE (2000))		
12.02.2001			7		(54
12.02.2001					(5)

5.1.2 ACUTE INHALATION TOXICITY

Type Species Strain Sex Number of animals Vehicle Exposure time Post obs. period Value Method Year GLP Test substance Result		LC50 rat Sprague-Dawley male/female 5 other: clean dry filtered compressed air 4 hr 14 day = 2.932 mg/L OECD Guide-line 403 "Acute Inhalation Toxicity" 1989 yes as prescribed by 1.1-1.4 STATITICAL RESULT: - death: Deaths occurred in male and female groups at levels of 2.489 mg/L and above. Overall there was a dose-related relationship between mortality and chamber concentration. all deaths occurred on days one and two of the study. - body weight gain: Body weght losses occurred in the first week of the study in exposed groups, with a degree of recovery in the second week. TOXIC EFFECTS: - clinical chemistry: Marked clinical signs without any specific signs of local lung toxicity were first observed on the day of exposure. The signs included lethargy, ataxia and prostation sometimes accompanied by panting. - histopathology: There was no treatment-related effect on lung weight in survivors, and only occational increases in lung weight in decedents. - necroscopy: Animals surviving to termination were unremarkable macrocopically. The only changes in decedents were non-specific				
		Sex	Concentration mg/L	morta 1	ality on day 2 3-15	Mortality ratio days 1-15
		Male Female	control 0.687 1.400 2.489 3.365 control 0.687 1.400 2.489 3.365	1	1 3 2	0 / 5 0 / 5 0 / 5 1 / 5 3 / 5 0 / 5 0 / 5 0 / 5 3 / 5 3 / 5
Source Test condition	:	NOMINAL CONC	400, 2.489, 3.365 m	-	7 mc/l	
Test substance	:	ADMINISTRATIC - type of exposu - particle size: a um	DN: re: head only mean mass median	aerody	namic diamet	
Conclusion Reliability Flag 30.01.2001	:	The LC ₅₀ value by (1) valid without r Critical study for s		re was 2	2.932 mg/L (4	hr, rat). (14)

5.1.3 ACUTE DERMAL TOXICITY

5.1.4 ACUTE TOXICITY, OTHER ROUTES

Type Species Strain Sex Number of animals Vehicle Route of admin. Exposure time Value Method Year GLP Test substance Source Reliability 14.01.2001	 LD50 mouse i.p. = 100 mg/kg bw as prescribed by 1.1-1.4 SKW Trostberg AG Trostberg (4) not assignable 	(1)
Type Species Strain Sex Number of animals Vehicle Route of admin. Exposure time Value Method Year GLP Test substance Source Reliability 14.01.2001	 LD50 mouse i.p. = 545 mg/kg bw 1973 no as prescribed by 1.1-1.4 SKW Trostberg AG Trostberg (4) not assignable 	(55)
Type Species Strain Sex Number of animals Vehicle Route of admin. Exposure time Value Source 12.02.2001	: LD50 : mouse : : : : : : : : : : : : :	(8)

5.2.1 SKIN IRRITATION

: rabbit
:
: semi-occlusive
: 4 hr
: 3

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
5. TOXICITY	ID: 91-76-9
	DATE: 08.02.2002
PDII	: 0
Result	Not irritating, Primary irritating index = 0
EC classification	
Method	: OECD Guide-line 404 "Acute Dermal Irritation/Corrosion"
Year	: 1988
GLP	: yes
Test substance	as prescribed by 1.1-1.4
Remark	: Applikationsmenge: 500 mg; 4 hr Einwirkzeit, semi-okklusiv
Result	: EFFECTS: No signs of irritation and systematic toxicity were observed in
	any of the treated rabbits.
Source	: SKW Trostberg AG Trostberg
Test condition	: TEST ANIMALS:
	- strain: albino rabbits
	- sex: female
	- source: New Zealand white
	ADMINISTRATION/EXPOSURE
	 vehicle: moistened wit Milli-RO water
Reliability	: (1) valid without restriction
30.01.2001	(40)

5.2.2 EYE IRRITATION

Species :	other: Rabbit (n = 3)
Concentration :	
Dose :	94 mg
Exposure Time :	
Comment :	
Number of animals :	3
Result :	Mildly irritating, Draize score = 4 (1 hr)
EC classification :	
Method :	Directive 84/449/EEC, B.5 "Acute Toxicity (eye irritation)"
Year :	1988
GLP :	Yes
Result :	

Interpretation of the irritation

	Animal No	Body wt	Observation	1 hr	1 day	2 day	3 day
	1	<u>(g)</u> 3,520	Cornea	0	0	0	0
	·	0,020	Iris	0	Õ	0	Õ
			Conjunctive	2	2	2	0
			Subtotal	2	2	2	0
	2	3,503	Cornea	0	0	0	0
			Iris	0	0	0	0
			Conjunctive	6	2	2	0
			Subtotal	6	2	2	0
	3	3,470	Cornea	0	0	0	0
			Iris	0	0	0	0
			Conjunctive	4	2	2	0
			Subtotal	4	2	2	0
			Total	12	6	4	0
			Mean total	4.0	2.0	1.3	0.0
Test substance : Remark : Source :	In all three a reversible w observed in hr after insti damage. N	ithin 72 hr (3 the treated a llation of the	the conjugativae day). No effects animals. Treatme test substance d stemic toxicity we	s on the c ent of the id not rev	ornea or eyes wit eal any o	iris were h fluores	e cein 24
		•					
0	UNI	EP PUBLIC	CATIONS				

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
5. TOXICITY	ID: 91-76-9 DATE: 08.02.2002
Conclusion	: The test substance should be classified as mildly irritating following the scheme of Kay and Calandra. According to the EEC criteria for classification and labelling, the test substance need not to be labelled as an eye irritant.
Reliability 30.01.2001	: (1) valid without restriction (39)
5.3 SENSITIZATION	
5.4 REPEATED DOS	ΕΤΟΧΙCΙΤΥ
Type Species Sex Strain Route of admin. Exposure period Frequency of treatment Post obs. Period Doses Control group NOAEL Method Year GLP Test substance Result	 OECD TG 408 rat both Sprague-Dawley oral (dietary) 90 day daily daily chieved dosages of 0, 1.9, 19.0, and 173.0 mg/kg/day) yes = 19 mg/kg bw OECD Guide-line 408 "Subchronic Oral Toxicity - Rodent: 90-day Study" 1993 Yes as prescribed by 1.1-1.4 SUMMARY At the low dose level, no treatment related effects were observed. And at middle dose level, no ill-effects were shown. Treatment related changes were only observed in the high dose group. However, the minimal effects seen at 250 ppm were considered unlikely to be indicative of any damage to the health of the animals and a "No Observable Adverse Effect Level" (NOAEL) has been achieved at 250 ppm (equivalent to 19 mg/kg/day). ACTUAL DOSE RECEIVED BY DOSE LEVEL BY SEX Clinically observations Clinically observations of toxicity were detected for high dose animals of either sex from the end of the first week of treatment. Signs of toxicity included hunched posture and pilo-erection together with extremely isolated incidents of lethargy. number of deaths at each dose: no deaths during the study TOXIC RESPONSE/EFFECTS BY DOSE LEVEL: body weight gain: High dose animals of either sex showed a substantially lower gain in body-weight than controls during the treatment period. food consumption: The food intake of high dose animals was lower than that of controls during the treatment period, although females appeared less adversely affected

 hematology: No toxicologically significant change were detected.
 organ weights: High dose females showed a statistically significant increase in liver weight, relative to body weight, compared with controls. Absolute liver weights were also increased for these animals although statistical significance was not achieved. A possible treatment-related increase in relative liver and adrenal weight was also identified for high dose males.

Intermediate and low dose animals showed not reatment-related organ weight changes.

- gross pathology:

- necroscopy: several high dose animals of either sex showed pale adrenals and/or a darkened liver at terminal kill whilst two of the females also had pale kidneys.

- histopathology: Treatment-related morphological changes were observed in the liver,spleen, kidneys, pancreas and adrenal glands. High dose animals showed centrilobular hepatocyte enlargement, an increased severity of splenic extramedullary hemopoiesis, hypertrophy and vacuolation of adrenal zona glomerulosa cells, and degeneration of pancreatic exocrine cells together with associated inflammatory cell infiltrates. An increased severity and/or incidence of hemosiderin pigmnent accumulation was also observed in both the kidneys and the spleen of high dose animals of either sex. At the middle dose level, the sole treatmentrelated change was confined to males and identified as an increase in the severity of hemosiderin pigment accumulation in the spleen.

- histopathological findings

summary incidence of spleen

Animals	Findings	Do	Dose group (mg		g/day)
		control	1.9	19	173
Male	Extramedullary haemopo	iesis			
	(minimal)	6	8	5	2
	(slight)	4	2	5	5
	(moderate)	0	0	0	3
	Pigment deposition				
	(minimal)	1	1	0	0
	(slight)	9	6	4	0
	(moderate)	0	3	6	10
	(marked)	0	0	0	0
Female	Extramedullary hemopoie	eis			
i omaio	(minimal)	9	8	8	1
	(slight)	1	2	2	8
	(moderate)	0	0	0	1
	Pigment deposition	•	-	•	-
	(minimal)	0	2	0	0
	(slight)	5	3	5	0
	(moderate)	5	3	5	1
	(marked)	0	2	0	9

No treatment-related morphological changes were observed either for middle dose females or for low dose animals of either sex. No toxicologically significant macroscopic abnomalities were detected at the remaining dose levels.

: In the 90-day feeding study of rats at 0, 1.9, 19.0, and 173.0 mg/kg/day [OECD TG 408], the body weight gain was decreased in the high dose group. In the histopathological examination, centrilobular hepatocyte enlargement, an increased severity of extramedullary hemopoiesis in the spleen and hemosiderin pigment accumulation in the kidneys and the spleen, hypertrophy and vacuolation of adrenal zona glomerulosa cells, and degeneration of pancreatic exocrine cells together with associated inflammatory cell infiltrates were observed in the high dose group. At the

Remark

TOXICITY					ID: 91-7
					DATE: 08.02.20
		was also incr considered n observed at t	eased moderate ot to be adverse	ly in males. This c effect because no Therefore, the NOA	ccumulation in the splee hange in the spleen was other changes were AEL in this study was
Source Test condition	:	TEST ORGA - age: 5-6 we - weight at st - number of a ADMINISTR/ - type of expo - post exposi	eks old udy initiation: 18	5-238 g for males; ex per dose group URE	145-192 g for females
	_	Group no.	Number of animals <u>male/famale</u> 10/10 10/10 10/10	Dietary concentration ppm 0 (control) 25 250	Mean achieved dose mg/kg/day 0.0 1.9 19 173.0
		 food consul water consul 	t: weekly interval mption: weekly ir umption: daily		
Reliability Flag 28.04.2001	:	before termir - hematology - biochemistr (1) valid with	copic examination treatment of treatment at the end of st y: at the end of st out restriction for SIDS endpo	nt udy study	rtion and control diet and
Flag	:	before termir - hematology - biochemistr (1) valid with Critical study OECD comb	nation of treatme : at the end of st y: at the end of s out restriction for SIDS endpo ined study TG 42	nt udy study int 22, combined repea	(at dose and
Flag 28.04.2001		before termir - hematology - biochemistr (1) valid with Critical study OECD comb reproductive/ rat male/female Sprague-Dav oral (gavage) males; 49 da	nation of treatme t: at the end of st y: at the end of st out restriction for SIDS endpo ined study TG 42 (developmental to vley) ys, females; from	nt udy study int 22, combined repea oxicity screening te	(at dose and
Flag 28.04.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment		before termir - hematology - biochemistr (1) valid with Critical study OECD comb reproductive/ rat male/female Sprague-Dav oral (gavage) males; 49 da (39-54 days) one administ	nation of treatme t: at the end of st y: at the end of st out restriction for SIDS endpo ined study TG 42 (developmental to vley) ys, females; from	nt udy study int 22, combined repea oxicity screening te	(at dose and est
Flag 28.04.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of		before termir - hematology - biochemistr (1) valid with Critical study OECD comb reproductive/ rat male/female Sprague-Dav oral (gavage) males; 49 da (39-54 days) one administ none 0, 4, 20, 100 = 20 mg/kg/d yes, concurre	nation of treatme :: at the end of st y: at the end of st out restriction for SIDS endpo ined study TG 42 (developmental to vley) ys, females; from ration/day mg/kg/day lay ent vehicle ined repeat dose	nt udy study int 22, combined repea oxicity screening te n 14 days before m	(at dose and est

Result

: NOAEL: 20 mg/kg/day in both sexes

STATISTICAL RESULTS:

death: Deaths occured to one male and one female receiving 100 mg/kg.
body weight gain: Depression of body weight and decrease of food consumption were observed in both sexes of the 20 mg/kg or more groups.

- Body weight changes for male rat

,								
Dose level	_		Day					
mg/kg/day	Unit	1	11	22	29	39	49	
0	Weight g	391	427	455	477	502	534	
	Ratio* %	(100)	(100)	(100)	(100)	(100)	(100)	
4	Weight g	384	420	455	477	505	526	
	Ratio* %	(98)	(98)	(100)	(100)	(101)	(99)	
20	Weight g	384	406	438	455	473	491	
	Ratio* %	(98)	(95)	(96)	(96)	(94)	(92)	
100	Weight g	384	384	406	420	434	434	
	Ratio* %	(98)	(90)	(89)	(88)	(87)	(81)	
* Ratio = V	\cdot^* Ratio = Weight(n)/Weight(0)x100: the toxicological meaning are less							

:* Ratio = Weight(n)/Weight(0)x100; the toxicological meaning are less profound when weight change ratio (Ratio) during treatment period compared by (control dose level = 100%) are not less than 90%.

- hematology: Hematological examination showed decreases in the erythrocyte counts and hematocrit values, and increase in the reticulocyte counts in males of the 100 mg/kg group.

- blood chemistry: Blood chemical examination showed increases in albumine, A/G ratio, GOT, GPT, total bilirubin, total cholesterol and phospholipids, and decrease in triglycerides in males of the 100 mg/kg group. Absolute and relative liver weights were increased in males of the 100 mg/kg group.

- histopathology: Histopathological examination revealed centrilobular hypertrophy of the hepatocytes in both sexes given 100 mg/kg. Histopathological examination of dead animals revealed cellular infiltration of neutrophils and granulation in the ileum, atrophy and hemorrhage in the thymus, necrosis of the zona fasciculata to zona reticularis in the adrenals, erosion in the glandular stomach, and edema in the lung and atrophy in the spleen.

Source	:	MHW Japan
Conclusion	:	In the OECD combined repeat dose and reproductive/ developmental toxicity screening test by gavage [OECD TG 422], this substance was given at 0, 4, 20 and 100 mg/kg/day to rats for at least 39 days. One male and female rats died, and the body weight gain was decreased in the 100 mg/kg group. Hematological and blood chemical examination showed decreases in the erythrocyte counts and hematocrit values with increased reticulocyte counts, and increases of GOT, GPT and total bilirubin with centrilobular hypertrophy of hepatocyte in the 100 mg/kg group. The severity of these changes, however, were toxicologically not significant or adaptive change, except increase in reticulocyte count whose significance was equivocal.
Test condition	:	The NOAEL in this study was considered as 20 mg/kg/day. TEST ORGANISMS - age: 8 weeks - weight at study initiation: 347-432 g for males; 220-255 g for females - number of animals: 12 per sex per dose group ADMINISTRATION / EXPOSURE - duration of exposure: male; 14 days premating, 35 days including 14 days for mating female; 14 days premating, 22 days of gestation after impregnation 4 days of lactation - type of exposure: oral feed by tube to stomach - vehicle: carboxy methyl cellulose - sodium solution

- concentration in vehicle: 0.5w/v %

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
5. TOXICITY	ID: 91-76-9 DATE: 08.02.2002
	DATE. 08.02.2002
	- total volume applied: 2.5 ml/kg of 0.16%, 0.8%, 4w/v%
	- doses: 0, 4, 20, 100 mg/kg b.w.
	CLINICAL OBSERVATIONS AND FREQUENCY:
	- clinical signs: more than twice a day - mortality: more than twice a day
	- body weight and food consumption
	male; twice a week during administration
	female; twice a week till end of mating, 0, 4th, 7th, 10th, 14th, 17th
	during impregnation, 0, 4th during lactation
	- water consumption: none
	 hematology, boichemistry and urinalysis: for only male at time of necropsy
	ORGANS EXAMINED AT NECROPSY (MACROSCOPIC AND
	MICROSCOPIC):
	- macroscopic: thymus, spleen, liver, adrenal, kidney, testes Preliminary examination: at 300 mg/kg/day group, death occurs within 14
	days
Reliability	: (1) valid without restriction
Flag	: Critical study for SIDS endpoint
27.02.2001	. (29
Туре	
Species	: hen
Sex Strain	: no data
Route of admin.	: no data : oral feed
Exposure period	: 6 day
Frequency of	taeglich
treatment	
Post obs. period	: Keine
Doses	: 3 % im Futter
Control group	:
Method	:
Year	: 1975
GLP Test substance	: No : as prescribed by 1.1-1.4
Remark	: Bei den untersuchten Tieren handelte es sich um Kueken.
Result	: Mortalitaet: 4/5 Tieren
	Gewichtsverlust, Appetitlosigkeit und Magengeschwuere wurden
	beobachtet.
Source	: SKW Trostberg AG Trostberg
30.01.2001	(22
5.5 GENETIC TOXICIT	TY 'IN VITRO'
Туре	: Ames test
System of testing	: Salmonella typhimurium (TA100, TA98, TA1535, TA1537); Escherichia
	coli (WP2uvrA)
Concentration	: -S9: 0, 156, 313, 625, 1250, 2500, 5000 ug/plate;
Cupatavia cono	+S9: 0, 156, 313, 625, 1250, 2500, 5000 ug/plate
Cycotoxic conc.	: Toxicity was not observed up to 5000ug/plate in five strains with or without S9mix.
Metabolic activation	: with and without
Result	: negative
Method	: other: OECD Test Guidelines 471 and 472 "Genetic Toxicology
	(Salmonella typhimurium and Escherichia coli)
Year	: 1997
GLP	: Yes
Test substance	: other TS: NIPPON SHOKUBAI CO., LTD., purity: 98%
Result	: GENOTOXIC EFFECTS: - with metabolic activation:

DECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZI	
5. TOXICITY	ID: 91-70 DATE: 08.02.20	
Source Test condition	 Salmonella typhimurium TA100, TA1535, TA98, TA537; negative Escherichia coli WP2 uvrA; negative without metabolic activation: Salmonella typhimurium TA100,TA1535,TA98,TA537; negative Escherichia coli WP2 uvrA; negative PRECIPITATION CONCENTRATION: At the dose level more than 2500 ug/plate, visible precipitation was shown at the end of exposure period. MHW Japan SYSTEM OF TESTING metabolic activation system: S9 from rat liver,induced with phenobarbits and 5,6-benzoflavone ADMINISTRATION: number of replicates: 2 plates per test: 3 application: pre-incubation positive control groups and treatment: 	al
Reliability	 -S9mix; 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (TA100, TA98, WP2), sodium azide (TA1535) and 9-aminoacridine hydrochloride (TA1537) +S9mix; 2-aminoanthracene (five strains) - solvent: DMSO : (1) valid without restriction 	
Flag	: Critical study for SIDS endpoint	
27.02.2001	((26)
Туре	: Other: Genmutation an Prokaryonten (Ames-Test)	
System of testing Concentration	 Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA1538 experiment 1; 8, 40, 200, 1000, 5000 ug/plate experiment 2; 1000, 2000, 3000, 4000, 5000 ug/plate 	
Cycotoxic conc.	: no signs of toxicity were observed up to concentrarions 5000 ug/plate in the presence and absence of metabolic activation (S9mix)	
Metabolic activation	: with and without	
Result	: negative	
Method	 OECD Guide-line 471 "Genetic Toxicology: Salmonella thyphimurium Reverse Mutation Assay" 	
Year	: 1988	
GLP Test substance	: yes : as prescribed by 1.1-1.4	
Result	 GENOTOXIC EFFECTS: with metabolic activation: negative without metabolic activation: negative FREQUENCY OF EFFECTS: PRECIPITATION CONCENTRATION: Precipitation of test substance were observed during treatment at 4000 and 5000 ug/plate. 	
Source Test condition	 SKW Trostberg AG Trostberg SYSTEM OF TESTING: metabolic activation sysytem: mammalian liver post-mitochondorial fraction (S-9) prepared from male Winstar rats. ADMINISTRATION: application: vehicle: sterile analytical grade anhydrous dimethyl sulphoxide (DMSO) 	
Reliability	: (1) valid without restriction	
Flag 04.05.2001	: Critical study for SIDS endpoint ((25
Type System of testing	: Chromosomal aberration test : CHL/IU cell	
System of testing Concentration		
Cycotoxic conc.		
Metabolic activation	: with and without	
Result	: positive	

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
5. TOXICITY	ID: 91-76-9 DATE: 08.02.2002
Method Year GLP Test substance Result	 OECD Guide-line 473 "Genetic Toxicology: In vitro Mammalian Cytogenetic Test" 1997 yes other TS: NIPPON SHOKUBAI CO.,LTD. Osaka GENOTOXIC EFFECTS: with metabolic activation: clastogenicity; positive: polyploidy; negative without metabolic activation: clastogenicity; positive: polyploidy; positive FREQUENCY OF EFFECTS: PRECIPITATION CONCENTRATION: At the concentration with the mark P, visible precipitation was shown at the end of exposure period. -S9mix (24 and 48 hr continuous treatment); 0, 100, 200, 400P, 800P ug/ml -S9mix (short-term treatment); 0, 1250P, 2500P, 5000P ug/ml -S9mix (short-term treatment); 0, 19.5, 39.1, 78.1, 156P ug/ml -S9mix (short-term treatment, additional test); 0, 300, 400P, 500P, 600P, 700P, 800P, 900P ug/ml +S9mix (short-term treatment, additional test); 0, 60, 80, 100P, 120P, 140P, 160P ug/ml -S9mix (48 hr continuous treatment, confirmative test); 0, 200, 400P, 800P, 1600P ug/ml -S9mix (48 hr continuous treatment, confirmative test); 0, 200, 400P, 800P, 1600P ug/ml MITOTIC INDEX: CYTOTOXIC CONCENTRATION: lowest concentration producing
	 cytogenetic effects <i>in vitro</i>; with metabolic activation (short-term tratment): 78.1 ug/ml (abstructural abnormality) without metabolic activation (48 hr continuous treatment-24 hr recovery time): 800 ug/ml (polyploidy) TEST-SPECIFIC CONFOUNDING FACTORS: STATISTICAL RESULTS: Structural chromosomal aberrations were induced under the following conditions: 48 hr continuous treatment (0.2, 0.4, and 0.8 mg/ml, 11.0, 35.5 and 29.1%); short-term treatment with an S9mix (0.0781 mg/ml, 41.5%). An additional test was conducted with short-term treatment with an S9mix and 24 hr continuous treatment, because structural chromosomal aberrations were induced at only one dosage and the frequency of structural aberrations was from 5% to less than 10%. As a result, structural chromosomal aberrations were induced dose-dependently. There were many metaphase that showed c-mitosis at the dosage of 0.8 mg/ml for 48 hr continuously treatment, and some spreads showed polyploidy. Therefore a confirmative examination was conducted. Chromosome preparations were made after 24 hr recovery subsequent to 48 hr exposure. As a result, polyploidy was induced dose-dependently (0.8
Appendix Source Test condition	 46 fill exposure. As a result, polyptoldy was induced dose-dependently (0.8 and 1.6 mg/ml, 11.5 and 14.5%). Data was summarized in Appendix 8. 8. Chromosamal aberration test on CHL cells <i>in vitro</i> MHW Japan SYSTEM OF TESTING deficiences/proficiences: methabolic activation system: S9 from rat liver, induced with phenobarbital and 5,6-benzoflavone no. of metaphases analyzed: ADMINISTRATION: dosing: S9mix (24 and 48 hr continuous treatment); 0, 100, 200, 400, 800 ug/ml S9mix (short-term treatment); 0, 1250, 2500, 5000 ug/ml S9mix (short-term treatment); 0, 19.5, 39.1, 78.1, 156 ug/ml S9mix (24 hr continuous treatment, additional test); 0, 300, 400, 500, 600, 700, 800, 900 ug/ml

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
5. TOXICITY	ID: 91-76-9
	DATE: 08.02.2002
	 160 ug/ml -S9mix (48 hr continuous treatment, confirmativ test); 0, 200, 400, 800, 1600 ug/ml plates/test: 2 application: positive control groups: -S9mix (24 and 48 hr continuous treatment); Mitomycin C -S9mix (short-termtratment); cyclophosphamide +S9mix (short-termtratment); cyclophosphamide - solvent: DMSO
Reliability	: (1) valid without restriction
Flag	: Critical study for SIDS endpoint
30.04.2001	(27)
Туре	: Chromosomal aberration test
System of testing Concentration	 Human lymphocytes 78.125, 156.25, 312.5, 625, 1250 ug/ml and additionally 2500 ug/ml for the
Overtevia cono	30 hr cell harvest without metabolic activation
Cycotoxic conc. Metabolic activation	: with and without
Result	: negative (with metabolic activation)
	negative within the solubility limit (without metabolic activity)
Method	 positive above solubility limit (without metabolic activity) other: OECD Guid-line 473 and Directive. 84/449, B.10 "Genetic
motriou	Toxicology: In vitro Mammalian Cytogenetic Test"
Year	: 1994
GLP Test substance	: yes : as prescribed by 1.1-1.4
Remark	: All negative (solvent) controls gave frequncies of cells with aberrations within the range expected for normal Human lymphocytes. All the positive control treatments gave statistically significant increases in the frequncy of cells with aberrations indicating the satisfactory perfomance of the test and
Result	 of the activity of the metabolising system. PRECIPITATION CONCENTRATION: A precipitate of test substance was observed at and above a final concentration of 625 ug/ml after addition of the test material solution to the culuture media. TEST-SPECIFIC CONFOUNDING FACTORS: STATISTICAL RESULTS: Test substance did not induce chromosomal aberrations at doses within the solibility limit of the test substance. It produced a statistically significant but quite modest increase in the frequency of cells with chromosomal aberrations only at dose levels exceeding the solubility limit in the absense of a liver enzym metabolizing sysytem. Data was summarized in Appendix 8.
Appendix	: 8. Chromosamal aberration test on Human lyphocytes <i>in vitro</i>
Source Test condition	: SKW Trostberg AG Trostberg : SYSTEM OF TESTING
	 species/cell type: Human lymphocytes metabolic activation system: S9mix prepared from the livers of male Sprague-Dawley rats, after induction with Aroclor 1254. ADMINISTRATION: pre-incubation time: with metabolic activation: 4 hr exposure and with cell harvest after 20 and 30 hr. without matabolic acvation: continuous exposure with cell harvest after 20 and 30 hr. positive control groups: S9mix; 500 ug/ml ethyl methanesulphonate +S9mix; 25 ug/ml cyclophosphamide solvent: DMSO DESCRIPTION OF FOLLOW UP REPEAT STUDY: CRITERIA FOR EVALUATING RESULTS:

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
5. TOXICITY	ID: 91-76-9
	DATE: 08.02.2002
Reliability	: (1) valid without restriction
Flag	: Critical study for SIDS endpoint
04.05.2001	(42)
Туре	: Mammalian cell gene mutation assay
System of testing	: Mouse lymphoma cells, L5178
Concentration	: up to 2500 ug/ml
Cycotoxic conc.	: no signs of toxicity were observed up to concentrarions 2500 ug/ml in the presence and absence of metabolic activation (S9mix)
Metabolic activation	: with and without
Result	: negative within the solubility limit (with metabolic activity)
	positive above the solubility limit (with metabolic activity)
Method	negative (without metabolic activity) : OECD Guide-line 476 "Genetic Toxicology: In vitro Mammalian Cell Gene
Method	Mutation Tests"
Year	: 1994
GLP	: yes
Test substance	: as prescribed by 1.1-1.4
Result	: PRECIPITATION CONCENTRATION: at and above 625 ug/ml
	STATISTICAL RESULTS: This substance produced no statistically
	significant increase in the frequncy of mutant colonies, at dose levels at which this substance was soluble, in the presence or absence of metabolic
	activation, in both the first and second experiment. At 625 ug/ml for the
	first experiment and 1250 ug/ml for the second expriment, a small but
	significant increase in the frequncy of mutant colonies was observed only in
	the presence of metabolic activation. The induced colonies were small
	ones, suggesting a clastogenic potential of the test material. However, the
	increase in the frequency of mutant colonies observed at doses above the solubility limit was not considered to be of toxicological significance. In
	conclusion, benzoguanamine (2,4-diamino-6-phenyl-1,3,5-triazine) was not
	genotoxic at doses within the solubility limit. Data was summarized in
	Appendix 8.
Appendix	: 8. Chromosamal aberration test on Mouse lymphoma cells (L5178) in vitro
Source	: SKW Trostberg AG Trostberg
Test condition	: SYSTEM OF TESTING
	 species/cell type: the L5178 TK +/- Mouse lymphoma cell line metabolic activation system: S9mix prepared from the livers of males
	Sprague-Dawley rats after induction with Aroclor1254
	ADMINISTRATION:
	- dosing: experiment 1: 0, 78.1, 156.25, 312.5, 625, 1250 ug/ml
	experiment 2: 0, 156.25, 312.5, 625, 1250, 2500 ug/ml
	 number of replicates: 2 positive and negative control groups and treatment:
	negative control: DMSO
	positive control:
	-S9mix; ethylmethanesulphnate
	+S9mix; cyclophosphamide
Reliability	: (1) valid without restriction
Flag	: Critical study for SIDS endpoint
04.05.2001	(43)

5.6 GENETIC TOXICITY 'IN VIVO'

Туре	: Micronucleus assay
Species	: mouse
Sex	: male/female
Strain	: NMRI
Route of admin.	: oral (gavage)
Exposure period	: 24 hr, 48 hr

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE				
5. TOXICITY				DATE	ID: 91-76-9
Doses Result Method Year GLP Test substance Result	female mice; negative OECD Guide 2000 Yes As prescribed STATISTICA - The highest was estimate concentration NCEs was no NCEs of the indicated con marrow. There was no frequency of	d by 1.1-1.4 L RESULTS: dose (300 mg/ d by five pre-ex s were lethal. ot substantially vehicle control iccentrations had o biologically and the detected m	g/kg b.w. etic Toxicology: kg for males at periments to the After treatment increased as co thus indicating I no cytotoxic et and statistically to icronuclei after	: Micronucleus Tes nd 200 mg/kg b.w. ne suitable since h t with the test item ompared to the me that this substance effectiveness in the relevant enhancem administration of t	for females) igher the number of ean value of e at the bone nent in the he test item at
	b.w. cyclopho	osphamide adm d a substantial us test results	inistered orally	ed to vehicle contr was used as posi uced micronucleus	tive control
	Test group	Dose mg/kg b.w.	Sampling time (hr)	Sampling micronuclei (%)	NCEs per 2000 PCEs
	vehicle BG BG BG CP	0 75 150 300 40	24 24 24 24 24 24 24 24	0.02 0.08 0.09 0.02 1.11	1566 1562 1814 1582 2033
	vehicle BG BG BG	0 75 150 300	48 48 48 48	0.01 0.02 0.08 0.07	1694 1639 1795 1755
	vehicle BG BG BG	0 75 150 300	72 72 72 72 72	0.03 0.04 0.03 0.02	1610 1417 1549 1645
	(B) Female a	nimals			
	Test group	Dose mg/kg b.w.	Sampling time (hr)	Sampling micronuclei (%)	NCEs per) 2000 PCEs
	vehicle BG BG BG CP	0 50 100 200 40	24 24 24 24 24 24	0.03 0.03 0.09 0.04 0.98	1652 1563 1463 1889 1755
	vehicle BG BG BG	0 50 100 200	48 48 48 48	0.01 0.04 0.01 0.02	2113 1727 1628 1945

72 72 0.02 0.02 1577 1408

0 50

vehicle BG

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE							
5. TOXICITY				D	ID: 91-76-9 ATE: 08.02.2002			
	BG BG BG =	100 200 = benzoguanam	72 72 iine (2,4-diamino	0.04 0.01 5-6-phenyl-1,3,5-	1638 1492 -triazine)			
	CP =	cyclo phospha	imide					
Source Conclusion	induced of exogenou concentra tested [O 476] but of observed micronuc Based or	stance was not chromosomal al us metabolic ac ations. It also g ECD TG 473] a only under the i l in <i>in vitro</i> assa leus tests <i>in viv</i> o the weight of e	berration in CHL tivation system ave a positive re- and the mouse ly nsoluble dose le ys however, cou o [OECD TG 47 evidence, it could	/IU cells with an even under the s esponse in the h ymphoma TK as evels. The cytog ild not be reprod '4].	soluble uman lymphocytes say [OECD TG enetic effect			
Test condition	: TEST OF - age: 8-1 - weight a female n - no. of a ADMINIS - vehicle: - samplin - control o positive dissolve vehicle o EXAMIN/	I2 weeks at study initiation nean value; 28.3 nimals per dose TRATION: corn oil g times and nui groups and trea control; cyclopl ed in deionised control; 10ml/kg ATIONS:	n: males mean v 2 g e: 5 per sex and mber of samples itment: hosphamide, 40 water, 10 ml/kg	dose s: 24 hr, 48 hr, 7 mg/kg b.w. b.w.	2 hr			
Reliability	: (1) valid v	without restriction	on					
Flag 03.05.2001	: Critical st	udy for SIDS e	ndpoint		(36)			
Type Species Sex Strain Route of admin. Exposure period Doses Result Method Year GLP Test substance	: mouse : male/fem : CD-1 : oral (gava : 24 hr, 48 : 0, 125, 29 : inconclus : other: Dir : 1996 : Yes	age) hr 50, 500 mg/kg t sive	EC, B.12 "Genet	ic Toxicology: M	icronucleus Test"			

OECD SIDS		2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE									
5. TOXICITY		ID: 91-76-9 DATE: 08.02.2002									
Result	 EFFECT ON MITOTIC INDEX OR PCEs/NCEs RATIO: No significant change in the PCEs/NCEs ratio was observed after dosing with the test material. STATISTICAL RESULTS: As shown Table 1, there was evidence of a small, dose related and statistically significant increase in the incidence of micronucleated polychromatic erythrocytes in animals dosed with the test material in the 48 hr groups when compared to the concurrent vehicle control group. Whilst the response observed in the 48 hr at 250 and 500 mg/kg groups was not sufficiently pronounced to give a clear positive result it was outside the current histrical control range and thus precludes a negative result. No significant change in the PCEs/NCEs ratio was observed after dosing with the test material. However, the presence of clinical signs was taken to confirm that systematic absorption had been achieved. Clincal signs were observed in animals dosed with this substance at and above 125 mg/kg ,and induced as follows: hunched posture, lethargy, splayed gait, decreased respiratory rate, laboured respiration, ataxia, loss of righting reflex and ptosis. 										
	Table 1. Micronucleus study – summary of group mean data										
	Treat	Treatment group		Number of PCE: ronuclei per 100	0 PCEs	PCEs/NCEs ratio s					
		mg/kg	hr	group mean	SD	group mean	SD				
	vehicle c		48	0.8 (0.10-1.90)	0.6	1.45 (0.88-2.20)	0.36				
	vehicle c		24	1.2 (0.20-2.00)	1.4	1.45 (0.71-2.54)	0.46				
	positive of		24	21.8***	7.5	1.68	0.62				
	BG BG	500 250	48 48	2.4* 2.1*	2.1 1.6	1.51 1.51	0.44 0.32				
	BG	125	48	1.4	2.0	1.62	0.32				
	BG	500	40 24	1.9	1.9	1.65	0.42				
	BG	250	24	1.3	0.9	2.19	0.86				
	BG	125	24	0.5	0.7	1.76	0.64				
	PCEs = polychromatic erythrocytes NCEs = normochromatic erythrocytes SD = standard deviation *** = p < 0.001 * = p < 0.05 vehicle control = Arachis oil positive control = Cyclophosphamide 50 mg/kg () = historical data BG = benzoguanamine (2,4-diamino-6-phenyl-1,3,5-triazine)										
	animal w resolve t evaluatic polychro substanc However classifica the vehic The redu animals had micr	ras perform he equivoca on show no matic erythice. the criteria ation of mici cle and posi actions were (cyclophosp onucleus so as compar	ed by a al natur signific rocytes a used tive con e negation hamide cores (f ed to th	n independent la e of the respons ant increase in f in any of the an by the independ i resulted in low ntrole groups co ve that two data e, 50 mg/kg, 24 5.0/2000 and 8.0 e SafePharm La	aborator se. The requence imal gro ent labor er freque mpared in the t hr, mea)/2000 s aborator	ey of micronuclea bups exposed to pratory for the ncies of micronu to the in-house en data of the po n 16.4/2000 sco cored) that were ries limited histor	to ated this clei in data. ositive red) e rical				

	Treatment group		Number of PCEs ronuclei per 100		PCEs/NCEs ratio	
	mg/kg	hr	group mean	SD	group mean	SD
	vehicle control	48	0.7	0.8	1.22	0.11
	vehicle control	24	1.6	1.3	1.13	0.06
	positive control	24	16.4***	6.3	1.18	0.12
	BG 500	48	0.8	1.2	1.18	0.08
	BG 250 BG 125	48 48	1.5 0.6	1.4 0.7	1.17 1.18	0.07 0.08
	BG 500	40 24	1.4	1.3	1.18	0.08
	BG 250	24	0.7	1.0	1.20	0.05
	BG 125	24	0.6	1.0	1.15	0.10
	PCEs = polychror NCEs = normoch vehicle control = <i>J</i> positive control = SD = standard de *** = p < 0.001 BG = benzoguan	romatic Arachis cycloph viation	erythrocytes oil nosphamide 50 r		3,5-triazine)	
	SKW "P-SDS"					
Test condition	 TEST ORGANISMS age: 5-7 weeks old weight at study init no. of animals per ADMINISTRATION: vehicle: Arachis oil sampling times and control groups and negative control; ve positive control; cy EXAMINATIONS: clinical observation 	l iation: 2 dose: 5 d numb treatm ehicle, ² clophos	er of samples: 2 ent: 10 ml/kg, 24 hr a sphamide, 50 mg presence of clini	e group 4 hr, 48 nd 48 h g/kg, 24 ical sign	hr r hr	
	that systematic abso					
Remark	 In this test, the test result was inconclusive from following two reasons. As first reason, there were small deviations in the value of PCEs with micronuclei/1000PCEs = 2.1, 2.4 at the 48 hr in the 500, 250 mg/kg groups respectively. As second reason, the mean value of positive control had two low scores which were very lower than SafePfarm's historical control values conducted by the further evaluation of the replica slides. The above test result was inadequate as advised by the Scientific Committee on Food (SCF) of the European Commission (EC); SCF/CS/PM (GEN) 3334 final, adopted at the 118th SCF meeting on September 23 1999. 				s with mg/kg cores /alues /CS/PM	
Reliability	: (1) valid without rest					
Flag 30.06.2001	: Critical study for SIE	us endp	ooint			(44)

Table 2. Micronucleus study – summary of group mean data (A further evaluation of the replica slides by RCC)

5.7 CARCINOGENITY

Type Species	: rat
Sex	: male
Strain	: other: Charles-River
Route of admin.	: oral feed

. TOXICITY			,		-PHENYL-1,3	ID: 91-76-
					DAT	E: 08.02.200
Exposure period		18 month				
Exposure period Frequency of		Taeglich				
treatment	•	raeglich				
Post. obs. period		4, 6 month				
Doses	:		n (37.5, 75 mg/	(ka/day)		
Result	:	not tumorigen		ng/ddy)		
Control group		ves	loity			
Method	:	,00				
Year	:	1973				
GLP	:	no				
Test substance	:	Aldrich, meltin	g point: 226-22	28°C		
Result	:				urvival curve wa	s not affected
		although there	e was a dose-re	elated inhibition	of growth.	
		BODY WEIGH	IT GAIN: decre	eased proportion	nally by the dose	e volume
		At the high do	se level, it deci	reased c.a. 20%	of controled ca	ise.
					ncidence of tum	
		greater than ir	n controls. 4 tu	mors (a squam	ous papilloma o	f the stomach,
					kidney and one	
					not been observ	
					l earlier (15 mon	
					er tumors (fibros	
					. These events	, however,
			icant frequency			
Source	:		g AG Trostber	ſġ		
Test condition	:	TEST ORGAN	NISMS			
		- number of ar				
			TION/EXPOSI			
		•••	sure: dietary in	animal feed		
		- doses:				
		Group no.	Animals	Number of	Dose level	
		Group no.	Animals	Number of animals	Dose level mg/kg food	mg/kg b.w.
		Group no.	Animals male rats			mg/kg b.w. control
		•		animals	mg/kg food	
		1a	male rats	animals 25	mg/kg food Control	control
		1a 1b 1c	male rats male rats male rats	animals 25 25 25 25	mg/kg food Control 500 1000	control 37.5
		1a 1b 1c CLINICAL OB	male rats male rats male rats SERVATION A	animals 25 25 25 ND FREQUEN	mg/kg food Control 500 1000	control 37.5
		1a 1b 1c CLINICAL OB - food comsun	male rats male rats male rats SERVATION A nption: 75 mg f	animals 25 25 25 25	mg/kg food Control 500 1000	control 37.5
Reliability	:	1a 1b 1c CLINICAL OB - food comsun (2) valid with r	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5
Flag	:	1a 1b 1c CLINICAL OB - food comsun (2) valid with r	male rats male rats male rats SERVATION A nption: 75 mg f	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
	: :	1a 1b 1c CLINICAL OB - food comsun (2) valid with r	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001	:	1a 1b 1c CLINICAL OB - food comsun (2) valid with r	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type	::	1a 1b 1c CLINICAL OB - food comsun (2) valid with r Critical study f	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species	:::::::::::::::::::::::::::::::::::::::	1a 1b 1c CLINICAL OB - food comsun (2) valid with r Critical study f	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin.		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month daily	male rats male rats male rats SERVATION A nption: 75 mg f estriction	animals 25 25 25 ND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment Post. obs. period		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month daily 4, 6 month	male rats male rats male rats SERVATION A nption: 75 mg f restriction for SIDS endpo	animals 25 25 25 AND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment Post. obs. period Doses		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month daily 4, 6 month 2000, 4000 pp	male rats male rats male rats SERVATION A nption: 75 mg f restriction for SIDS endpo	animals 25 25 25 AND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment Post. obs. period Doses Result		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month daily 4, 6 month 2000, 4000 pp no tumorigenia	male rats male rats male rats SERVATION A nption: 75 mg f restriction for SIDS endpo	animals 25 25 25 AND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment Post. obs. period Doses Result Control group		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month daily 4, 6 month 2000, 4000 pp	male rats male rats male rats SERVATION A nption: 75 mg f restriction for SIDS endpo	animals 25 25 25 AND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment Post. obs. period Doses Result Control group Method		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month daily 4, 6 month 2000, 4000 pp no tumorigenia	male rats male rats male rats SERVATION A nption: 75 mg f restriction for SIDS endpo	animals 25 25 25 AND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment Post. obs. period Doses Result Control group Method Year		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month daily 4, 6 month 2000, 4000 pp no tumorigenio yes	male rats male rats male rats SERVATION A nption: 75 mg f restriction for SIDS endpo	animals 25 25 25 AND FREQUEN ood/kg b.w./day	mg/kg food Control 500 1000	control 37.5 75.0
Flag 03.05.2001 Type Species Sex Strain Route of admin. Exposure period Frequency of treatment Post. obs. period Doses Result Control group Method		1a 1b 1c CLINICAL OB - food comsum (2) valid with r Critical study f mouse male/female CD-1 oral feed 18 month daily 4, 6 month 2000, 4000 pp no tumorigenio yes	male rats male rats male rats SERVATION A nption: 75 mg f restriction for SIDS endpo	animals 25 25 25 AND FREQUEN ood/kg b.w./day oint	mg/kg food Control 500 1000	control 37.5

Result

: OPHTALMOSCOPIC EXAMINATION: This test substance had no significant effects on survival and weight gain and did not cause a significant number of tumors not observed in control mice or significantly earlier tumors than those occuring spontanously.

- tumor found data in male and female mice

	- tumor iouna a	ala in male ai	iu iemai	le mice				
	Dose		High dos (4000 m		Low dos (2000 m		Cont (poo	
	Sex		male	female	male	female	(p00 m f	-
	Initial No		25	25	25	25	150	
	Early death		9	4	11	4	51	48
	Mice with tumor	-	9	9	3	8	53	76
	Mice with Multip		3	5	1	3	14	21
	Tumor found		12	15	4	11	72	99
	Lung			10	•		24	32
	Adenoma		7	3	2	2		
	Liver		0				-	
	Hepatoma		2	1		4	7	1
	Hemangioma					1		
	Spleen and uter					4		
	Hemangiosarco	oma				1		
	Stomach	illomo		2				
	Squamous pap		1*	3 1	4	4		
	Adenocarcinon	la	1	I	1	1		
	kidny and ovary	- m		4				
	Hemangiosarco Breast (mamma			1				7
	Adenocarcinom	•		1**				/
	Adenoacanthon			1				
	Uterus			1				
	Adenocarcinom	а		1***				
	Leiomyoma			1		1		
	Hemangioma			1		2		
	Adrenal			•		-		
	Cortical adenon	na	1			1		
	Lymphosarcoma		1					
	Lymphosarcoma			1				
	Lymphocytic leu	kemia			1	2	17	32
	Vascular tumor						5	9
	Others in Contro	bl					19	18
				astatic to		bowel		
				tastatic to				
			*** me	tastatic to	lymph no	ode		
	This substance and did not cau							ain,
	tumors and blac					•	•	
Source	SKW Trostberg	AG Trostber	g					
Test condition	TEST ORGANI							
	- number of ani							
	ADMINISTRAT			(I				
	- type of exposu	ire: dietary in	animal 1	reed				
	- doses:							
	Group no.	Animals	Numb	per of	Dose leve	el		
			anima		mg/kg for		kg b.v	v.
	2a	male mice	2	25	contro	¥	contro	
	2b	male mice		25	2000		300	
	2c	male mice		25	4000		600	
	3a	female mice	:	25	contro) (contro	

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE					
5. TOXICITY						ID: 91-76-9
					DATE	E: 08.02.2002
		3b 3c	female mice female mice	25 25	2000 4000	300 600
Conclusion	:	 food coms Two dietary showed no t were consid 	DBSERVATION ANE umption: 150 mg foc studies using male ra umorigenic activity of ered to be insufficien insufficient testing pro	od/kg b.w./da ats and male/ f this substan t for assessm	y /female mice for 1 ice. However, the nent of the carcing	ese studies ogenicity
Reliability Flag 03.05.2001	:	(2) valid wit	•			(2) (58)

5.8 TOXICITY TO REPRODUCTION

Туре	: OECD combined study TG 422 reproductive/developmental tox			d	
Exposure period Frequency of treatment Premating exposure	 rat male/female Sprague-Dawley oral (gavage) male; 49 days: female; for 14 d one administration/day 			of lactatio	on
period Male Female Duration of test	 14 day 14 day male: 49 day female: 39-53 day 				
	 0, 4, 20, 100 mg/kg/day (vehic yes, concurrent vehicle = 100 mg/kg bw (male), 4 mg/k = 20 mg/kg bw OECD combined repeat dose a screening test 	(g/ bw (female)			ity
	 yes other TS: NIPPON SHOKUBA STATISTICAL RESULTS: As related to this substance were corpora lutea and implantation duration of mating. On examir heating of new borns were obs Furthermore, the birth index de dose. No effects related to this gestational days, number of litt sex ratio. There were no exter the lactation period, revealed p newborns. A decrease in the v observed for dams of the 20 m 	for reproductive observed for the accopulation inde- erved with dams creased with inde- s substance wer ers and live new nal anomalies o oor collection, n viability index on	performan e estrous cy ex, concepti ery, poor co s of the 100 crease of si e observed /borns, ges f pups. Ex- jursing and day 4 of la	ycle, numb ion index, a ollection ar 0 mg/kg gro tillborns at I in terms c station inde amination heating fo	ers of and oup. this of ex and during or
	Findings of delivery of Fo d	_	lly with the		tance

Dose (mg/kg)	0	4	20	100
No. of copulated (male,	12	12	12	12
female)	11	12	12	11
No. of impregnated (female)				
No. of dams	11	12	12	10

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE				
5. TOXICITY					: 91-76-9
			Γ	DATE: 08	.02.2002
	Gestation index	100.00	100.00	100.00	90.90
	No. of poor nursing dams				
	on day 0	0	0	0	2 ¹
	day 4	0	0	2 ²⁾	7 ²⁾
	Mean no. of newborns/litter	15.45	14.45	13.75	15.20
	S.D. No. of stillborns	3.14 0	1.66 4*	3.70 4	2.25 43**
	No. of live newborns	170	173	161	109
	Mean no. of live	15.45	14.42	13.43	10.90
	newborns/litter				
	S.D.	3.14	1.62	3.45	5.07
	Birth index	100.00	97.74	97.58	71.71**
	Sex ratio of live newborns	0.87	0.90	0.96	0.98
	Body weight of live newborns (g)		<u> </u>	<u> </u>	F 4**
	male on day 0	6.3 9.6	6.8 10.6	6.2 9.9	5.1** 6.8**
	day 4 female on day 0	9.6 6.0	6.5	9.9 5.8	0.0 4.7**
	day 4	9.2	10.1	9.3	5 .8**
	Viability index	99.41	99.42	75.78*	11.93**
	No. of external anomalies	0	0	0	0
	pregnant females) x 100 Birth index = (Number of live new newborns)) x 100 Viability index = [number of live ne live newborns] x 100 *: p < 0.05, **: p < 0.01 (significan 1): All newborns were dead and c 2): All newborns were dead before	ewborns on htly different ounted as s	day 4 afte	er birth/nur	
Remark	 Changes of litter sizes: Historical control value changes of 13.67 +/- 3.08 (CAS No 4189-44 14.25 +/- 1.22 (CAS No 105-45-14.73 +/- 2.65 (CAS No 11070-4 13.83 +/- 1.40 (CAS No 98-08-8 litter size = No. of live newbor A dose-related decrease of litter si was observed. However, the value historical control values (13.67 +/-13.83 +/- 1.40). Therefore, the dec considered due to chemical-related observed at 100 mg/kg seems to b is not statistically significant. The lack of maternal nursing activity. 	I-0, 1999) 3, 1998) I4-3, 1997) , 1996) n pups/litter zes (numbe e at 20 mg/k 3.08, 14.25 crease tend d effect. Th be the chem	er of live ne kg group is +/- 1.22, ency in 4 a e decreas ical-induce	ewborn pu s within the 14.73 +/- 2 and 20 mg e of litter s ed effect a	ps/litter) 2.65, j/kg is not size llthough it
Source	activity (collection, lactation and w recognized in 2 of 20 mg/kg and 7 • Other pups in 20 mg/kg group ha normally grew up to day 4. Based on these evidence, the lack maternal toxicity. • MHW Japan (2001)	arming of pu of 100 mg/l ad normal be	ups) was c ‹g. ody weigh	bbviously t at birth a	nd

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
5. TOXICITY	ID: 91-76-9 DATE: 08.02.2002
Remark	: In the OECD combined repeat dose and reproductive/ developmental (one generation) toxicity screening test [OECD TG 422], this substance was given for 49 days from 14 days before mating in males and from 14 days before mating to day 3 of lactation in females. At the 100 mg/kg group, one female died in gestation and another female was not impregnated. Birth index was decreased with increase in stillborns at the 100 mg/kg. All pups of two dams at the 20 mg/kg and seven dams at 100 mg/kg died due to the lack of nursing activity, and the viability index on day 4 after birth was consequently decreased in these groups. The body weights of pups were also decreased at birth and day 4 of lactation in the 100 mg/kg group. The decrease of litter size observed at the 100 mg/kg seems to be the chemical-induced effect although it is not statistically significant. No malformations or variations were observed in the pups.
Conclusion	The parental NOAEL of reproductive toxicity was considered to be 100 mg/kg/day for males, and 4 mg/kg/day for females, based on the lack of nursing activity. And the NOAEL of developmental toxicity was considered to be 20 mg/kg/day, based on decreases of birth index and body weight of pups.
Test condition	 TEST ORGANISMS: Rat/Sprague-Dawley IGS, 8 weeks ADMINISTRATION/EXPOSURE type of exposure: oral feed by tube to stomach duration of test/exposure: males; 49 days including 14 pre-mating females; 14 days pre-mating, 21 days after impregnated, 4 days off- lactation vehicle: 0.5% carboxymethyl cellulose sodium salt solution concentration in vehicle: 0.16, 0.8, 4w/v% total volume applied: 2.5 ml/kg doses: 0, 4, 20, 100 mg/kg MATING PROCEDURES: max 14 days
Reliability Flag 04.03.2001	 (1) valid without restriction Critical study for SIDS endpoint (29)

5.9 DEVELOPMENTAL TOXICITY/TERATOGENICITY

5.10 OTHER RELEVANT INFORMATION

benzoguanamin/kg Kgw. i.v. verursachten bei maennlichen Kueken
ge alte white Leghorn) Sedation und Ataxie.
rostberg AG Trostberg
PEAN COMMISSION – European Chemicals Bureau Ispra (VA)
(35)

5.11 EXPERIENCE WITH HUMAN EXPOSURE

ECD SIE	, , , ,
. ΚΕΓΕΚΙ	DATE: 08.02.2002
(1)	Anonym: Natl. Tech. Inf. Service (AD 277-689) zitiert in RTECS, Registry of Toxic Effects of Chemical Substances 1992
(2)	Bio-Research Consultants, Inc. (1973): Carcinogenicity of chemicals present in man's environment, Final report, 31, 271-285 (Weisburger, E.K. et al.)
(3)	Borkovec, A.B.et al. (1972): J. Econ. Entomol. 65, 69-73
(4)	Central Institute for Nutrition and Food Research, TNO (1972): Determination of the acute oral toxicity of Benzoguanamine in rats, October 9, 1972
(5)	Chemicals InspectionI and testing Institute, Japan (1998): report on biodegradability
(6)	Chemicals InspectionI and testing Institute, Japan (1999): report on physical and chemical properties
(7)	Chemicals Evaluation and Research Institution, Japan (2001): report on generic fugacity model (Mackay level III)
(8)	Dissertationes Pharmaceuticae 1965, 17, 145.
(9)	Ministry of Environment, Japan (1999a): unpublished report on acute toxicity to fish
(10)	Ministry of Environment, Japan (1999b): unpublished report on acute toxicity to daphnids
(11)	Ministry of Environment, Japan (1999c): unpublished report on toxicity to algae
(12)	Ministry of Environment, Japan (1999d): unpublished report on chronic toxicity to daphnids
(13)	Hansch C et al: Exploring OSAP, Hydrophobic, Electoric, and Storic Constantss, ACS Prof

- (13) Hansch C.et al; Exploring QSAR. Hydrophobic, Electoric, and Steric Constantss. ACS Prof Ref Book. Heller SR (consulted) Washington, DC: Amer Chem Soc p 64(1995)
- (14) Hazleton U.K. (1989): Acute inhalation toxicity study LC50 rats, Report No. 5907-556/4, April 1989
- (15) HSDB (through 2000/9)
- (16) Kommission Bewertung wassergefachrdender Stoffe (KBwS), Datenblatt 785, Stoffname Benzoguanamin, vom 06.11.1991
- (17) Korolev, B.A., Mal'tseva, M.A. (1973): Zh. Obshch. Khim. 43, 1556-1564
- (18) Lewis, S.J.et al. (1983): Quant. Struct. Act. Relat. 2, 100-111
- (19) Lewis,R.J., Sr(Ed). Hawley's Condenced Chemical Dictionary. 12th ed. New York, NY: Yan Nostrand Rheichhold Co.,1993 131
- (20) Lyman W. J. ; Environmental Exposure From Chemicals p.31 vol 1, Neely WB, Blau GE(eds), Boca Raton, FL: CRC Press(1985)
- (21) SKW Trostberg AG: SUMMARY DATA SHEET "P-SDS" (Nov.09.2000)
- (22) Matsubara, H.et al. (1975): Nippon Nogei Kagaku Kaishi 49, 505-511
- (23) Ministry of International Trade and Industry, Japan (1999): "Blue sheet"
- (24) Meylan, W.M., Howard, P.H. (1991): Environ. Toxicol. Chem. 10, 1283-93

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
6. REFERENC	CES ID: 91-76-9 DATE: 08.02.2002
(25)	Microtest Research LTD (1988): Study to determine the ability of Benzoguanamine to induce mutation in five histidine-requiring strains of Salmonella typhimurium, Study No. STG 1/S
(26)	Ministry of Health & Welfare, Japan (1999a): Toxicity Testing Reports of Environmental Chemicals, vol 7, 258-261, "Reverse Mutation Test of 2,4-Diamino-6-phenyl-s-triazine on Bacteria".
(27)	Ministry of Health & Welfare, Japan (1999b): Toxicity Testing Reports of Environmental Chemicals, vol 7, 262-266, "In Vitro Chromosomal Aberration Test of 2,4-Diamino-6-phenyl-s-triazine on Cultured Chineze Hamster Cells".
(28)	Ministry of Health & Welfare, Japan (1999c): Toxicity Testing Reports of Environmental Chemicals, vol 7, 243-246, "Single Dose Oral Toxicity Test of 2,4-Diamino-6-phenyl-s-triazine in Rats".
(29)	Ministry of Health & Welfare, Japan (1999d): Toxicity Testing Reports of Environmental Chemicals, vol 7, 247-256, "Combined Repeat Dose and Reproduction/Development Toxicity Screening Test of 2,4-Diamino-6-phenyl-s-triazine by Oral Administration in Rats"
(30)	Ministry of Health & Welfare, Japan (1999e): Toxicity Testing Reports of Environmental Chemicals, vol 7, 262-266, "In Vitro Chromosomal Aberration Test of 2,4-Diamino-6-phenyl-s-triazine on Cultured Chineze Hamster Cells".
(31)	Muttzall, P. I., Hanstveit, A. O. (1988): Biodegradability of Benzoguanamine according to OECD 301 E, TNO Division of Technology for Society, Report No. R88/369, November 11, 1988
(32)	NIPPON SHOKUBAI CO., LTD.: unpublished report
(33)	NIPPON SHOKUBAI CO., LTD.: "Material Safety Data Sheet"
(34)	Ogino,A.et al. (1980): J. Med. Chem. 23, 437-444
(35)	Osuide,G. (1968): Eur. J. Pharmacol. 3, 283 - 293
(36)	RCC (2000): Micronucleus assay in bone marrow cells of the mouse with Benzoguanamine, RCC-CCR Project 658000, July 17.2000
(37)	RCC-NOTOX (1988a): Assessment of the acute toxicity of Benzoguan- amine on the cell multiplication of a pure culture of Pseudomonas putida bacteria, Laboratory Proj. Ident. 0913/PS17, May 1988
(38)	RCC-NOTOX (1988b): Determination of the partition coefficient of Benzoguanamine, Study Ref. No. 0913/C 604, September 1988
(39)	RCC-NOTOX (1988c): Eye irritation / corrosion study of Benzoguanamine in the rabbit, Study Ref. No. 0913/1141, July 1988
(40)	RCC-NOTOX (1988d): Primary skin irritation / corrosion study of Benzoguanamine in the rabbit, Study Ref. No. 0913/1140, July 1988
(41)	Safepharm Laboratories Ltd., Derby (1993): Benzoguanamine, Ninety Day Sub-Chronic Oral (Dietary) Toxicity Study in the Rat. Project No. 521/3
(42)	Safepharm Laboratories Ltd., Derby (1994a): Metaphase Analysis in Human Lymphocytes in Vitro. Project No. 521/1
(43)	Safepharm Laboratories Ltd., Derby (1994b): Mutation of L5178Y Mouse Lymphoma Cells at the Thymidine Kinase TK+/-Locus. Fluctuation Assay. Project no. 521/2

OECD SIDS	2,4-DIAMINO-6-PHENYL-1,3,5-TRIAZINE
6. REFEREN	
	DATE: 08.02.2002
(44)	SafePharm Laboratories Ltd.,Derby (1996): Micronucleus Tset in the Mouse. Project No.521/004
(45)	Schafer, E.W. et al Toxicol. Appl. Pharmacol. 1972, 21, 315.
(46)	SKW Trostberg AG, Grunddatensatz fuer Altstoffe ueber 1000 Jato, 1989
(47)	SKW Trostberg AG: SUMMARY DATA SHEET "P-SDS" (Nov.09.2000)
(48)	SKW Trostberg AG: Safety Data Sheet; revised Jan.21.1999
(49)	Störfall-Verordnung vom 20.09.1991
(50)	Syracuse Research Corpration, Environmental Science Center http://esc.syrres.com/interkow/physdemo.htm
(51)	The Merck Index Online (SM), Feb. 20. 2001
(52)	TNO Division of Technology for Society (1988): The acute toxicity of Benzoguanamine to Leuciscus idus, Report No. R88/240, June 22, 1988
(53)	TRGS 900 von 04/1997 und TRGS 905 von 06/1997
(54)	Usden, Psychotropic Drugs and Related Compounds 2nd ed., 1972.
(55)	Vanderhoek,R.et al. (1973): J. Med. Chem. 16, 1305-1306
(56)	Weast,R.C. and M.J.Astle: CRC Handbook of Data on Organic Compounds. Volumes 1 and 2. Boca Raton, FL: CRC Press Inc.1985., p.V1 211
(57)	Weber, J.B.; Soil Sci Soc Amer Proc 34: 401-4 (1970)
(=0)	

(58) Weisburger, E.K.et al. (1978): J. Environ. Pathol. Toxicol. 2, 325-356

3.3.2 Distribution

The Fugacity Model (Mackay level III) treated with 2,4-diamino-6-phenyl-1,3,5-triazine

scenario 1

	em ission rate	conc.	am ount	percent	transfom ation	n rate [kg/h]
	[kg/h]	$[g/m^3]$	[kg]	[%]	reaction	advection
air	1,000	4.0E-09	4.0E+01	0.0	2.5E-01	4.0E-01
water	0	4.9E-02	9.9E+05	29.3	2.9E+00	9.9E+02
soil	0	1.5E+00	2.4E+06	70.5	6.9E+00	
sedin ent		5.2E-02	5.2E+03	0.2	5.0E-03	1.0E-01
		totalam ount	3.4E+06			

scenario 2

	em ission rate	conc.	am ount	percent	transfom ation	n rate [kg/h]
	[kg/h]	$[g/m^3]$	[kg]	[%]	reaction	advection
air	0	5.0E-15	5.0E-05	0.0	3.2E-07	5.0E-07
water	1000	5.0E-02	1.0E+06	99.5	2.9E+00	1.0E+03
soil	0	1.9E-06	3.0E+00	0.0	8.6E-06	
sed in ent		5.3E-02	5.3E+03	0.5	5.1E-03	1.1E-01
		totalam ount	1.0E+06			

scenario 3

	em ission rate	conc.	am ount	percent	transfom ation	n rate [kg/h]
	[kg/h]	$[g/m^3]$	[kg]	[%]	reaction	advection
air	0	1.0E-12	1.0E-02	0.0	6.3E-05	1.0E-04
water	0	4.9E-02	9.9E+05	24.9	2.9E+00	9.9E+02
soil	1000	1.9E+00	3.0E+06	75.0	8.6E+00	
sedin ent		5.2E-02	5.2E+03	0.1	5.0E-03	1.0E-01
		totalam ount	4.0E+06			

scenario 4

	em ission rate	conc.	am ount	percent	transfom atio	n rate [kg/h]
	[kg/h]	$[g/m^3]$	[kg]	[%]	reaction	advection
air	600	2.4E-09	2.4E+01	0.0	1.5E-01	2.4E-01
water	300	5.0E-02	9.9E+05	36.4	2.9E+00	9.9E+02
soil	100	1.1E+00	1.7E+06	63.4	5.0E+00	
sedim ent		5.2E-02	5.2E+03	0.2	5.1E-03	1.0E-01
		+- +- 1 +	9.75+06			

totalamount 2.7E+06

molecul	arweight	187.2	M easured
m elting p	oint [C]	228	M easured
vapor pre	ssure [Pa]	2.00E-05	Estinated
water solul	oility [g/m³]	320	M easured
bg	Kow	1.38	Estin ated
	in air	110	Estinated
halflife [h]	'n water	240000	Estin ated
	in soil	240000	Estinated
	in sedim ent	720000	Estinated

Environm etalparam eter

		vo l um e	depth	area	organic	lipid content	density	residence
		[m ³]	[m]	[m ²]	carbon [-]	[-]	$[kg/m^3]$	tine[h]
	air	1.0E+13					1.2	100
bulk air	particles	2.0E+03						
	total	1.0E+13	1000	1E+10				
	water	2.0E+10					1000	1000
bu k water	particles	1.0E+06			0.04		1500	
	fish	2.0E+05				0.05	1000	
	total	2.0E+10	10	2E+09				
	air	3.2E+08					1.2	
buk soil	water	4.8E+08					1000	
	solid	8.0E+08			0.04		2400	
	total	1.6E+09	0.2	8E+09				
bu k	water	8.0E+07					1000	
sedim ent	solid	2.0E+07			0.06		2400	50000
	total	1.0E+08	0.05	2E+09				

Intermedia Transport Parameters fi/h]

air side air-water M TC	5	soilairboundary byerMTC	5
water side air water M TC	0.05	sedim ent-water M TC	1E-04
rain rate	1E-04	sedin ent deposition	5E-07
aerosoldeposition	6E-10	sedin ent resuspension	2E-07
soilair phase diffusion M TC	0.02	soilwater runoff	5E-05
soilwaterphase diffusion M TC	1E-05	soil solid runoff	1E-08

5.5 Genetic toxicity in vitro (1)

Chromosomal aberration test on CHL cells in vitro treated with 2,4-diamino-6-phenyl-1,3,5-triazine (BG)

<u>.</u>		Time of	No. of	N	o. of s	tructu	al abe	rration	IS	Total	Total	Polploid	Ju	dge
Compd	Dose	exposure	cells							+gap	-gap	cells		
	(ug/ml)	(hr)	analised	gap	ctb	cte	csb	cse	oth	(%)	(%)	(%)	SA	Pol
BG	0	24	200	1	1	0	0	0	0	1.0	0.5	0.0	-	-
BG	100	24	200	1	1	1	0	0	0	1.5	0.5	0.0	-	-
BG	200	24	200	4	0	2	0	0	0	3.0	1.0	0.5	-	-
BG	400P	24	200	4	5	9	0	0	0	9.0	7.0	0.0	+/-	-
BG	800P	24	Toxic											
MMC*	0.05	24	200	7	24	51	0	0	0	35.5	33.5	0.0	+	-
BG	0	48	200	0	0	0	0	0	0	0.0	0.0	0.0	-	-
BG	100	48	200	3	1	1	0	0	0	2.5	1.0	1.0	-	-
BG	200	48	200	3	4	16	0	0	0	11.0	9.5	1.0	+	-
BG	400P	48	200	15	31	45	0	0	0	35.5	33.5	0.0	+	-
BG	800P	48	141	8	15	29	0	0	0	29.1	26.2	0.0	+	-
MMC*	0.025	48	200	7	22	59	0	0	1	37.5	37.0	0.5	+	-

Experiment no.1 on the test of continuous treatment

Confirmative examination 1

		Time of	No. of	N	lo. of s	structu	ral abe	rratio	ns	Total	Total	Polploid	Juc	dge
Compd	Dose	exposure	cells							+gap	-gap	cells		
-	(ug/ml)	(hr)	analised	gap	(%)	(%)	(%)	SA	(%)	(%)	(%)	(%)	SA	Pol
BG	0	48(24)	200									0.5		-
BG	200	48(24)	200									0.0		-
BG	400P	48(24)	200									2.5	NE	-
BG	800P	48(24)	200									11.5		+
BG	1600P	48(24)	200									14.5		+

Confirmative examination 2

		Time of	No. of	N	o. of s	structu	ral abe	rratio	ns	Total	Total	Polploid	Ju	dge
Compd	Dose	exposure	cells							+gap	-gap	cells		
	(ug/ml)	(hr)	analised	gap	(%)	(%)	(%)	SA	(%)	(%)	(%)	(%)	SA	Pol
BG	0	24	200	0	0	0	0	0	0	0.0	0.0	0.0	-	-
BG	300	24	200	3	2	2	0	0	0	3.0	2.0	0.5	-	-
BG	400P	24	200	0	5	5	0	0	0	5.0	5.0	0.0	+/-	-
BG	500P	24	200	3	7	4	0	0	0	7.0	5.5	0.0	+/-	-
BG	600P	24	200	1	5	5	0	0	0	5.5	5.0	0.0	+/-	-
BG	700P	24	200	4	11	7	0	0	1	10.0	8.0	0.5	+	-
BG	800P	24	200	2	8	12	1	1	0	11.0	10.0	0.0	+	-
BG	900P	24	Toxic											
MMC*	0.05	24	200	5	28	59	0	0	0	39.5	39.5	0.0	+	-

*: positive control MMC = Mitomycin C

ctb: Chromatid break cte: Chromatid exchange csb: Chromosome break cse: Chromosome exchange oth: others SA: structual aberration Pol: polyploid cell

P: Visible precipitation was shown at the end of exposure period

5.5 Genetic toxicity in vitro (2)

Chromosomal aberration test on CHL cells in vitro short tearm treated with 2,4-diamino-6-phenyl-1,3,5-triazine (BG)

		Time of	No. of	N	o. of s	tructu	ral abe	rratio	15	Total	Total	Polploid	Ju	lge
Compd	Dose	exposure	cells							+gap	-gap	cells		-
	(ug/ml)	(hr)	analised	gap	(%)	(%)	(%)	SA	(%)	(%)	(%)	(%)	SA	Pol
BG	0	6-(18)	200	0	0	1	0	0	0	0.5	0.5	0.0	-	-
BG	1250P	6-(18)	200	4	2	1	0	0	0	3.5	1.5	0.0	-	-
BG	2500P	6-(18)	200	2	3	2	0	0	0	3.5	2.5	1.0	-	-
BG	5000P	6-(18)	200	3	2	0	0	0	0	2.5	1.0	0.0	-	-
CP*	12.5	6-(18)	200	0	2	0	0	0	0	1.0	1.0	0.0	-	-
+S9														
-							1 1			m 1	m 1		-	
		Time of	No. of	N	0. 0f s	tructu	ral abe	rratio	1S	Total	Total	Polploid	Juo	lge
Compd	Dose	Time of exposure	No. of cells	Ν	o. of s	tructu	ral abe	rratio	15		Total -gap	Polploid cells	Ju	dge
Compd	Dose (ug/ml)			N gap	o. of s	tructu	ral abe (%)	rratioi SA	ns (%)	Total +gap (%)			Juo SA	lge Pol
Compd BG		exposure	cells							+gap	-gap	cells		C
	(ug/ml)	exposure (hr)	cells analised	gap	(%)	(%)	(%)	SA	(%)	+gap (%)	-gap (%)	cells (%)		C
BG	(ug/ml) 0	exposure (hr) 6-(18)	cells analised 200	gap	(%)	<u>(%)</u> 0	<u>(%)</u> 0	SA 0	<u>(%)</u> 0	+gap (%) 0.0	-gap (%) 0.0	cells (%) 0.0		C
BG BG	(ug/ml) 0 19.5	exposure (hr) 6-(18) 6-(18)	cells analised 200 200	<u>gap</u> 0 1	(%) 0 1	(%) 0 0	(%) 0 0	SA 0 0	(%) 0 0	+gap (%) 0.0 1.0	-gap (%) 0.0 0.0	cells (%) 0.0 0.0	SA - -	C
BG BG BG	(ug/ml) 0 19.5 39.1	exposure (hr) 6-(18) 6-(18) 6-(18)	cells analised 200 200 200	<u>gap</u> 0 1 0	(%) 0 1 0	(%) 0 0 3	(%) 0 0 0	SA 0 0 0	(%) 0 0 0	+gap (%) 0.0 1.0 1.5	-gap (%) 0.0 0.0 1.5	cells (%) 0.0 0.0 0.0	SA - -	C

Experiment no.2 on the test of short-term treatment -S9

Confirmative examination +S9

		Time of	No. of	lo. of No. of structural aberrations						Total	Total	Polploid	Juo	dge
Compd	Dose	exposure	cells							+gap	-gap	cells		
	(ug/ml)	(hr)	analised	gap	(%)	(%)	(%)	SA	(%)	(%)	(%)	(%)	SA	Pol
BG	0	6-(18)	200	0	0	2	0	0	0	1.0	1.0	0.5	-	-
BG	60.0	6-(18)	200	0	0	2	0	0	0	1.0	1.0	0.5	-	-
BG	80.0	6-(18)	200	1	1	10	0	0	0	5.0	5.0	0.5	+/-	-
BG	100P	6-(18)	200	1	14	34	0	0	1	20.0	20.0	0.5	+	-
BG	120P	6-(18)	200	9	29	57	0	0	1	31.5	30.5	0.0	+	-
BG	140P	6-(18)	200	5	18	47	0	0	0	25.5	25.0	0.0	+	-
BG	160P	6-(18)	Toxic											
CP*	12.5	6-(18)	200	3	24	94	0	0	0	50.0	49.5	0.0	+	-

*: positive control CP = Cyclophosphamide

ctb: Chromatid break cte: Chromatid exchange csb: Chromosome break cse: Chromosome exchange oth: others SA: structual aberration Pol: polyploid cell

P: Visible precipitation was shown at the end of exposure period

DATE: 08.02.2002

5.5 Genetoxicity in vitro (3)

Chromosomal aberration test on Human lymphocytes in vitro treated with 2,4-diamino-6-phenyl-1,3,5-triazine	
aberration(%) per 100cells	

Harvest S9 Dose		Total	Chromatid		Chro	omosome	Others	Total at	Total aberration		ant cells	
hr	57	ug/ml	gaps	break	exchange	break	exchange	Х	+gaps	-gaps	+gaps	-gaps
20	-S9	negative	0.5	0	0	0	0	0	0.5	0	0.5	0
		control										
		78.125	0	0	0	1.5	0	0	1.5	1.5	1	1
		156.25	0	1	0	0	0	0	1	1	1	1
		312.5	0.5	0.5	0	0.5	0	0	1.5	1	1.5	1
		625P 1250P	4.5	3.5	0.5	0.5	0	0	9	4.5 2.5	7.5***	
		positive	1	1.5	0	1	0	0	3.5	2.3	3	2
		control (EMS 500)	19.3	22	7.3	4	0	0.7	52.7	33.3	38	26.7
		(ENIS 300))									
20	+S9	negative control	1	0	0	0	0	0	1	0	1	0
		78.125	0.5	0.5	0	0	0	0	1	0.5	1	0.5
		156.25	0	0	0	0	0	0	0	0	0	0
		312.5	1	0	0	1.5	0	0	2.5	1.5	2	1
		625P	0	0.5	0	0.5	0	0	1	1	1	1
		1250P	1	3	0	0	0	0	4	3	3.5	2.5*
		positive control	28.5	19	8	3	0	0	58.5	30	31.0***	19.5***
		(CP 25)										
30	-S9	negative										
50	07	control	0.5	0	0	0	0	0	0.5	0	0.5	0
		78.125	1.5	0	0	0	0	0	1.5	0	1.5	0
		156.25	0	0	0	0.5	0	0	0.5	0.5	0.5	0.5
		312.5	0	0	0	0	0	0	0	0	0	0
		625P	9	3.5	1	1	0	0	14.5	5.5	13.5***	5.0***
		1250P	8.5	2	1	1	0	0	12.5	4	8.0***	3.0*
		2500P	13.5	7.5	1	1.5	0	0	23.5	10	17.5***	7.5***
		positive	30	42	26	4	0	0.7	106	76	59.0***	50***
		control	50	72	20	Ŧ	0	0.7	100	70	57.0	50
		(EMS 500)										
30	+S9	negative										
	~	control	0	0	0	2	0	0	2	2	1	1
		78.125	0.5	0.5	0	0	0	0	1	0.5	1	0.5
		156.25	0.5	0.5	0	0	0	0	1	0.5	1	0.5
		312.5	1	0	1	0	0	0	2	1	1	0.5
		625P	0	0	0	0	0	0	0	0	0	0
		1250P	4	2	0	2	0	0	8	4	7.0*	3
		positive control	3	19	8	2	0.5	0.5	32.5	29.5	16.0***	15.5***
		(CP 25)										
			oitate ob	served	during exp	osure p	period					

1: precipitate observed during exposure period
X: > 10 aberrations per cell (not induced in total aberrations)
* p <0.05
** p <0.01
*** p <0.001
EMS: ethly methanesulphonate

CP: cyclophosphamide

5.5 Genetoxicity in vitro (4)

Mammalian cell gene mutation test on Mouse lymphoma cells (L5178) *in vitro* treated with 2,4-diamino-6-phenyl-1,3,5-triazine

	-S9			+S9					
Treatment	RS	MF/SV	Treatment	RS	MF/SV				
ug/ml	%	x10E-6	ug/ml	%	x10E-6				
0	100.00	66.88	0	100.00	52.48				
78.1	87.96	40.99	78.1	92.82	53.10				
156.25	97.87	86.56	156.25	100.36	116.76				
312.5	95.79	69.74	312.5	96.17	138.08				
625P	98.57	80.63	625P	87.71	155.68*				
1250P	93.10	91.26	1250P	70.25	129.81				
EMS 1000	58.32	973.81	Cp 7.5	27.76	1179.54				
	Linear	NS		Linear trend	**				
	trend								

Experiment no.1 on the test of genotoxicity

Experiment no.2 on the test of genotoxicity

	-S9		+S9					
Treatment	RS	MF/SV		Treatment	RS	MF/SV		
ug/ml	%	x10E-6		ug/ml	%	x10E-6		
0	100.00	96.51		0	100.00	90.23		
156.25	114.67	137.08		156.25	118.96	93.22		
312.5	112.95	69.13		312.5	118.96	152.31		
625P	103.33	94.85		625P	125.34	141.97		
1250P	116.43	104.08		1250P	105.89	198.63*		
2500P	104.86	107.49		2500P	116.36	155.90		
Ems 1000	68.80	1139.62		Cp 7.5	78.56	717.52		
	Linear	NS			Linear trend	*		
	trend							

P: precipitate observed during exposure period

* p < 0.05

** p < 0.01

EMS: ethly methanesulphonate

CP: cyclophosphamide

RS: rerative survival

MF/SVx10E-6: mutation frequency per 10xE6 cells per survivor

NS: not significant

% small colonies on experiment no.2 with metabolic activation

			Total colonies		Large colonies		Small colonies		small
dose	P.E.	%	MF/SV	IMF/SV	MF/SV	IMF/SV	MF/SV	IMF/SV	colonies
ug/ml		control	x10E-6	x10E-6	x10E-6	x10E-6	x10E-6	x10E-6	%
0	57.7	100	90.23	-	58.3	-	29.8	-	34
156.25	59.0	102	93.22	2.99	54.7	-3.6	36.1	6.3	40
312.5	59.9	104	152.31	62.08	56.2	-2.1	89.5	59.7	61
625P	65.3	113	141.97	51.74	53.7	-4.6	82.0	52.2	60
1250P	52.3	90	198.63	108.40*	75.1	16.8	113.6	83.8	60
2500P	51.5	89	155.90	65.67	73.5	15.2	76.2	46.4	51
Cp 7.5	40.7	70	717.52	627.29	92.9	34.6	566.6	536.8	84

Linear trend: slope = 3.36x10E-08; variance = 2.45x10E-16; b/sb = 4.592*

P.E.: plating efficiency

IMF/SV: induced MF/SV