FOREWORD

INTRODUCTION

ETHYLTRIACETOXYSILANE

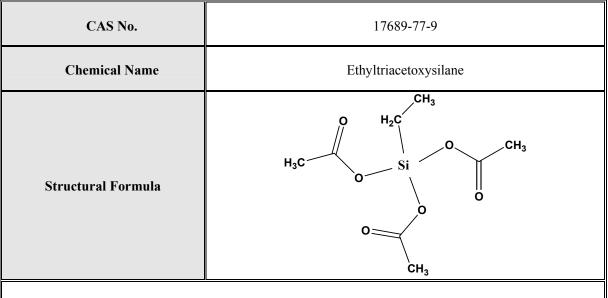
CAS N°: 17689-77-9

SIDS Initial Assessment Report

For

SIAM 21

Washington, DC, 18-21 October 2005


1. Chemical Name: Ethyltriacetoxysilane 17689-77-9 2. CAS Number: 3. Sponsor Country: United States Oscar Hernandez Director, Risk Assessment Division (7403M) U.S. Environmental Protection Agency 1200 Pennsylvania Ave, N.W. Washington, DC 20460 Phone: 202-564-7641 4. Shared Partnership with: Silicones Environmental Health and Safety Council (SEHSC): Clariant LSM (Florida), Inc. **Degussa** Corporation **Dow Corning Corporation GE Silicones** Rhodia Inc. Shin-Etsu Silicones of America Wacker Silicones, A Division of Wacker Chemical Corporation 5. Roles/Responsibilities of the Partners: Name of industry sponsor Silicones Environmental Health and Safety Council /consortium Contact point: Tracy Hill SEHSC 703-904-4322 thill@sehsc.com Process used The SEHSC produced the documents; EPA reviewed the documents and provided additional information where there were data gaps. 6. Sponsorship History How was the chemical or Documents were prepared and reviewed by industry prior to • submission to sponsor country. Sponsor country conducted category brought into the SIDS Program? reviews of submitted data and offered comments to industry. Industry prepared and resubmitted documents for consideration at SIAM 21. no testing (X)

7.

9.

		testing ()
7.	Review Process Prior to the SIAM:	The U.S. EPA reviewed this case.
8.	Quality check process:	Literature searches were conducted by sponsor country to determine if all relevant data have been included in this submission.
9.	Date of Submission:	December 2004
10	. Comments:	1. Acetic acid is currently sponsored by the Czech Republic.
		2. Acetic acid and its salts were sponsored by the American Chemistry Council Acetic Acid and Salts Panel under the USEPA HPV Challenge Program.
		3. Data from the structural analogue, vinyltriacetoxysilane, is considered to be representative of acetic acid, due to the rapid hydrolysis rate of this material.

SIDS INITIAL ASSESSMENT PROFILE

SUMMARY CONCLUSIONS OF THE SIAR

Analogue Justification

Ethyltriacetoxysilane undergoes rapid hydrolysis in moist/aqueous environments (t1/2 is less than 13 seconds) to acetic acid and the corresponding trisilanol, thus observed toxicity is likely due primarily to acetic acid. Abiotic hydrolysis products of the test substance undergo continuous condensation reactions to produce higher molecular weight cyclic and linear siloxanes (the number-average and weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis. While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. The structural analogue methyltriacetoxysilane (CAS number 4253-34-3) has been used for in vitro bacterial gene mutation and chromosomal aberrations endpoints. The hydrolysis product, acetic acid (CAS number 64-19-7) and its salts [calcium acetate (CAS number 62-54-4), potassium acetate (CAS number 127-08-2) and sodium acetate (CAS number 127-09-3)]), have been used to assess the acute aquatic toxicity (fish, aquatic invertebrate and algae), repeated dose toxicity, fertility and developmental toxicity endpoints. Acetic acid and its salts are grouped together because of their close structural relationships and the salts are the neutralized form of the acid that can be more easily administered, their natural occurrence in plants and animals, and their fundamental role in cell metabolism, particularly in the tricarboxylic acid cycle (also known as the citric acid or Kreb's cycle), which is where humans get their energy. In addition the structural analogue vinyltriacetoxysilane (CAS number 4130-08-9) has been used to support the acute aquatic toxicity endpoints. Data from both ethyltriacetoxysilane and vinyltriacetoxysilane are representative of acetic acid, based on the rapid hydrolysis of these materials.

Human Health

The acute toxicity of ethyltriacetoxysilane is described by an LD50 rat (oral) = 1462 mg/kg. Clinical signs included decreased activity; lethargy; lacrimation; salivation; irregular gait; hunched posture; decreased body weight, food consumption and fecal volume; red urine; red staining of the snout, eyes and extremities; and labored respiration. Although acute toxicity data for the inhalation or dermal routes of exposure are not available for ethyltriacetoxysilane, these exposures will likely result in local site of contact effects from acetic acid. Ethyltriacetoxysilane is severely irritating and corrosive to the skin, is expected to be severely irritating to the eyes of animals, and is likely to be a respiratory irritant based on production of acetic acid following hydrolysis.

In a 7-day oral range-finding study (gavage) rats were treated with undiluted ethyltriacetoxysilane (dose levels of

0, 17 (males), 23 (females), 100, 500 and 1000 mg/kg/d). Ethyltriacetoxysilane rapidly hydrolyzes (in seconds) to acetic acid and a trisilanol (3:1). The silanol generated is insignificant in both quantity and toxicity relative to the production of acetic acid and its associated toxicity. Animals from the 17 (males), 23 (females) and 100 mg/kg/day dose groups survived to day 7. Animals from the 500 and 1000 mg/kg/day dose groups were sacrificed after the third dose as a consequence of two deaths (one from each group), marked body weight loss, and severity of lesions (ulceration and erosion of stomach and esophagus) observed in necropsied animals. The stomach lesions observed resembled irritation from acetic acid production. This 7-day range-finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a longer duration repeated dose study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic Based on the findings of the 7-day range-finder, a longer duration study will present technical difficulty acid. questioning dosing accuracy and a very low nominal systemic dose. Additional testing (repeated dose, reproductive effects or developmental toxicity) with ethyltriacetoxysilane has not been conducted. Toxicity is represented by an irritative mechanism following single or repeated dosing, likely due to production of acetic acid during hydrolysis. NOAELs following repeated exposure to acetic acid and its salts range from 210 mg/kg bw/day (2-4 month acetic acid drinking water study; systemic toxicity) to 3600 mg/kg bw/day (acetic acid, sodium salt, 4 week dietary study; no effects reported). Signs of irritation/corrosion at the site of contact as well as systemic toxicity have been reported. Prolonged inhalation exposure to acetic acid results in muscle imbalance, increase in blood cholinesterase activity, decreases in albumins and decreased growth at concentrations greater than 0.01 mg/m³/day.

Groups of 20 mice/sex were given 0.025% sodium acetate in the drinking water (about 60 mg/kg bw/day) for 1 week before breeding, during a 9-day breeding period and (females only) throughout pregnancy, lactation and until the offspring were weaned at 3 weeks of age. The male offspring were given the same solution until they were 5-7 weeks old and were then examined in a 24-hour activity test. No effects on fertility were observed. Examination of the litters revealed no overt deformities, and pup weights were normal at day 1 and day 21. The activity of offspring of the treated group was lower than that of controls during the first 12 hours but was similar during the second 12 hours. It is unknown if the decreased activity observed in the sodium acetate treated group to was a result of exposure in utero and/or post-weaning, since the pups were exposed during both time periods. Acetic acid had no effects on implantation or on maternal or fetal survival in rats, mice or rabbits dosed via gavage on days 6-19 to doses up to 1600 mg/kg/day. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring in the controls. Sodium acetate had no effect on parents or offspring when mice were administered 1000 mg/kg bw, by gavage on days 8-12 of gestation.

In vitro, ethyltriacetoxysilane and methyltriacetoxysilane were negative in bacterial mutagenicity assays Methyltriacetoxysilane did not induce chromosomal aberrations in CHO cells.

Environment

The melting point of ethyltriacetoxysilane is 8.4°C and the boiling point is 227 °C at 1013 hPa. The vapor pressure is 0.05 hPa at 20 deg C. The estimated water solubility of ethyltriacetoxysilane is 42 g/L; the estimated log Kow is 0.74. The water solubility and log Kow values may not be reliable because the chemical is hydrolytically unstable. The overall reaction half-life in air is estimated to be less than 3 minutes because of rapid hydrolysis of the material with moisture in the atmosphere. Photodegradation as a mode of removal is therefore unlikely because ethyltriacetoxysilane is hydrolytically unstable in this medium. In addition, photodegradation of the parent silane is not expected to be a significant degradation process in the aquatic environment due to the rapid rate of hydrolysis. Although, the vapor pressure indicates that ethyltriacetoxysilane resides in the atmosphere and may undergo photodegradation due to ozone and/or hydroxyl radicals, due to extremely rapid hydrolysis, the substance is not expected to reside in the air compartment and the vapor pressure of the substance may not be relevant.

Ethyltriacetoxysilane is hydrolytically unstable ($t_{1/2} < 13$ seconds) over a range of environmentally relevant pH and temperature conditions. At pH 7, the half-life is = <13 seconds. Rapid hydrolysis of this material produces acetic acid and trisilanols.

Level III Fugacity modeling, using loading rates for Air, Soil, and Water of 1000 kg/h for each medium, shows the following percent distribution: Air = 47.3%; Soil = 47.4%; Water = 5.3%; Sediment = 0.0. However, ethyltriacetoxysilane is unlikely to be found in the environment, as this material is hydrolytically unstable. Ethyltriacetoxysilane is readily biodegradable; however this material rapidly hydrolyzes and generates 3 moles of acetic acid for every mole of parent material. Thus, the biodegradation observed is likely reflective of the hydrolysis product, acetic acid. The biodegradation rate for acetic acid after 14 days under aerobic conditions is 74%. Bioaccumulation is not anticipated since this material is hydrolytically unstable.

Ethyltriacetoxysilane undergoes rapid hydrolysis in aquatic media, and thus the exposures to

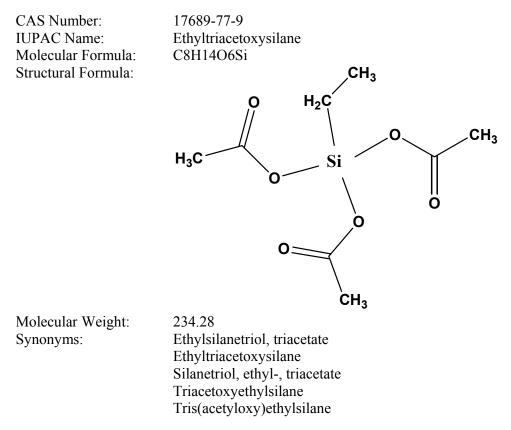
ethyltriacetoxysilane are likely to be transient. Limited data are available for ethyltriacetoxysilane, therefore, data from a structural analog, vinyltriacetoxysilane, as well as the primary hydrolysis product, acetic acid are used to address the acute aquatic toxicity endpoints. The 96-hour LC50 of ethyltriacetoxysilane for Brachydanio rerio is 251 mg/L (the test media was not neutralized). Studies have been conducted on a structural analog, vinyltriacetoxysilane, as well as the primary hydrolysis product, acetic acid. The 96-hour LC50 of vinyltriacetoxysilane for Oncorhyncus mykiss is 51 mg/L and for Lepomis macrochirus is 68 mg/L (in both cases the test media was not neutralized).. The 72 hour LC50s for acetic acid are 75, 79-88 (pH <5.9) and 251 mg/L (several species of fish). The 48 hour EC50 for ethyltriacetoxysilane is 62 mg/L for Daphnia magna. The 48 hour EC50 of vinyltriacetoxysilane is 100 mg/L for Daphnia magna (the test media was not neutralized. Under static conditions, the 48 hour EC50 for acetic acid is 65 mg/L for aquatic invertebrates (the test media was not neutralized). When the test solutions are neutralized, the static EC50 for acetic acid is 6000 mg/L. In renewal systems with aquatic invertebrates, 48 hour EC50s for acetic acid are 100 mg/L and 180 mg/L Ethyltriacetoxysilane toxicity to Scenedesmus subspicatus provided a 72 hour EC50 of 73 and 76 mg/L for biomass and growth rate, respectively (the test media was not neutralized). When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of the parent material is comparable to the reported toxicity of acetic acid ($EC_{50} = 50-450 \text{ mg/L}$, depending on test species). Studies have been performed with a silanol monomer, trimethylsilanol (CAS No. 1066-40-6). Although this silanol is not expected to be produced following hydrolysis of methyltriacetoxysilane. A semistatic 96h study with trimethylsilanol and rainbow trout (Oncorhynchus mykiss) resulted in a No Observed Effect Concentration (NOEC) of 128 mg/L and an LC_{50} of 271 mg/L.

Exposure

The commercial use of this material is almost exclusively as a cross linker for silicone sealants and adhesives. The final formulated sealant and adhesive is sold in consumer, industrial and construction markets. In production, this material is mostly handled in closed systems. Necessary engineering controls during production include proper ventilation, containment, safety equipment and actual hardware designed to minimize exposure, through splashing, or exposure to the air. Transfer of this material is in closed pipe, drums, or tanks rather than in open systems to minimize loss of this material (through hydrolysis). Ethyltriacetoxysilane is transported from the production site as the parent silane to sealant formulators. The parent silane partially reacts during sealant formulation and then completely reacts during curing of the sealant into the polymer matrix and is no longer available for consumer or worker exposure. Ethyltriacetoxysilane does not volatilize during cure of sealants. Instead this material hydrolyzes and condenses, releasing acetic acid. Therefore, there is no human exposure to ethyltriacetoxysilane from use in silicones sealants. Generally, ethyltriacetoxysilane is used as a cross linker at 3% to 5%. As ethyltriacetoxysilane is compounded into a consumer or industrial sealant or adhesive, it reacts with the silicone. After curing the parent silane becomes crosslinked into the silicone rubber matrix and no longer exists, this greatly reduces the potential for consumer or worker exposure. Any toxicological effects of the silane are greatly reduced as a result of this crosslinking process. The production volume of ethyltriacetoxysilane in the sponsor country was 891 tonnes in 2001.

The reactive nature of this material destroys the parent material in any moisture-containing environment, thus limiting environmental exposure to the parent silane. In a spill situation, the parent material is hydrolyzed; the rapid hydrolysis means that the parent silane is unlikely to be found in the environment. If ethyltriacetoxysilane monomer is slowly released into the environment such that resulting concentrations of the parent compound are low, it is less likely that polymerization will occur and more likely that free triol or short-chain oligomers will result. The spectrum of by-products will depend upon the initial concentration of the parent compound.

RECOMMENDATION AND RATIONALE FOR THE RECOMMENDATION AND NATURE OF FURTHER WORK RECOMMENDED


Human Health: The chemical possesses properties indicating a hazard for human health (severe irritation and corrosivity caused by acetic acid). Due to the extremely rapid hydrolysis to acetic acid and the corresponding trisilanol and based on exposure data presented by the Sponsor country, the parent material will not be available for exposure, and therefore this chemical is currently of low priority for further work. The identified hazards should nevertheless be noted by chemical safety professionals and users.

Environment: The chemical has properties indicating a hazard for the environment (acute aquatic EC/LC50 values between 1 and 100 mg/l). However the chemical is currently of low priority for further work for the environment because of its rapid hydrolysis and its limited potential for bioaccumulation.

SIDS Initial Assessment Report

1 IDENTITY

1.1 Identification of the Substance

1.2 Purity/Impurities/Additives

Purity: >95-100% Impurities: Acetic acid (CAS number 64-19-7) <5%

1.3 Physico-Chemical properties

Property	Value	Comment
Physical state	Liquid	
Melting point	8.4°C	Principe (2000) Other reported values:
		5 °C, Dow Corning (1964).
Boiling point	227 °C at 1013 hPa	Smith, A.L. (1988) Other reported values: 201 at 1013 hPa (Hobbs, 1971), 220 °C at 1013 hPa (General Electric, 2000)
Relative density	1.1437 at 20 °C	Smith (1988)
Vapour pressure	.05 hPa at 20 °C	Smith (1988) Other reported values: .025 hPa at 20 °C, Dow Corning (2001) Additional vapor pressures at higher temperatures are provided in the dossier.
Water solubility	41.6 g/L at 25°C	USEPA (2000) Estimated. This value may not be applicable because the material is hydrolytically unstable
Partition coefficient n- octanol/water (log value)	0.74	USEPA (2000) Estimated. This value may not be applicable because the material is hydrolytically unstable Additional value: -1.87 (methylsilanetriol) USEPA(2000)
Henry's law constant	Not available	

Table 1Summary of physico-chemical properties

1.4 Analogue Justification

Ethyltriacetoxysilane undergoes rapid hydrolysis (t1/2 is less than 13 seconds). The primary hydrolysis products are known to be acetic acid and the corresponding trisilanols. The structural analogue, methyltriacetoxysilane (CAS number 4253-34-3) has been used for in vitro bacterial gene mutation and chromosomal aberrations endpoints. The hydrolysis product, acetic acid (CAS number 64-19-7) and its salts [calcium acetate (CAS number 62-54-4), potassium acetate (CAS number 127-08-2) and sodium acetate (CAS number 127-09-3) salts]), have also been used to assess the acute aquatic toxicity (fish, aquatic invertebrate and algae), the repeated dose toxicity, and fertility and developmental toxicity endpoints. Acetic acid and its salts are grouped together because of their close structural relationships and the salts are the neutralized form of the acid that can be more easily administered, their natural occurrence in plants and animals, and their fundamental role in cell metabolism, particularly in the tricarboxylic acid cycle (also known as the citric acid or Kreb's cycle), which is where humans get their energy. In addition, the structural analogue, vinyltriacetoxysilane (CAS number 4130-08-9) has been used to support the acute aquatic toxicity endpoints. Data from both ethyltriacetoxysilane and vinylacetoxysilane are representative of acetic acid based on the rapid hydrolysis of these materials.

2 GENERAL INFORMATION ON EXPOSURE

In production, this material is mostly handled in closed systems. Necessary engineering controls during production include proper ventilation, containment, safety equipment and actual hardware designed to minimize exposure, through splashing, or exposure to the air. Transfer of this material is in closed pipe, drums, or tanks rather than in open systems to minimize loss of this material (hydrolysis). Ethyltriacetoxysilane is transported from the production site as the parent silane to sealant formulators. The parent silane partially reacts during sealant formulation and then completely reacts during curing of the sealant into the polymer matrix and is no longer available for consumer or worker exposure. Ethyltriacetoxysilane does not volatilize during cure of sealants. Instead this material hydrolyzes and condenses, releasing acetic acid. Therefore, there is no human exposure to ethyltriacetoxysilane from use in silicones sealants.

Ethyltriacetoxysilane undergoes rapid hydrolysis, which occurs during testing, such that observed toxicity is likely due primarily to the hydrolysis products acetic acid, with some potential exposure to trisilanols, and silanol oligomers. Abiotic hydrolysis studies show that hydrolysis products from the test substance undergo continuous, condensation reactions to produce higher molecular weight cyclic and linear siloxanes (the number-average and weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the 1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively) (Sun, Y. et al., 2002). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available.

2.1 **Production Volumes and Use Pattern**

In the Sponsor Country, production volume in 2001 was 891 tonnes. Ethyltriacetoxysilane is produced in North America, Europe and Asia.

In order to prevent the rapid hydrolysis and subsequent loss of this material in production, it is mostly handled in closed systems. Necessary engineering controls during production include proper ventilation, containment, safety equipment and actual hardware designed to minimize exposure through splashing, or exposure to the air. Transfer of this material is in closed pipes or closed containers rather than in open systems to minimize loss of this material (hydrolysis) although some customers may transfer the material in open systems. Ethyltriacetoxysilane is transported from the production site as the parent silane to formulators. Generally, ethyltriacetoxysilane is used as a cross linker at 3% to 5%. As ethyltriacetoxysilane is compounded into a consumer or industrial sealant or adhesive, it reacts with the silicone. After curing the parent silane becomes cross-linked into the silicone rubber matrix and no longer exists, this greatly reduces the potential for consumer or worker exposure.

The commercial use of this material is almost exclusively as a cross linker for silicone sealants and adhesives. The final formulated sealants and adhesives are sold in consumer, industrial and construction markets.

During curing of the silicone sealant or adhesive the ethyltriacetoxysilane hydrolyzes as it reacts with silanol polymers and atmospheric moisture to form a cross-linked rubber. Since the acetoxy-functional silane is converted and bound within the substrate by polymer coupling, free silane is not present within the final products.

2.2 Environmental Exposure and Fate

2.2.1 Sources of Environmental Exposure

The reactive nature of this material destroys the parent material in any moisture-containing environment, thus limiting environmental exposure to the silane. Ethyltriacetoxysilane hydrolyzes rapidly (half-life of less than 13 seconds, depending on the aqueous solution temperature, pH and concentration of buffer). Hydrolysis of ethyltriacetoxysilane results in the formation of silanetriols which can then condense to form highly cross-linked, high molecular weight polymers, further reducing the potential for exposure. In the environment, at lower concentrations of the parent compound (and thus lower concentrations of the hydrolysis products), exposure to unpolymerized silanetriols may occur.

2.2.2 Photodegradation

Ethyltriacetoxysilane in air is not expected to undergo direct photolysis, but may undergo indirect photolysis through hydroxyl radical oxidation. The hydroxyl radicals reaction was calculated using EpiWin version 3.10. The overall OH rate constant is 1.32E-12 cm3/molecule-sec with an estimated half-life of 12 days with a hydroxyl radical concentration of 5E-5 molecule/cm3. Photodegradation as a mode of removal is unlikely as ethyltriacetoxysilane is hydrolytically unstable. Ethyltriacetoxysilane is highly reactive and hydrolytically unstable, such that acetic acid and ethylsilanetriol are rapidly generated upon contact with water or water vapor. Consequently, reaction with water vapor is likely the predominant degradation process for ethyltriacetoxysilane in air and the overall reaction half-life in air should include both the oxidation half-life and the hydrolytic half-life. The overall reaction half-life in air is estimated to be less than 3 minutes because of rapid hydrolysis of the material with moisture in the atmosphere. The ethylsilanetriol resulting from hydrolysis in the atmosphere is expected to further react with hydroxyl radicals.

2.2.3 Stability in Water

Ethyltriacetoxysilane is hydrolytically unstable ($t_{1/2} < 13$ seconds) over a range of environmentally relevant pH and temperature conditions (Sun and Taylor, 2001):

	Half life (seconds)				
рН	at 10 deg C	at 24.7 deg C	at 37 deg C		
4.0	*	<13	*		
7.0	*	<13	*		
9.0	*	<11	*		

Table 2Summary of stability in water

* In all experiments, test substance was completely hydrolyzed by the time the first 1H-NMR spectrum was acquired and remained unchanged thereafter. Initial spectra were acquired after 77-100 seconds and 7-8 spectra were subsequently acquired at 15 seconds intervals. Since the hydrolysis is so rapid, there are no data to determine the rate constants (k1, k2, and k3) for the hydrolysis reactions by regression modeling. Rate constants and half-lives could not be determined quantitatively, although the data are certainly adequate for estimating the upper limit of t1/2.

Rapid hydrolysis of this material produces acetic acid and trisilanols. The Si-C bond will not undergo further hydrolysis. The Si-C bond is hydrolytically stable. Only the acetoxy groups will be hydrolyzed. The transient silanol groups will condense with other silanols to yield:

Et-Si (OAc)₃ + 3H₂O --> Et-Si (OH)₃ + 3HOAc --> Et-Si (OR)₃

where **R** = **H** or EtSi(OR)₂

As a result, ethyl siloxane resins are generated.

2.2.4 Transport between Environmental Compartments

The EQC Level III Fugacity model (USEPA, 2000) was used to evaluate the fate, transport and distribution of ethyltriacetoxysilane between environmental matrices. Level III Fugacity modelling, using loading rates for Air, Soil, and Water of 1000 kg/h for each media, shows the following percent distribution: Air = 47.3%; Soil = 47.4%; Water = 5.3%; Sediment = 0.0% (Powell, D.E., 2003). However, ethyltriacetoxysilane is unlikely to be found in the environment, as this material is hydrolytically unstable.

2.2.5 Biodegradation

Available data (Degussa Huls AG, 1995a) indicate that ethyltriacetoxysilane is "readily biodegradable" with degradation being 74% after 21 days. However, ethyltriacetoxysilane rapidly hydrolyzes and generates 3 moles of acetic acid for every mole of parent material. Thus, the biodegradation observed is likely reflective of the hydrolysis product, acetic acid. . Acetic acid (CAS number 64-19-7) is readily degraded (74% after 14 days) under aerobic conditions (National Institute of Technology and Evaluation, 1993). Under anaerobic conditions, acetic acid is degraded 99% after 7 days under anaerobic conditions (Kameya T. et al., 1995; http://www.epa.gov/chemrtk/acetisalt/c13102rr.pdf).

Ethyltriacetoxysilane	Reliability	Acetic Acid	Reliability
74 % after 21 days (Degussa-Huls, 1995a)	(1) valid without restriction	74% after 14 days (National Institute of Technology and Evaluation, 1993)	(2) valid with restrictions
		99% biodegradation in 7 days (Kameya et al., 1995)	(2) valid with restrictions

 Table 3
 Summary of the biodegradation of ethyltriacetoxysilane and acetic acid

2.2.6 Bioaccumulation

Bioaccumulation is not anticipated since this material is hydrolytically unstable. Rapid hydrolysis of this material produces acetic acid and trisilanols. The Si-C bond will not undergo further hydrolysis. That bond is hydrolytically stable. Only the acetoxy groups will be hydrolyzed. The transient silanol groups will condense with other silanols to yield:

Et-Si(OR)₃ type resins where R=H or -Si(Et)(OR)₂

As a result silanol-functional resins are generated.

If the silane is slowly released such that the concentration of the resulting silanetriol is not high enough to result in polymerization, the trisilanol will exist largely as a monomer. The monomer is known to be water soluble by virtue of the three hydroxy groups on the silicon. It is expected that this silanetriol will have a low Kow (predicted value is -1.87) because of these hydroxy groups and so is not expected to bioaccumulate. The water solubility of the silanetriol cannot be measured because of the tendency to condense at concentrations greater than 500 ppm. It is known however

that the silanetriol and small condensation products will only precipitate out of water due to formation of larger, water insoluble polymeric resins.

2.3 Human Exposure

Ethyltriacetoxysilane is used as a crosslinker in silicone sealants, converting it from a paste consistency to a rubber. It is compounded into the sealant during manufacture and immediately reacts with the silanol groups of the silicone polymer, thus there is little or no free acetoxysilane once compounding is completed. When the sealant is applied the remaining acetoxy groups react with moisture in the air to crosslink and release acetic acid (by product). Touching the curing sealant could expose the person to acetic acid or possibly to acetoxy groups already anchored to the silicone polymer.

2.3.1 Occupational Exposure

In order to prevent the rapid hydrolysis and subsequent loss of this material, in production, it is mostly handled in closed systems. Necessary engineering controls during production include proper ventilation, containment, safety equipment and actual hardware designed to minimize exposure, through splashing, or exposure to the air. Transfer of this material is in closed pipes or containers rather than in open systems to minimize loss of this material (hydrolysis) although some customers may transfer the material using open systems. The material is shipped via air, road, and marine in returnable intermediate bulk containers (IBCs), drums, (plastic and steel) pails, cans, and non-returnable IBCs.

A worker may be exposed during compounding of sealant or adhesive to low levels (generally <5%) of the silane. Potential routes of exposure for workers include dermal contact, although the MSDS properly warns against contact with the skin. There is no known production process that involves aerosolized material or sprayed material. The vapour pressure of this material is low enough that vapour inhalation is not considered a potential route of exposure.

During professional or consumer use the packaging recommends wearing gloves to prevent dermal contact. It is unlikely that there is any exposure to the acetoxysilane itself (it is already covalently bonded to the silanol polymer and continuing to react into the matrix) as demonstrated by analysis of the headspace above the curing sealant, no acetoxysilane was detected (100 ppb detection limit). While dermal contact is discouraged (for uncured sealant), contact would expose the person principally to silicone polymer and acetic acid (from the hydrolyzing acetoxysilane attached to the silicone polymer).

2.3.2 Consumer Exposure

The use of ethyltriacetoxysilane into the consumer market is limited to use as a cross linker in sealants and adhesives. The substance is used at generally <5% in these formulations and reacts with silanol polymers in the formulation during compounding and then further reacts during exposure to atmospheric moisture. After curing the parent silane is consumed into the polymer matrix and no longer exists, greatly reducing the potential for consumer exposure. The curing time is generally less than 24 hours at room temperature and ambient humidity. In addition, a series of experiments was conducted to evaluate the potential for any exposure to ethyltriacetoxysilane during the curing reaction of RTV compositions (SEHSC, 2001). These compositions develop a cured skin within about 10-30 minutes and are fully cured within 8-16 hours, depending on relative humidity. A mass of two different commercially available RTV compositions was exposed to both humid and dry air under controlled conditions. The atmosphere over the curing RTV compositions was sampled and analyzed for ethyltriacetoxysilane by Gas Chromatography – Mass Spectroscopy

(GC-MS). No ethyltriacetoxysilane or silanetriols were detected in the atmosphere down to 100 ppb, rather the expected cure by-product acetic acid and other volatiles were found. Thus the consumer is not exposed to the acetoxysilane.

3 HUMAN HEALTH HAZARDS

Analogue Justification

Ethyltriacetoxysilane undergoes rapid hydrolysis, which occurs during testing, such that observed toxicity is likely due primarily to acetic acid. Endpoints have been addressed using data from methyltriacetoxysilane (chromosome aberration), and a hydrolysis product, acetic acid and its salts to assess the acute toxicity, repeated dose toxicity, and reproductive and developmental toxicity endpoints. Abiotic hydrolysis studies show that hydrolysis products from ethyltriacetoxysilane undergo continuous, condensation reactions to produce higher molecular weight cyclic and linear siloxanes. The polymerization products of ethyltriacetoxysilane are not volatile.

3.1 Effects on Human Health

3.1.1 Toxicokinetics, Metabolism and Distribution

No data available.

3.1.2 Acute Toxicity

This material has been tested for acute toxicity by the oral route of exposure. Acetic acid has also been tested for acute toxicity by the oral, inhalation and dermal routes of exposure.

Oral

The combined LD50 in male and female rats of ethyltriacetoxysilane is 1462 mg/kg (Huntingdon Life Sciences (2000). The clinical signs observed, delayed deaths, weight losses and gross necropsy findings all indicate an irritative mechanism of toxicity. The range of reported LD50s for acetic acid and its potassium, sodium and calcium salts, and sodium diacetate is 3250 to 5600 mg/kg bw (rat) (BIBRA, 1993; USEPA, 1991; Smyth et al., 1951; Smyth et al., 1969; and Woodward et al., 1941) and 4960 mg/kg bw (mouse) (BIBRA, 1993 and Woodward et al., 1941).

Since ethyltriacetoxysilane hydrolysis produce 3 moles of acetic acid for each mole of silanetriol, this would suggest that the estimated LD50 value for ethyltriacetoxysilane should be about one-third of the LD50 of acetic acid, which is 1083 - 1867 mg/kg bw (rat) and 1650 mg/kg bw (mouse) based on the reported LD50 values for acetic acid. This is in good agreement with the reported LD50 of ethyltriacetoxysilane of 1462 mg/kg bw (rat). The similarity of the predicted and measured acute oral LD50 of this material, as well as the noted findings of an irritative mechanism of toxicity supports the hypothesis that the toxicity of ethyltriacetoxysilane is due to the formation of acetic acid.

Inhalation

The 4-hour LC50 in rats of acetic acid is 11.4 mg/L (BASF, A.G., 1989).

Dermal

The dermal LD50 in rats of sodium diacetate is greater than 2000 mg/kg bw (USEPA, 1991).

Route	Ethyltriacetoxysilane	Reliability	Acetic Acid and its salts	Reliability
Oral	Rat; LD50 =1462 mg/kg (Huntingdon Life Sciences (2000)	(1) valid without restriction	Rat; LD50 = 4280 mg/kg bw (calcium salt) (Smyth et al., 1951; Smyth et al., 1962)	(2) valid with restrictions.
			Rat; LD50 = 3250 mg/kg bw (potassium salt) (Smyth et al., 1962; Smyth et al., 1969)	(2) valid with restrictions.
			Rat; LD50 = 3530 mg/kg bw (sodium salt) (Food and Agriculture Organization of the United Nations)	(2) valid with restrictions.
			Rat; LD50 = 3250 to 5600 mg/kg bw (includes acetic acid, and its potassium, sodium and calcium salts and sodium diacetate) (BIBRA, 1993)	(2) valid with restrictions.
			Rat; LD50 = 5600 mg/kg bw (sodium diacetate) (USEPA, 1991)	(2) valid with restrictions.
			Mouse; LD50 = 4960 mg/kg (acetic acid) bw (Woodward et al., 1941 and BIBRA, 1993)	(2) valid with restrictions.
Inhalation	No data		Rat; 4-hr LC50 = 11.4 mg/L (acetic acid) (BASF, 1989)	(2) valid with restrictions.
			Rat; 1-hr LC50 > 30000 mg/m3 (acetic acid, sodium salt) (BIOFAX Industrial Bio-Test Laboratories, Inc., 1971)	(2) valid with restrictions.
			Rat; 4-hr LC50 > 16000 ppm (acetic acid) (Smyth et al., 1951)	(2) valid with restrictions.
			Mouse; 1-hr LC50 = 5620 ppm (acetic acid) (Ghiringhelli and Difabio, 1957)	(2) valid with restrictions.
			Guinea pig; 1-hr LC50 > 5000 ppm (acetic acid) (Ghiringhelli, and Difabio., 1957)	(2) valid with restrictions.
Dermal	No data		Rat; LD50 > 2000 mg/kg bw (sodium diacetate) (USEPA, 1991)	(2) valid with restrictions.
			Rabbit; LD50 = 1060 mg/kg bw (acetic acid) Union Carbide, 1963; BIBRA, 1993)	(2) valid with restrictions

Studies in Humans

No data available.

3.1.3 Irritation

Skin Irritation

Semi-occlusive application of 0.5 ml of ethyltriacetoxysilane for 3 minutes produced severe lesions observed at 72 hours with slight reversibility at the day 14 reading in 4 of 6 rabbits (Wacker Chemie GmbH, 1989). Ethyltriacetoxysilane was corrosive under the conditions of this study. The Skin2 ZK-1350 model predicted the corrosivity of ethyltriacetoxysilane, although it appeared to slightly underestimate the degree of corrosivity. CORROSITEX model also predicted ethyltriacetoxysilane as corrosive. However, TER assay did not identify ethyltriacetoxysilane as corrosive (Dow Corning Corporation, 1994).

Eye Irritation

Ethyltriacetoxysilane has not been tested for eye irritation. The result of the skin irritation study adequately represents the potential for severe eye irritation. The severe irritancy of ethyltriacetoxysilane was predicted by Skin2 1200 in vitro model (Dow Corning Corporation, 1994).

Respiratory Tract Irritation

No data available.

Conclusion

The acute toxicity of ethyltriacetoxysilane is described by an LD50 rat (oral) = 1462 mg/kg. Clinical signs included decreased activity; lethargy; lacrimation; salivation; irregular gait; hunched posture; decreased body weight, food consumption and fecal volume; red urine; red staining of the snout, eyes and extremities; and labored respiration. Although acute toxicity data for the inhalation or dermal routes of exposure are not available for ethyltriacetoxysilane, these exposures will likely result in local site of contact effects from acetic acid. Ethyltriacetoxysilane is severely irritating and corrosive to the skin, is predicted to be severely irritating to the eye and is likely to be a respiratory irritant based on production of acetic acid following hydrolysis.

3.1.4 Sensitisation

No data available.

3.1.5 Repeated Dose Toxicity

Oral

In a 7-day oral range-finding study (gavage) rats were treated with undiluted ethyltriacetoxysilane (dose levels of 0, 17 (males), 23 (females), 100, 500 and 1000 mg/kg/d) (DCC, 2004). Animals from the 20 and 100 mg/kg/day dose groups survived to day 7. Animals from the 500 and 1000 mg/kg/day dose groups were sacrificed after the third dose as a consequence of two deaths (one from each group), marked body weight loss, and severity of lesions observed in necropsied animals. Necropsy findings included marked ulceration of stomach and esophagus at 100 mg/kg/d and higher. Stomach erosion was present at 20 mg/kg/day. Ethyltriacetoxysilane rapidly (seconds) hydrolyzes to acetic acid and a trisilanol (3:1). The silanol generated is insignificant in both quantity and toxicity relative to the production of acetic acid and its associated toxicity. In the 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range-finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a longer duration repeated dose study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. The data provided in this range-finder study indicate a practical and humane dose range for subsequent longer term studies is below the limit of technical practicality and toxicological significance.

In a subchronic study, four groups of 3 to 6 rats were given 0.01, 0.1, 0.25, or 0.5 % acetic acid in drinking water (up to 390 mg/kg bw/day) for periods of nine to 15 weeks. Fluid intake was the same in all groups. At 0.5 % there was immediate, progressive reduction in body weight gain, loss of appetite, and up to a 27 % reduction in food consumption. Mortality was unaffected. None of these effects were seen at the lower doses. (Sollmann, 1921; FAO/WHO, 1974; FASEB, 1977; BIBRA, 1993; and Celanese, 2003). The NOAEL (systemic toxicity) was 210 mg/kg bw. Rats were treated by gavage with 3 ml of a 10% acetic acid solution for 90 days (Wysokinska, 1952 and BIBRA, 1993). The treatment decreased the red blood cell count and hemoglobin concentration. The

LOAEL (systemic toxicity) was 750 mg/kg bw. There were no reported effects in an 8 week dietary study in which rats were given 2% sodium diacetate (about 1000 mg/kg bw) (USEPA, 1991). Groups of three to four rats were given 1800 mg/kg bw/day of free acid intragastrically or 4200 - 4800 mg/kg bw of sodium acetate (J.R. Geigy, 1970). Animals survived to 14 days when given 1800 mg/kg bw/d of free acid intragastrically or 4200 - 4800 mg/kg bw of sodium acetate, but animals survived only three to five days on daily intra-gastric doses of 2400 mg/kg bw of free acid. Animals lost weight and showed blistered paws and reddened noses before death at 14 days. The LOAEL (systemic toxicity) was greater than or equal to 4200-4800 mg/kg bw. Four groups of two young pigs each were fed daily diets containing 0, 240, 720, 960, or 1200 mg acetic acid/kg bw per day for successive 30-day periods to a total of 150 days (Lamb and Evvard, 1919 and FAO/WHO, 1977). There were no significant differences in growth rate, weight gain, early morning urinary ammonia, and terminal blood pH between controls and test groups. The NOAEL (no effects reported) was 1200 mg/kg bw. Rats were exposed to acetic acid, sodium salt, at a dose of 21 mg/kg bw/d in feed (Goldman, 1981) for 3 months. There were indications of altered thyroid function and decreased growth was reported. The NOAEL (systemic toxicity) was 21 mg/kg bw. Rats were fed approximately 4.5 g acetic acid/kg bw daily in the diet for 30 or 325 days; stomach damage was observed (Mori, 1995; BiblioLine, 2004). The LOAEL (irritation) was 4500 mg/kg bw. Rats were given either N-nitrosarcosin ethyl ester (NSEE; a known carcinogen) alone, NSEE with the acetic acid solution, or the acetic acid solution alone, by gavage (Alexandrov, et al, 1989; ACC, 2003). Prolonged administration of acetic acid alone did not induce tumors. All rats, however, did experience hyperplasia in the esophagus and forestomach. The LOAEL (irritation) was approximately 60 mg/kg bw. Thirteen male rats were fed ad libitum a 25% protein, vitamin B12deficient ration containing approximately 3.6 g/kg bw acetic acid, sodium salt, daily, for 4 weeks (Dryden and Hartman, 1971). There were no effects on growth or survival. The NOAEL (no effects reported) was 3600 mg/kg bw. Four groups of 6 male rats were administered a regimen of 50 or 500 ppm sodium acetate (controls) or 50 or 500 ppm lead acetate in distilled water (Cory-Slechta, 1986). The test material was administered ad libitum for eight months. No significant effects on survival, reinforcement behavior, or body weight gain were observed. The rats treated with acetic acid, sodium salt served as the control for a lead exposure study. Therefore, no separate untreated controls are available for comparison. Groups of three or four rats were given 1800 or 2400 mg/kg bw acetic acid for 14 days (Hemmingway and Sparrow, 1942). All animals in the 1800 mg/kg bw group survived. Administration of 2400 mg/kg bw was lethal after 3-5 days. The NOAEL (mortality) was 1800 mg/kg bw.

Inhalation

Male rats were exposed for 95 days to 0.01, 0.2, or 5.0 mg/m3 acetic acid vapor in air. Rats developed progressive muscle imbalance, increases of blood cholinesterase activity and serum globulins, and decreases of serum albumins in the two higher doses. The highest dose group also had raised white blood cell counts and decreases in ascorbic acid levels (Tracor-Jitco, Inc., 1974). The NOAEL (systemic toxicity) was 0.01 mg/m3. Groups of at least 10 rats and 10 mice were exposed to 11-35 ppm of acetic acid (Savina and Anisimov, 1987). Exposure to 11 ppm for 22 days had no effect on activity, behavior, work capacity, growth, blood, or the weights and microscopic appearance of tissues examined. At 15 ppm (for 22 days) or more, the animals showed decreased activity, behavioral changes and reduced work capacity. At 23-31 ppm (17-35 days), there was decreased growth, increased spleen weight, an increase of the level of iron stored in the spleen, signs of kidney damage and increased kidney weights. The NOAEL (systemic toxicity) was 11 ppm.

Route	Ethyltriacetoxysilane	Reliability	Acetic Acid and its salts	Reliability
Oral	7-day gavage, rat NOAEL = 17 (male); <23 (female) mg/kg bw (Dow Corning Corporation, 2004)	(2) valid with restrictions	2-4 month drinking water, rat NOAEL (systemic) = 210 mg/kg bw (acetic acid) (Sollmann, 1921, FAO/WHO, 1974, FASEB, 1977, BIBRA, 1993, and Celanese, 2003,)	(2) valid with restrictions
			90 day gavage, rat LOAEL(systemic) = 750 mg/kg bw (acetic acid) (Wysokinska, 1952 and BIBRA, 1993)	(2) valid with restrictions
			8 week dietary, rat NOAEL (single dose study) >1000 mg/kg bw (acetic acid) (US EPA, 1991)	(2) valid with restrictions
			14 day gavage, rat LOAEL (systemic) > 4200 - 4800 mg/kg bw (acetic acid or sodium salt) (J.R. Geigy, 1970)	(2) valid with restrictions
			150 day dietary, pig NOAEL(no effects reported) = 1200 mg/kg bw (acetic acid) (Lamb, 1919 and FAO/WHO, 1974)	(2) valid with restrictions
			3 month dietary, rat LOAEL (systemic) = 21 mg/kg bw/d (sodium acetate) (Goldman, 1981)	(2) valid with restrictions
			8 month dietary, rat LOAEL(irritation) = 4500 mg/kg bw (acetic acid) (Mori, 1952 and BiblioLine, 2004)	(2) valid with restrictions
			8 month gavage, rat LOAEL (irritation) = ca. 60 mg/kg bw (acetic acid) (Alexandrov, 1989 and ACC, 2003)	(2) valid with restrictions
			4 week dietary, rat NOAEL (no effects reported) = 3600 mg/kg bw (Sodium acetate) (Dryden and Hartman, 1971)	(2) valid with restrictions
			8 month drinking water, rat LOAEL (no effects reported) = 500 ppm (Sodium acetate) (Cory-Slechta, 1986)	(2) valid with restrictions
			14 day gavage, rat LOAEL (no effects reported) = 1800 mg/kg bw (acetic acid) (Hemmingway and Sparrow, 1942 and BIBRA, 1993)	(2) valid with restrictions
Inhalation	No data	-	95 day inhalation, rat NOAEL (systemic) = 0.01 mg/m3 (acetic acid) (Mori, 1995 and BiblioLine, 2004)	(2) valid with restrictions
			22 day inhalation, rat NOAEL (systemic) = 11 ppm (27 mg/m3); LOAEL = 15 ppm (acetic acid) (Savina. and Anisimov, 1987)	(2) valid with restrictions
Dermal	No data	-	No data	

 Table 5
 Summary of the repeated dose toxicity of ethyltriacetoxysilane, acetic acid and its salts

Conclusion

Observations from a 14 day gavage study of ethyltriacetoxysilane to rats at 100, 500 and 1000 mg/kg for 14 days indicate a practical and humane dose range for subsequent longer term studies is below the limit of technical practicality and toxicological significance. NOAELs following repeated exposure to acetic acid, and its salts range from 210 mg/kg bw/d (2-4 month acetic acid drinking water study) to 3600 mg/kg bw (acetic acid, sodium salt, 4 week dietary study). Signs of irritation/corrosion at the site of contact, as well as systemic toxicity, have been reported. Prolonged inhalation exposure to acetic acid shows effects of toxicity at concentrations greater than .1 mg/m3.

Studies in Humans

No data available.

3.1.6 Mutagenicity

In vivo Studies

No data available.

In vitro Studies

Gene Mutations

The test substance, ethyltriacetoxysilane, did not induce any cytotoxicity or mutagenicity in a bacterial mutagenicity test at doses up to 5000 ug/plate, both with and without metabolic activation. Appropriate concurrent negative and positive controls were included, and the expected responses were observed. Therefore, the test substance was not a bacterial mutagen under the conditions of this assay (Dow Corning Corporation, 1984). Methyltriacetoxysilane did not induce any cytotoxicity or mutagenicity in a bacterial mutagenicity test at doses up to 5000 ug/plate, both with and without metabolic activation. Appropriate concurrent negative and positive controls were included, and the expected responses were observed. Therefore, the test substance was not a bacterial mutagenicity and positive controls were included, and the expected responses were observed. Therefore, the test substance was not a bacterial mutagen under the conditions of this assay (BioReliance, 2002a).

Chromosome Aberrations

There are no data available that directly assess the genotoxic activity of ethyltriacetoxysilane using mammalian cells. Methyltriacetoxysilane was tested in a chromosome aberration assay (CHO cells) in which the cells were treated for 4 and 20 hours in a non-activation system and for 4 hours in a metabolic activation system. All the cells were harvested at 20 hours after treatment initiation. Appropriate solvent, positive and negative controls were included. In the absence of substantial toxicity at any dose level in any treatment group, 2200 g/ml was selected as the high dose for microscopic analysis in all three-treatment groups. The next two lower doses were also analyzed in all harvests. Methyltriacetoxysilane was negative for the induction of structural and numerical chromosome aberrations in CHO cells (BioReliance, 2002b).

Conclusion

In vitro bacterial mutation assays with ethyltriacetoxysilane and methyltriacetoxysilane and *in vitro* studies in mammalian cells with methyltriacetoxysilane have not revealed any evidence of genotoxic potential for ethyltriacetoxysilane.

3.1.7 Carcinogenicity

No data available.

3.1.8 Toxicity for Reproduction

Effects on Fertility

In a 7-day oral range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity (DCC, 2004). This 7-day range-finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a reproduction study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. Due to the low solubility and rapid hydrolysis of ethyltriacetoxysilane, a suitable vehicle cannot be selected, and all studies would utilize neat dosing. Based on the findings of the 7-day range-finder, less than 5 ul/d dose volumes would be required for a longer duration study, which would present technical difficulties, questions regarding dosing accuracy and a very low nominal systemic dose. The data provided in this range-finder study indicate a practical and humane dose range for reproductive toxicity studies is below the limit of technical practicality and toxicological significance. Additional testing with this material is not warranted.

Groups of 20 mice/sex were given 0.025% sodium acetate in the drinking water (about 60 mg/kg bw/day) for 1 week before breeding, during a 9-day breeding period and (females only) throughout pregnancy, lactation and until the offspring were weaned at 3 weeks of age. The male offspring were given the same solution until they were 5-7 weeks old and were then examined in a 24-hour activity test (BIBRA International, 1993 and Donald, J.M. et al., 1988). Examination of the litters revealed no overt deformities, and pup weights were normal at day 1 and day 21. The activity of offspring of the treated group was lower than that of controls during the first 12 hours but was similar during the second 12 hours (it is unknown if the decreased activity observed in the sodium acetate treated group was a result of in utero and/or post-weaning, since the pups were exposed during both time periods). The NOAEL (fertility) was 60 mg/kg bw.

Route	Ethyl triacetoxysilane	Acetic Acid, Sodium salt	Reliability	
		Drinking water, mouse NOAEL = 60 mg/kg bw (Sodium acetate) (BIBRA, 1993 and Donald, et al., 1988)	(2) valid with restrictions	
Inhalation	No data	No data	-	
Dermal	No data	No data	-	

Table 6Summary of the effects on fertility of ethyltriacetoxysilane and acetic acid, sodium
salt

Developmental Toxicity

In a 7-day oral range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity (DCC, 2004). This 7-day range-finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a developmental toxicity study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. Due to the low solubility and rapid hydrolysis of ethyltriacetoxysilane, a suitable vehicle cannot be selected, and all studies would utilize neat dosing. Based on the findings of the 7-day range-finder, less than 5 ul/d dose volumes would be required for a longer duration study, which would present technical difficulties, questions regarding dosing accuracy and a very low nominal systemic dose. The data provided in this range-finder study indicate a practical and humane dose range for developmental toxicity studies is below the limit of technical practicality and toxicological significance. Additional testing with this material is not warranted.

Rats were dosed daily with acetic acid at 0, 16, 74, 345, and 1600 mg/kg/day by oral gavage beginning on day 6 of gestation (Food and Drug Research Laboratories, 1974; BIBRA, 1993). Animals were observed daily and body weights recorded. On day 20, Caesarean sections were performed on all dams and the numbers of implantation sites, resorption sites, and live and dead fetuses was recorded. General external and internal examinations were also made of the dams. No effects on implantation or on maternal or fetal survival at doses of acetic acid up to 1600 mg/kg/day. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring in the controls. The NOAEL (maternal and developmental) for rats was 1600 mg/kg bw. Mice were dosed daily with acetic acid at 0, 16, 74, 345, and 1600 mg/kg/day by oral gavage beginning on day 6 of gestation (Food and Drug Research Laboratories, 1974; BIBRA, 1993). Animals were observed daily and body weights recorded for 10 days. On day 17, Caesarean sections were performed on all dams and the numbers of implantation sites, resorption sites, and live and dead fetuses was recorded. General external and internal examinations were also made of the dams. No effects on implantation or on maternal or fetal survival were observed at doses up to 1600 mg/kg/day. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring in the controls. The NOAEL (maternal and developmental) for mice was 1600 mg/kg bw. Rabbits were dosed daily with acetic acid at 0, 16, 74, 345, and 1600 mg/kg/day by oral gavage beginning on day 6 of gestation (Food and Drug Research Laboratories, 1974; BIBRA, 1993). Animals were observed daily and body weights recorded. On day 29, Caesarean sections were performed on all does and the numbers of corpora lutea, implantation sites, resorption sites, and live and dead fetuses was recorded. General external and internal examinations were also made of the does. No effects on implantation or on maternal or fetal survival at doses up to 1600 mg/kg bw/day. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring in the controls. The NOAEL (maternal and developmental) for rabbits was 1600 mg/kg bw. Thirty pregnant mice, approximately 60 days old, were given a single oral dose of 1000 mg/kg bw of acetic acid, sodium salt, by gavage on days 8-12 of gestation (Kavlock, et al, 1987). There were no general parental toxicity effects or effects on the offspring. The NOAEL (maternal and developmental) for mice was 1000 mg/kg bw.

Route	Route Ethyl Acetic Acid and its Sodium Salt triacetoxysilane		Reliability
Oral	No data	Gavage, mouse NOAEL (maternal and developmental) = 1000 mg/kg bw (Sodium acetate) (Kavlock et al, 1987)	(2) valid with restrictions
	-	Gavage, mouse NOAEL (maternal and developmental) = 1600 mg/kg bw (Acetic acid) (BIBRA, 1993 and Food and Drug Research Laboratories, 1974)	(2) valid with restrictions
-		Gavage, rabbit NOAEL (maternal and developmental) = 1600 mg/kg bw (Acetic acid) (BIBRA, 1993 and Food and Drug Research Laboratories, 1974)	(2) valid with restrictions
	- Gavage, rat NOAEL (maternal and developmental) = 1600 mg/kg bw (Acetic acid) (BIBRA, 1993 and Food and Drug Research Laboratories, 1974)		(2) valid with restrictions
Inhalation	No data	No data	
Dermal	No data	No data	

Table 7 Summary of the developmental toxicity of ethyltriacetoxysilane, acetic acid and its sodium salt

Conclusion

Ethyltriacetoxysilane rapidly (seconds) hydrolyzes to acetic acid and a trisilanol (3:1). The silanol generated is insignificant in both quantity and toxicity relative to the production of acetic acid and its associated toxicity. The silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). The toxicity of ethyltriacetoxysilane is represented by an irritative mechanism of toxicity following single or repeated dosing, likely due to production of acetic acid during hydrolysis; any additional information provided though the conduct of repeated dose, reproduction or developmental toxicity studies with ethyltriacetoxysilane would be limited in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. Acetic acid had no effects on implantation or on maternal or fetal survival in rats, mice or rabbits at doses up to 1600 mg/kg/day. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring in the controls. Sodium acetate had no effect on reproduction when administered in drinking water at about 60 mg/kg bw in mice.

3.2 Initial Assessment for Human Health

Ethyltriacetoxysilane undergoes rapid hydrolysis in moist/aqueous environments (less than 13 seconds) to acetic acid and silanetriols, thus, observed toxicity is likely due primarily to acetic acid. Abiotic hydrolysis products of the test substance undergo continuous, condensation reactions to produce higher molecular weight cyclic and linear siloxanes (the number-average and weightaverage molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively) (Sun, Y. et al., 2002). The silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis. While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. The structural analogue methyltriacetoxysilane (CAS number 4253-34-3) has been used for in vitro bacterial gene mutation and chromosomal aberrations endpoints. The hydrolysis product, acetic acid (CAS number 64-19-7) and its salts [calcium acetate (CAS number 62-54-4), potassium acetate (CAS number 127-08-2) and sodium acetate (CAS number 127-09-3), have been used to assess the repeated dose toxicity, fertility and developmental toxicity endpoints.

The acute toxicity of ethyltriacetoxysilane is described by an LD50 rat (oral) = 1462 mg/kg, and the indications of the irritative properties of the test substance. Clinical signs included decreased activity; lethargy; lacrimation; salivation; irregular gait; hunched posture; decreased body weight, food consumption and fecal volume; red urine; red staining of the snout, eyes and extremities; and labored respiration. Ethyltriacetoxysilane is severely irritating and corrosive to the skin, and expected to be severely irritating to the eyes of animals.

In a 7-day oral range-finding study (gavage) rats were treated with undiluted ethyltriacetoxysilane (dose levels of 0, 17 (males), 23 (females), 100, 500 and 1000 mg/kg/d). Ethyltriacetoxysilane rapidly (seconds) hydrolyzes to acetic acid and a trisilanol (3:1). The silanol generated is insignificant in both quantity and toxicity relative to the production of acetic acid and its associated toxicity. Animals from the 17 (males), 23 (females), and 100 mg/kg/day dose groups survived to day 7. Animals from the 500 and 1000 mg/kg/day dose groups were sacrificed after the third dose as a consequence of two deaths (one from each group), marked body weight loss, and severity of lesions (ulceration and erosion of stomach and esophagus) observed in necropsied animals. The

stomach lesions observed resembled acetic acid toxicity. This 7-day range-finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a longer duration repeated dose study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. Based on the findings of the 7-day range-finder, a longer duration study will present technical difficulty questioning dosing accuracy and a very low nominal systemic dose. Additional testing (repeated dose, reproductive effects or developmental toxicity) with ethyltriacetoxysilane has not been conducted. Toxicity is represented by an irritative mechanism following single or repeated dosing, likely due to production of acetic acid during hydrolysis.

Groups of 20 mice/sex were given 0.025% sodium acetate in the drinking water (about 60 mg/kg bw/day) for 1 week before breeding, during a 9-day breeding period and (females only) throughout pregnancy, lactation and until the offspring were weaned at 3 weeks of age. The male offspring were given the same solution until they were 5-7 weeks old and were then examined in a 24-hour activity test. Examination of the litters revealed no overt deformities, and pup weights were normal at day 1 and day 21. The activity of offspring of the treated group was lower than that of controls during the first 12 hours but was similar during the second 12 hours (the study did not show unequivocally that the decreased activity was maternally-mediated, since the pups were also exposed post-weaning). Acetic acid had no effects on implantation or on maternal or fetal survival in rats, mice or rabbits at doses up to 1600 mg/kg/day. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring in the controls. Sodium acetate had no effect on parents or offspring when mice were administered 1000 mg/kg bw, by gavage on days 8-12 of gestation.

In vitro, ethyltriacetoxysilane and methyltriacetoxysilane were negative in bacterial mutagenicity assays and did not produce any statistically significant increases in incidence of bacterial mutations. Methyltriacetoxysilane did not induce chromosomal aberrations in CHO cells.

4 HAZARDS TO THE ENVIRONMENT

Analogue Justification

Ethyltriacetoxysilane undergoes rapid hydrolysis, which occurs during testing, such that observed toxicity is likely due primarily to acetic acid. Aquatic toxicity test have been conducted with ethyltriacetoxysilane, and the results are considered to be representative of acetic acid, due to its rapid hydrolysis. Acute toxicity to fish, daphnia and algae endpoints are supported using data from a structural analogue, vinyltriacetoxysilane, as well as for a hydrolysis product, acetic acid. The data for vinyltriacetoxysilane are also considered to be representative of acetic acid, due to its rapid hydrolysis. Abiotic hydrolysis studies show that hydrolysis products from ethyltriacetoxysilane undergo continuous, condensation reactions to produce higher molecular weight cyclic and linear siloxanes.

4.1 Aquatic Effects

Aquatic toxicity data are available for ethyltriacetoxysilane. Data from ethyltriacetoxysilane and a structurally related acetoxysilane, vinyltriacetoxysilane (CAS No. 4130-08-9) show the resulting toxicity to aquatic organisms is due to acetic acid. When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane and vinyltriacetoxysilane are comparable to the reported toxicity of acetic acid ($EC_{50} = 50-450$ mg/L, depending on test species):

Table 8	Summary of the reported toxicity of ethyltriacetoxysilane, vinyltriacetoxysilane,
and ace	tic acid to various aquatic organisms

	Reported Toxicity (mg/L)				
Test System	Ethyltriacetoxy silane	Vinyltriacetoxy silane	HOAc ^a	Acetic Acid	
Fish (96-h EC ₅₀ ; lethali	ty)				
Brachydanio rerio	251 (measured; semi-static)** Degussa-Huls Ag, 1995c		194		
Oncorhyncus mykiss		51 (nominal; static) ** DCC, 1980	40		
Lepomis macrochirus		68 (nominal; static) ** DCC, 1980	53	75 (72 hr LC50; static) US Public Health Service, 1960; USEPA Aquire	
Pimephales promelas				88 (72 hr LC50; static) Mattson et al, 1976; USEPA Aquire	
Pimephales promelas				79 (72 hr LC50; static) Mattsonet al, 1976; USEPA Aquire	
Cyprinus carpio				49 (48 hr LC50; test type not reported) Funasakaet al., 1976; USEPA Aquire	
Carassius auratus				100 (flow-through) Ellis, 1937; USEPA Aquire	
Ictalurus punctatus				446 (72 hr LC50; static) Clemens and Sneed,, 1959; USEPA Aquire	
Gambusia affinis				251 (static) ACC, 2003; et al., 1957; USEPA Aquire	
Fish (unspecified)				27792 ^b USEPA, 2000	
Invertebrate (48-h EC ₅₀	; immobility)				
Daphnia magna	62 (nominal; static) ** Degussa-Huls Ag,		48		
Daphnia magna	1995d	100 (nominal; renewal) ** DCC, 1980	78		
Daphnia magna				65 (static) ** Janssen, Espiritu and Persoone, 1993; ACC, 2003	
Daphnia magna				6000 (neutralized; pH 8.0, static);	

				95 (un-neutralized) Bringmann and Kuhn, 1982; ACC, 2003
Carcinus maenas				180 (renewal) Portmann and Wilson, 1971; USEPA Aquire
Crangon crangon				≥100 (static) Portmann and Wilson, 1971; USEPA Aquire
Daphnia				26099 ^b USEPA, 2000
Algae (7-d EC ₅₀ ; growth	n rate)	l	1	
Scenedesmus subspicatus	73 (nominal) ** Degussa-Huls Ag, 1995e		59	
Selenastrum capricornutum		111 (nominal; growth rate), 23 (nominal; biomass) ** DCC, 1980	87	
Anabaena flos-aquae		>100 (nominal; growth rate)**, 57 (nominal; biomass) ** DCC, 1980	78	
Microcystis aeruginosa				90 Bringmann and Kuhn, 1978; USEPA Aquire
Green algae				14617 ^b USEPA, 2000

^a HOAc is the estimated toxicity based on the estimated amount of acetic acid generated from the hydrolysis reaction. The amount of acetic acid generated was estimated using the assumption that 1 mole of test material (ethyl- or vinyl- triacetoxysilane) produces 3 moles of acetic acid.

** Not neutralized

General

Ethyltriacetoxysilane undergoes rapid hydrolysis in aquatic media, and thus the exposures to ethyltriacetoxysilane are likely to be transient. For much of the duration of the tests, the organisms will be exposed to the hydrolysis products, which include acetic acid and trisilanols. The Si-C bond will not undergo further hydrolysis. That bond is hydrolytically stable. Only the acetoxy groups will be hydrolyzed. The transient silanol groups will condense with other silanols to yield:

Et-Si(OR)₃ type resins where R=H or -Si(Et)(OR)₂

As a result silanol-functional resins are generated.

Acute Toxicity Test Results

Ethyltriacetoxysilane undergoes rapid hydrolysis in aquatic media, and thus the exposures to ethyltriacetoxysilane are likely to be transient. For these studies, the test article was dissolved in water and stirred for an 18 hour period. Acetic acid has also been tested for aquatic effects.

The 96-hour LC50 of ethyltriacetoxysilane for a freshwater fish (Brachydanio rerio) is 251 mg/L (the test media was not neutralized; Degussa-Huls AG, 1995c). The 96-hour LC50 of vinyltriacetoxysilane for Oncorhyncus mykiss is 51 mg/L and for Lepomis macrochirus is 68 mg/L (DCC, 1980). In both studies the test media was not neutralized. Ten fish (Gambusia affinis) were exposed to acetic acid concentrations of 10, 18, 32, 56 and 100 ppm (first experiment) or between 100 and 1,000 ppm for a period of 96 hours under static conditions (Wallen, Greer, and Lasater, 1957). The temperature, turbidity, and pH of the experimental water were measured after the test substance was added and daily throughout the experiment. Survivor observations were made at 24, 48, 72 and 96 hours. The 96 hour LC50 was 251 mg/L. Fish (Ictalurus punctatus) were exposed to acetic acid for a period of 72 hours under static conditions (Clemens, and Sneed, 1959). The 72 hour LC50 was 446 mg/L. Fish (Lepomis macrochirus) were exposed to acetic acid for a period of 96 hours under static conditions (US Public Health Service Grant, 1960). The 72 hour LC50 was 75 mg/L. Fish (*Pimephales promelas*) were exposed to acetic acid for a period of 96 hours under static conditions (Mattson, Arthur, and Walbridge, 1976). The 72 hour LC50 was 79 to 88 mg/L. Fish (Carassius auratus) were exposed to acetic acid for a period of 48 to 96 hours under flow through conditions (Ellis, 1937). Mortality was observed at 100 mg/L. Fish (Cyprinus carpio) were exposed to acetic acid for a period of 48 hours (Funasaka, Ose, and Sato, 1976). The 48 hour LC50 was 49 mg/L. Studies have been performed with a silanol monomer, trimethylsilanol (CAS No. 1066-40-6). Although this silanol is not expected to be produced following hydrolysis of ethyltriacetoxysilane, it has been predicted to be one of the most toxic to aquatic organisms of all the silanols identified to date. A semi-static 96 hour study with trimethylsilanol and rainbow trout (Oncorhynchus mykiss) resulted in a No Observed Effect Concentration (NOEC) of 128 mg/L and an LC50 of 271 mg/L.

The 48 hour EC50 of ethyltriacetoxysilane is 62 mg/L for the water flea (*Daphnia magna*) under static conditions (the test media was not neutralized; (Degussa-Huls AG, 1995d). The 48 hour EC50 of vinyltriacetoxysilane is 100 mg/L for Daphnia magna (the test media was not neutralized; DCC, 1980). When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane and vinyltriacetoxysilane are comparable to the reported toxicity of acetic acid (EC₅₀ = 65-180 mg/L, depending on test species). The 48 hour EC50 of acetic acid is 100 mg/L for the crustacean, *Crangon crangon* in a renewal system (Portmann, and Wilson, 1971). The 24 hour EC50 of acetic acid is 6000 mg/L for the water flea (*Daphnia magna*) under static conditions (Bringmann and Kuhn, 1982). This value of 6000 mg/L pertains to test solutions neutralized (pH 8.0) prior to daphnid exposures. For the un-neutralized test, the 24-hour EC50 was 95 mg/L. The 48 hour EC50 of acetic acid is 65 mg/L to the water flea (*Daphnia magna*) in a static system (Janssen, Espiritu, and Persoone, 1993). The solutions were not neutralized. The 48 hour EC50 of acetic acid is 180 mg/L to *Carcinus maenas* in a renewal system (Portmann, and Wilson, 1971).

In an algae study with ethyltriacetoxysilane, on the basis of cell growth, a median concentration is calculated of 72 hour EbC50 = 73 mg/L; on the basis of growth rate, a median effective concentration was achieved at (0-72 hour) ErC10 = 76 mg/L (the test media was not neutralized; Degussa-Huls AG, 1995e). In a study with vinyltriacetoxysilane, the EC50 for growth rate of *Selenastrum capricornutum* is 111 mg/L, and for *Anabaena flos-aquae* is 100 mg/L (the test media was not neutralized; DCC, 1980). When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane and vinyltriacetoxysilane are comparable to the reported toxicity of acetic acid (EC₅₀ = 90 mg/L). A

change in the number of species groups in a community (i.e. species diversity) was reported at 90 mg/L acetic acid in an 8 day study with *Microcystis aeruginosa* (Bringmann and Kuhn, 1978).

Chronic Toxicity Test Results

No data available.

4.2 Terrestrial Effects

A group of 40 earthworms (*Eisenia fetida*) was exposed for 14 days to a limit concentration of 1000 mg/kg of ethyltriacetoxysilane (Degussa AG, 1995f). There were no deaths recorded for the control group at 7 or 14 days or for the test substance group at 7 days. At 14 days, one animal in the test substance treated group had died. The LC10 was calculated to be greater than 1000 mg/kg.

4.3 Other Environmental Effects

The toxicity of ethyltriacetoxysilane to bacteria was determined by oxygen content where the effective concentration (EC10 and EC100) is measured after 5 hours of incubation with a bacterial suspension (Degussa-Huls AG, 1995b). The EC10 and EC100 were 60-80 mg/L. The pH value decreased with increased test concentration:

10 mg/L pH= 7 , 60 mg/L pH= 5.7, 80 mg/L pH= 5.2.

4.4 Initial Assessment for the Environment

The melting point of ethyltriacetoxysilane is <-2.9°C and the boiling point is 227 °C at 1013 hPa. The vapor pressure is 0.05 hPa at 20 deg C. The estimated water solubility of ethyltriacetoxysilane is 42 g/L; the estimated log Kow is 0.74. The water solubility and log Kow values may not be applicable because the chemical is hydrolytically unstable. The overall reaction half-life in air is estimated to be less than 3 minutes because of rapid hydrolysis of the material with moisture in the atmosphere. However, photodegradation as a mode of removal is unlikely because ethyltriacetoxysilane is hydrolytically unstable. Photodegradation of the parent silane is not expected to be a significant degradation process in the aquatic environment due to the rapid rate of hydrolysis. Although, the vapor pressure indicates that ethyltriacetoxysilane resides in the atmosphere and may undergo photodegradation due to ozone and/or hydroxyl radicals, due to extremely rapid hydrolysis, the substance is not expected to reside in the air compartment and the vapor pressure of the substance may not be relevant.

Ethyltriacetoxysilane is hydrolytically unstable over a range of environmentally relevant pH and temperature conditions. At pH 7, the half-life is <13 seconds. Rapid hydrolysis of this material produces acetic acid and trisilanols. Level III Fugacity modeling, using loading rates for Air, Soil, and Water of 1000 kg/h for each medium, shows the following percent distribution: Air = 47.3%; Soil = 47.4%; Water = 5.3%; Sediment = 0.0. However, ethyltriacetoxysilane is unlikely to be found in the environment, as this material is hydrolytically unstable. Ethyltriacetoxysilane is readily biodegradable; however this material rapidly hydrolyzes and generates 3 moles of acetic acid for every mole of parent material. Thus, the biodegradation observed is likely reflective of the hydrolysis product, acetic acid. The biodegradation rate for acetic acid after 7 days under anaerobic conditions is 99%. The rapid hydrolysis of ethyltriacetoxysilane means that it is unlikely to be present in the environment. Bioaccumulation is not anticipated since this material is hydrolytically unstable.

Ethyltriacetoxysilane undergoes rapid hydrolysis in aquatic media, and thus the exposures to ethyltriacetoxysilane are likely to be transient. The 96-hour LC50 of ethyltriacetoxysilane for

Brachvdanio rerio is 251 mg/L. Studies have been conducted on a structural analog. vinyltriacetoxysilane, as well as the primary hydrolysis product, acetic acid. The 96-hour LC50 of vinyltriacetoxysilane for Oncorhyncus mykiss is 51 mg/L and for Lepomis macrochirus is 68 mg/L. The 96 hour LC50s for acetic acid are 75, 79-88 and 251 mg/L (several species of fish). A semistatic 96 hour study with trimethylsilanol and rainbow trout (Oncorhynchus mykiss) resulted in a No Observed Effect Concentration (NOEC) of 128 mg/L and an LC50 of 271 mg/L. This suggests the silanetriol degradation products are not likely higher than acetic acid alone. The 48 hour EC50 for ethyltriacetoxysilane is 62 mg/L for Daphnia magna. The 48 hour EC50 of vinyltriacetoxysilane is 100 mg/L for Daphnia magna. Under static conditions, the 48 hour EC50 for acetic acid is 65 mg/L for aquatic invertebrates. When the test solutions are neutralized, the static EC50 for acetic acid is 6000 mg/L. In renewal systems with aquatic invertebrates, 48 hour EC50s for acetic acid are 100 mg/L and 180 mg/L Ethyltriacetoxysilane toxicity to Scenedesmus subspicatus provided a 72 hour EC50 of 73 and 76 mg/L for biomass and growth rate, respectively. When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of the parent material is comparable to the reported toxicity of acetic acid (EC₅₀ = 50-450 mg/L, depending on test species).

5 **RECOMMENDATIONS**

Human Health: The chemical possesses properties indicating a hazard for human health (severe irritation and corrosivity caused by acetic acid). Due to the extremely rapid hydrolysis to acetic acid and the corresponding trisilanol and based on exposure data presented by the Sponsor country, the parent material will not be available for exposure, and therefore this chemical is currently of low priority for further work. The identified hazards should nevertheless be noted by chemical safety professionals and users.

Environment: The chemical has properties indicating a hazard for aquatic toxicity. However the chemical is of low priority for further work for the environment because of its rapid hydrolysis and its limited potential for bioaccumulation.

6 REFERENCES

Alexandrov, V.A., Novikov, A.I., Zabezhinsky, M.A., Stolyarov, V.I., and Petrov, A.S. (1989) The stimulating effect of acetic acid, alcohol, and thermal burn injury on esophagus and forestomach carcinogenesis induced by n-nitrososarcosin ethyl ester in rats. Cancer Lett. 47:79-185 [cited in BIBRA (1993)]

American Chemistry Council's (ACC) Acetic Acid and Salts Panel (2003) U.S. High Production Volume (HPV) Chemical Challenge Program - Robust Summaries for Carboxylic Food Acids and Salts Category. April 16, 2003

Anon (1972) Am Ind Hyg Assoc J 33, 624 [cited in BIBRA (1993)]

BASF, A.G. (1989) Unpublished study No. 78/650, 21.05.1980. In European Commission (1996) Acetic acid. International Uniform Chemical Information Database; [cited in ACC (2003)]

BiblioLine ® (2004) Database File: (RTECS [Toxicity, Carcinogenicity, Tumorogenicity, Mutagenicity, Teratogenicity]) or HSDB Subset [Hazardous Substances Data Bank]

BIBRA International (1993) Toxicology profile: Acetic acid and its common salts. BIBRA International

Binder R.L. et al. (1992) Envir. Molec. Mutagen 19 (Suppl. 20),6 [cited in BIBRA (1993)]

BioReliance (2002a) Bacterial Reverse Mutation Assay with an Independent Repeat Assay, Study No. AA49NY.502001.BLT, Project No. 01-020, February 27, 2002

BioReliance (2002b) In Vitro Mammalian Chromosome Aberration Test, Study No. AA49NY.331.BLT, Project No. 01-021, March 4, 2002

Bringmann, G. and Kuhn, R. (1980) Comparison of the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Water Res. 14:231-241; [cited in ACC (2003)]

Bringmann, G. and R. Kuhn. (1978) Testing of Substances for Their Toxicity Threshold: Model Organisms Microcystis (Diplocystis) aeruginosa and Scenedesmus quadricauda. International Association of Theoretical and Applied Limnology. Communications, 21: 275-284; [cited in U.S. EPA AQUIRE database]

Bringmann, V. G. and Kuhn, R. (1982) Results of toxic action of water pollutants on Daphnia magna strauss tested by an improved standardized procedure. Z. Wasser Abwasser Forsch. 15(1):1-6;[cited in ACC el (2003)]

Celanese (2003) Material Safety Data Sheet, Glacial Acetic acid MSDS Number MSDS-002

Clemens, H.P. and Sneed, K.E. (1959) Lethal Doses of Several Commercial Chemicals for Fingerling Channel Catfish. US Fish Wildl Serv Sci Rep Fish No 316, USDI, Washington, DC:10; Reference Number: 934; [cited in U.S. EPA AQUIRE database]

Cory-Slechta, D.A. (1986) Prolonged lead exposure and fixed ratio performance. Neurobehav. Toxicol. Teratol. 8:237-244

Degussa-Huls AG (1995b) Determination of bacterium toxicity of DYNASIL A In Oxygen Consumption Test (Huls method). Final Report. PZ-95/15. Degussa-Huls AG-Nr. 95 0225. DGO. 9/15/95

Degussa-Huls AG (1995a) Determination of the biodegradability of DYNASYLAN ATAC In DOC-DIE AWAY TEST. Final Report DDA 108. Degussa-Huls AG-Nr.:95 0217 DGO. 10/19/95

Degussa-Huls AG (1995c) Determination of the acute effects of DYNASYLAN ATAC On fish (in accordance with EEC 92/69 C 1). Final Report FK 1338. Degussa-Huls AG Nr.: 95 0221 DGO. 9/19/95

Degussa-Huls AG (1995d) Determination of the acute effects of DYNASYLAN ATAC On the swimming behavior of Daphnia magna (in accordance with EG 92/69/EEC). Final Report DK 663. Degussa-Huls AG-Nr.: 95 0219 DGO. 9/19/95

Degussa-Huls AG (1995e) Determination of the acute effects of DYNASYLAN ATAC On the growth of Scenedesmus subspicatus 86.81.SAG (algae growth test per Guideline 92/69/EEC). Final Report AW-415. Degussa-Huls AG-Nr.: 95 0215. DGO. 8/21/1995

Degussa-Huls AG (1995f) Determination of the acute toxicity of DYNASYLAN ATAC In earthworms (Eisenia foetida foetida) (In accordance with Toxicology test for earthworms 88/302 EWG). Final Report. RW 061. Degussa AG-US-IT-NR. 95 0223 DGO. 12/11/95

Dow Corning (1964) The effect of the Alkyl Group in the Acetoxy Cross-Linking System. Dow Corning Report No. 1964-I0030-2409.1964-I0030-24091964-I0030-2409

Dow Corning Corporation (1980) Final Report 1980-I0005-743

Dow Corning Corporation (1984). Internal Report No. 1984-I0005-1226

Dow Corning Corporation (1994). Report No. 1994-I0000-39411

Dow Corning Corporation (2001). Physical properties database

Dow Corning Corporation (2004) Non-Regulated Study: Seven-Day Range-Finding Toxicity Study of Ethyltriacetoxysilane in Sprague-Dawley Rats. Study No. 9892-102, Sponsored by Silicone, Environmental Health Council, Reston, VA 20190

Dryden, L.P. and Hartman, A.M. (1971) Effect of vitamin B12 on the metabolism in the rat of volatile fatty acids. J. Nutr. 101:589-592. [cited in BIBRA (1993)]

Ellis, M.M. (1937) Detection and Measurement of Stream Pollution. In: Bull Bur Fish No 22, US Dep Commerce, Washington, DC: 365-437; Reference Number: 916; [cited in U.S. EPA AQUIRE database]

FAO/WHO (1974) Techn. Rep. Ser. No. 539; [cited in USEPA (1991)]

FASEB (1977) Evaluation of the Health Aspects of Acetic Acid, Sodium Acetate, and Sodium Diacetate as Food Ingredients. NTIS PB-274 670 [cited in USEPA (1991)]

Food and Agriculture Organization of the United Nations, Report Series. 40,127, 67. In Lewis, R.T. (ed.). (1994) Sax's Dangerous Properties of Industrial Materials. Eighth Edition. New York: Van Nostrand Reinhold Company [cited in ACC (2003)]

Food and Drug Research Laboratories (1974) Teratologic Evaluation of FDA 71-78 (Apple Cider Vinegar; Acetic Acid; Table Strength 5%) in Mice, Rats and Rabbits. NTIS PB234869; [cited in ACC (2003)]

Funasaka, R., Y. Ose, and T. Sato (1976) Studies on the Offensive-Odor Fish of the Nagara River. VII. Median Tolerance Limit Test of the Offensive-Odor Substances. Journal of Hygienic Chemistry, 22(1): 20-23; [cited in U.S. EPA AQUIRE database]

General Electric (2000) Physical properties database

Ghiringhelli, L. and Difabio, A. (1957) Med. Lav. 48: 559 [cited In Clayton, G.D. and Clayton, F.E. (eds.). 1994. Patty's Industrial Hygiene and Toxicology. Volume II, Part E. Toxicology. New York: John Wiley & Sons, Inc. and BIBRA, 1993]

Goldman M (1981) Experentia 37, 1348. [cited in BIBRA (1993)]

Grant W.M. (1974) Toxicology of the Eye. 2nd Edition. Charles C Thomas Publisher, Springfield, IL [cited in BIBRA (1993)]

Griffith J.F. et al (1980) Toxicol Appl Pharmacol, 55, 501 [cited in BIBRA (1993)]

HDB (1985) Hazard Data Bank Sheet No 64. Acetic Acid. The Safety Practitioner, 3 [cited in BIBRA (1993)]

Hobbs, E.J. (1971) Dow Corning Corporation, Report No. 1971-I0005-40

Huntingdon Life Sciences (1999) Study No. 99-0590

J.R. Geigy S.A. (1970) Documenta, Geigy, 7th ed. Basle; as cited in FAO/WHO World Health Org. Techn. Rep. Ser. No. 539, 1974 [cited in USEPA (1991)]

Jacobs G.A. and Martens M.A. (1989) Fd Chem Toxic 27, 255 [cited in BIBRA (1993)]

Janssen, C.R., Espiritu, E.Q., and Persoone, G. (1993) Evaluation of the new "Enzymatic Inhibition" criterion for rapid toxicity testing with Daphnia magna. In: Soares, A. and Calow, P. (Eds.), Progress in Standardization of Aquatic Toxicity Tests. Lewis Publishers, New York, pp. 71-81; [cited in ACC (2003)]

Kameya, T., Murayama, T., Urano, K., and Kitano, M. (1995) Biodegradation ranks of priority organic compounds under anaerobic conditions. Sci. Total Environ. 170(1-2):43-51

Kavlock, R.J., Short, R.D., Jr., and Chernoff, N. (1987) Further evaluation of an in vivo teratology screen. Teratog. Carcinog. Mutagen. 7:7-16. [cited in BIBRA (1993)]

Lewin L and Guillery H. (1913) Die Wirkungen von Arzneimitteln und Giften auf das Auge. 2nd Edition August Hirschwald, Berlin (cited in Grant, 1974) [cited in BIBRA (1993)]

Loden M. et al (1985) FAO Report E40023. Fosvarets Forskningsanstalt, UMEA, Sweden [cited in BIBRA (1993)]

Mattson, V.R., J.W. Arthur, and C.T. Walbridge (1976) Acute Toxicity of Selected Organic Compounds to Fathead Minnows. Ecol Res Ser EPA-600/3-76-097, Environ Res Lab, US EPA, Duluth, MN: 12; Reference Number: 719; cited in U.S. EPA AQUIRE database

McMahon, R.E., Cline, J.C., and Thompson, C.Z. (1979) Assay of 855 test chemicals in ten tester strains using a new modification of the Ames test for bacterial mutagens. Cancer Res. 39:682-693; [cited in ACC (2003)]

Mori K (1952) Gann 43, 443 [cited in FASEB, 1977 and BIBRA (1993)]

Morita, T. Takeda, K., and Okumura, K. (1990) Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells. Mutat. Res. 240:195-202; [cited in ACC (2003)]

National Institute of Technology and Evaluation (1993) Biodegradation and Bioconcentration of Existing Chemical Substances under the Chemical Substances Control Law <u>http://www.safe.nite.go.jp/data/hazkizon/pk_e_kizon_data_result.home_data</u>

Nixon et al (1990) Regul Toxic Pharmac 12, 127 [cited in BIBRA (1993)]

Nixon, G.A. et al (1975) Toxicology and Applied Pharmacology. (Academic Press, Inc., 1 E. First St., Duluth, MN 55802) V.1- 1959 31:481, 1975 [cited in BIBRA (1993)]

Portmann, J.E. and K.W. Wilson (1971) The Toxicity of 140 Substances to the Brown Shrimp and Other Marine Animals. Shellfish Information Leaflet No 22 (2nd Ed), Ministry of Agric Fish Food, Fish Lab Burnham-on-Crouch, Essex, and Fish Exp Station Conway, North Wales: 12; Reference Number: 906; [cited in U.S. EPA AQUIRE database]

Powell, D.E. (2003) Fate, distribution, and transport of ethyltriacetoxysilane (CAS 17689-77-9) in the environment as predicted by fugacity modeling. Silicones Environmental, Health and Safety Council (SEHSC), final report, Project Number 01-014, August 2003

Principe, J.M. (2000) Melting Point Determination of Ethyltriacetoxysilane. Schenectady Materials and Processes Laboratory, Inc.

Rajan K.G. and Davies B.H. (1989) Br J Ind Med 46, 67 [cited in BIBRA (1993)]

Savina, V.P. and Anisimov, B.V. (1987) Kosm. Biol. Aviakosm. Med. 21:79. In BIBRA. 1993. Toxicology profile: Acetic acid and its common salts. BIBRA International; [cited in ACC (2003)]

Schenectady Materials and Processes Laboratory, Inc. (2000) LAB NO.: KR-1049. September 21, 2000

SEHSC (2001) Internal report: Volatile Species from Sealants Containing Acetoxysilanes.

Shafto C.M. (1950) Br J Opthamol 34, 559 (cited in Grant, 1974 and BIBRA (1993)]

Smith, A.L. (1988) Physical and Thermodynamic Properties - Ethyl-, Methyl-, and Vinyltriacetoxysilanes. Dow Corning Corporation, Report No. 1988-I0032-112

Smyth H.F. Jr et al. (1951) Archs Ind Hyg (4) 119 [cited in BIBRA (1993)]

Smyth H.F. Jr et al. (1969) Archs Ind Hyg (30) 470 [cited in BIBRA (1993)]

Sollmann T (1921) J Pharmacol Exp Therap 16, 463 [cited in BIBRA (1993)]

Sun, Y. and Taylor, B. R. (2001) Hydrolysis Screening Studies of HPV Acetoxysilanes-Final Report Submitted to the Silicones Environmental, Health and Safety Council of North America (SEHSC); Dow Corning Corporation Technical Report No. 2001-10000-50952, 2001

Sun, Ying; Chen, Huiping; Kelly, Donald V.; Reiter, Michael R. (2002) Determination of the Approximate Molecular Weight of Acetoxysilane Hydrolysis Products in Gastric Juice Simulant-Memo Report Submitted to the Silicones Environmental, Health and Safety Council of North America (SEHSC); Dow Corning Corporation Technical Report No. 2002-10000-52204, 2002

U.S. Public Health Service Grant (1960) The Sensitivity of Aquatic Life to Certain Chemicals Commonly Found in Industrial Wastes. Final Report No. RG-3965(C2R1), US Public Health Service Grant, Academy of Natural Sciences, Philadelphia, PA: 89; Reference Number: 5683; cited in U.S. EPA AQUIRE database

Union Carbide Data Sheet (1963) Union Carbide Corp., 39 Old Ridgebury Rd., Danbury, CT 06817. 8/7/1963

United States Environmental Protection Agency (1991) Registration eligibility document (RED). Sodium Diacetate. US Environmental Protection Agency

United States Environmental Protection Agency. (2000) Estimations Programs Interface (EPI) SuiteTM. The EPI SuiteTM and the individual models included within the software are owned and copyright protected by the U.S. Environmental Protection Agency

Vernot, E.H. et al. (1977) Toxicol Appl Pharmac 42, 417 [cited in BIBRA (1993)]

von Oettingen W.F. (1960) Archs Ind Health 21, 28 [cited in BIBRA (1993)]

Wacker Chemie GmbH (1989) Hazleton; Test to Evaluate the Acute Primary Cutaneous Irritation and Corrosivity in the Rabbit; Report No. 911358; December 14, 1989

Wallen I.E., Greer, W.C., and Lasater, R. (1957) Toxicity to Gambusia affinis of certain pure chemicals in turbid waters. Sewage Ind. Wastes 23(6):695-711; [cited in ACC (2003) and U.S. EPA AQUIRE database]

Woodward, G., Lang, S.R., Nelson, K.W., and Calvery H.O. (1941) J. Ind. Hyg. Toxicol. 23:78-82. In BIBRA (1993) Toxicity Profile: Acetic acid and its common salts

Wysokinska Z (1952) Roczniki Panstwowego Zakladu Hig 3, 273 [cited in BIBRA (1993)]

Zeiger, E., Anderson, B., Haworth, S. Lawlor, T., and Mortelmans, K. (1992) Salmonella mutagenicity test: V. results from the testing of 311 chemicals. Environ. Mol. Mutagen. 19(Suppl. 21):2-141; [cited in ACC (2003)]

SIDS

Dossier

Existing Chemical CAS No. EINECS Name EC No. Molecular Weight Structural Formula Molecular Formula	: 241-677-4 : 234.28
Producer related part Company Creation date	: Epona Associates, LLC : 27.06.2003
Substance related part Company Creation date	: Epona Associates, LLC : 27.06.2003
Status Memo	: : SEHSC merged
Printing date Revision date	: 01.11.2005
Date of last update	01.11.2005
Number of pages	: 133
Chapter (profile) Reliability (profile) Flags (profile)	 Chapter: 1, 2, 3, 4, 5, 6, 7, 8, 10 Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

1. GENERAL INFORMATION

1.0.1 APPLICANT AND COMPANY INFORMATION

1.0.2 LOCATION OF PRODUCTION SITE, IMPORTER OR FORMULATOR

1.0.3 IDENTITY OF RECIPIENTS

1.0.4 DETAILS ON CATEGORY/TEMPLATE

Comment : Analogue Justification

Remark : Ethyltriacetoxysilane undergoes rapid hydrolysis in moist/agueous environments (t1/2 is less than 13 seconds) to acetic acid and the corresponding trisilanol, thus observed toxicity is likely due primarily to acetic acid. Abiotic hydrolysis products of the test substance undergo continuous condensation reactions to produce higher molecular weight cyclic and linear siloxanes (the number-average and weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis. While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. The structural analogue methyltriacetoxysilane (CAS number 4253-34-3) has been used for in vitro bacterial gene mutation and chromosomal aberrations endpoints. The hydrolysis product, acetic acid (CAS number 64-19-7) and its salts [calcium acetate (CAS number 62-54-4), potassium acetate (CAS number 127-08-2) and sodium acetate (CAS number 127-09-3)]), have been used to assess the acute aquatic toxicity (fish, aquatic invertebrate and algae), repeated dose toxicity, fertility and developmental toxicity endpoints. Acetic acid and its salts are grouped together because of their close structural relationships and the salts are the neutralized form of the acid that can be more easily administered, their natural occurrence in plants and animals, and their fundamental role in cell metabolism, particularly in the tricarboxylic acid cycle (also known as the citric acid or Kreb's cycle), which is where humans get their energy. In addition the structural analogue vinyltriacetoxysilane (CAS number 4130-08-9) has been used to support the acute aquatic toxicity endpoints. Data from both ethyltriacetoxysilane and vinyltriacetoxysilane are representative of acetic acid, based on the rapid hydrolysis of these materials.

01.11.2005

1.1.0 SUBSTANCE IDENTIFICATION

IUPAC Name	:	Ethyltriacetoxysilane
Smiles Code	:	O=C(O[Si](OC(=O)C)(OC(=O)C)CC)C
Molecular formula	:	C8H14O6Si

OECD SIDS

Molecular weight	:	234
Petrol class	:	

07.12.2004

1.1.1 GENERAL SUBSTANCE INFORMATION

Purity type Substance type Physical status Purity Colour Odour	 typical for marketed substance organic liquid > 95 - 100 % w/w off white acetic acid odor 	
Source 06.12.2004	: SEHSC	(35) (45)

1.1.2 SPECTRA

1.2 SYNONYMS AND TRADENAMES

Dow Corning (R) 3-7	7110	
20.04.2004		
ethylsilanetriol, triad	cetate	
Source 06.05.1996	: Degussa AG Duesseldorf	
Ethyltriacetoxysilan	10	
Reliability 12.03.2004	: (2) valid with restrictions	(18)
silanetriol, ethyl-, tr	iacetate	
Source 05.02.2003	: Degussa AG Duesseldorf	
Triacetoxyethylsilar	ne	
12.03.2004		(18)
Tris(acetyloxy)ethyl	Isilane	
02.12.2004		(18)
1.3 IMPURITIES		
Purity CAS-No EC-No	: typical for marketed substance : 64-19-7 : 200-580-7	

OECD SIDS 1. GENERAL INFORM	ATION	ETHYLTRIACETOXYSILANE ID: 17689-77-9
		DATE: 01.11.2005
EINECS-Name Molecular formula Value	: acetic acid : CH3COOH : <5 % w/w	
Source 06.12.2004	: SEHSC	(35)
Purity CAS-No EC-No EINECS-Name Molecular formula Value	 typical for marketed substance 108-24-7 Acetic anhydride < 3 % w/w 	
20.04.2004		(35)
Purity CAS-No EC-No EINECS-Name Molecular formula Value	 typical for marketed substance 4253-34-3 Methyl triacetoxysilane < 1 % w/w 	
20.04.2004		(45)
Purity CAS-No EC-No EINECS-Name Molecular formula Value	typical for marketed substance i Impurities i 1 - 5 % w/w	
20.04.2004		(35)

1.4 ADDITIVES

1.5 TOTAL QUANTITY

Quantity	:	ca. 891 - tonnes produced in 2001
Remark Source 06.12.2004	:	Reflects production in the Sponsor country SEHSC
Quantity	:	ca. 6.3 - tonnes imported in 2001
Remark Source 06.12.2004	:	Reflects importation into the Sponsor country SEHSC

1.6.1 LABELLING

1. GENERAL INFORMATION

1.6.2 CLASSIFICATION

1.6.3 PACKAGING	
1.7 USE PATTERN	
Type of use	: use
Category	
Remark	 The commercial use of this material is almost exclusively as a cross linker for silicone sealants and adhesives. The final formulated sealant and adhesive is sold in consumer markets. During curing of the silicone sealant or adhesive the ethyltriacetoxysilane hydrolyzes as it reacts with silanol polymers and atmospheric moisture to form a cross linker rubber. Since the acetoxy-functional silane is converted and bound within the substrate by polymer coupling, free silane is not present within the final products. In production, this material is mostly handled in closed systems. Necessary engineering controls during production include proper ventilation, containment, safety equipment and actual hardware designed to minimize exposure through splashing, or exposure to the air. Transfer of this material is in closed pipes or closed containers rather than in open systems to minimize loss of this material (hydrolysis) although some customers may transfer the material in open systems. Ethyltriacetoxysilane is transported from the production site as the parent silane to formulators. Generally, ethyltriacetoxysilane is compounded into a consumer or industrial sealant or adhesive, it reacts with the silicone. After curing the
	parent silane becomes cross linked into the silicone rubber
	matrix and no longer exists, this greatly reduces the
	potential for consumer or worker exposure.
17.03.2004	· ·

1.7.1 DETAILED USE PATTERN

Industry category Use category Extra details on use category	 15/0 other 55/0 other No extra details necessary No extra details necessary
Emission scenario document Product type/subgroup Tonnage for Application Year Fraction of tonnage for application Fraction of chemical in formulation Production : : Formulation : : Processing : : Private use :	not available

OECD SIDS		ETHYLTRIACETOXYSILANE
1. GENERAL INFO	RMATION	ID: 17689-77-9
		DATE: 01.11.2005
Recovery	:	
Remark	industry; 10 Main catego matrix; 9% consumer r Use catego bindings, of	egory: 65% chemical industry; 25% polymer % other-sealants ory: 91% use resulting in inclusion into or onto is non-dispersive - not directly sold into the narket. ries: 91% cross-linking ingredient; 9% adhesives, her- sealants e same in the Sponsor country (USA), Europe and
Source 06.12.2004	: SEHSC	

1.7.2 METHODS OF MANUFACTURE

1.8 REGULATORY MEASURES

1.8.1 OCCUPATIONAL EXPOSURE LIMIT VALUES

1.8.2 ACCEPTABLE RESIDUES LEVELS

1.8.3 WATER POLLUTION

1.8.4 MAJOR ACCIDENT HAZARDS

1.8.5 AIR POLLUTION

1.8.6 LISTINGS E.G. CHEMICAL INVENTORIES

1.9.1 DEGRADATION/TRANSFORMATION PRODUCTS

Type CAS-No EC-No EINECS-Name IUCLID Chapter	degradation product in air
Remark	The DC732 sealant experiment was run in triplicate with identical results.
Result	The following materials were not detected in the headspace Concentration (PPM) for the Target Silane: Methyltriacetoxysilane Ethyltriacetoxysilane Diacetoxydimethylsilane Acetoxytrimethylsilane

DECD SIDS		LIACETOXYSILANE
. GENERAL INFORM	ATION	ID: 17689-77-9 DATE: 01.11.2005
	Methyltriacetoxysilane @ 59% relative humidity DC732 silicone sealant GE RTV108 silicone sealant GE RTV108 with no added water These materials were detected at >100 ppm heads concentration for acetic acid/anhydride.	bace
	The detection limit for the acetoxysilane target comp was estimated to be on the order of 100 ppb, based typical response factors noted for the siloxanes qua and the response for neat acetoxysilanes measured liquid phase. It was not possible to prepare accurat phase standards of the acetoxysilanes without hydro other reaction rapidly occurring.	l on the ntified J as a e gas olysis or
Test condition	 Conditions: Sealant samples (2 grams) were dry atmosphere into a sealed vessel. Experiments with water present, with a 59% relative humidity, an no additional water. Samples were incubated for 20 at 27 C then headspace samples were taken. Controls: Samples of each of the neat silane treated in the same manner as the sealant samples used for calibration of the test method. Analytical procedures: 200 microliter aliquor sampled from the headspace of the sealed container injected into a GC-MS 	were run d with) minutes es were also and were ts were
Test substance	 Commercial silicone sealants which utilize a alkylsilane crosslinking reaction were used. Neat sa of the individual silanes were also tested. Acetoxy-alkylsilanes in room temperature vulcanizir sealants Methyltriacetoxysilane CAS # 4253-34-3 Ethyltriacetoxysilane CAS # 17689-77-9 GE RTV!08 Sealant Batch AA881 DC732 Sealant Batch 0000673137 	amples ng
Conclusion	 None of the acetoxy alkylsilanes used as crosslinke volatilize during cure of the sealants. Instead they hydrolyze and condense releasing acetic acid, whic detected. Therefore there is no human exposure to acetoxy alkylsilanes from their predominant use in s sealants. 	rs h was the
Reliability 25.02.2004	: (1) valid without restriction	(76)
1.9.2 COMPONENTS		
1.10 SOURCE OF EXP	OSURE	
Source of exposure Exposure to the	other: human and environmentSubstance	
Remark	: In production, this material is mostly handled in closed systems. Neces	2000

OECD SIDS 1. GENERAL INFORMAT		XYSILANE 17689-77-9 : 01.11.2005
01.11.2005	or exposure to the air. Transfer of this material is in closed pipe, drums, or tanks rather than in open systems to minimize loss of this material (hydrolysis). Ethyltriacetoxysilane is transported from the production site as the parent silane to sealant formulators. The parent silane partially reacts during sealant formulation and then completely reacts during curing of the sealant into the polymer matrix and is no longer available for consumer or worker exposure. Ethyltriacetoxysilane volatilizes during cure of sealants. Instead this material hydrolyzes and condenses, releasing acetic acid. Therefore, there is no human exposure to ethyltriacetoxysilane from use in silicones sealants.	
Source of exposure Exposure to the	other: environment: GeneralSubstance	
Remark 01.11.2005	: The reactive nature of this material destroys the parent material in any moisture-containing environment, thus limiting environmental exposure to the silane. The rapid hydrolysis means that the parent silane is unlikely to be found in the environment. If ethyltriacetoxysilane monomer is slowly released into the environment such that resulting concentrations of the parent compound are low, it is less likely that polymerisation will occur and more likely that free triol or short-chain oligomers will result. The spectrum of by-products will depend upon the initial concentration of the parent compound.	
01.11.2000		

1.11 ADDITIONAL REMARKS

1.12 LAST LITERATURE SEARCH

1.13 REVIEWS

2. PHYSICO-CHEMICAL DATA

2.1 MELTING POINT

Value Sublimation Method Year GLP Test substance	= 8.4 °C no other: ASTM E794-98 2000 no as prescribed by 1.1 - 1.4	
Remark	8.4 °C should be used as the critical value for melting point because a p at -3.2 °C was believed to correspond to the MP of ethyltriacetoxysilane The original study showed a single peak across a temperature range of 2.9 to 8.4 °C, suggesting that the test material contained an impurity (probably a hydrolysis product) having a low melting point. Ethyltriacetoxysilane readily hydrolyzes in the presence of moisture in the air with the initial formation of acetic acid and ethyldiacetoxysilanol. Initial DSC scan indicated one peak with onset of -2.9C and a maximum at 8.4C. A second scan of the sample indicated the formation of a second material as illustrated by a new peak appearing at -3.2 C and the 8.4 C peak. The new peak is believed to be due to the ethyldiacetoxysilanol formed by hydrolysis of the sample. Review of DSC scans indicate good reliability. MP of ethyltriacetoxysilane varied by less than 0.1C at low hydrolysis levels.	
Test condition	Melting point determined by DSC. A Dupont 910 DSC instrument was used. Instrument calibrated according to manufacturer's instructions. Dichloroethane and distilled, deionized water used for melting point calibration. Onset of melting of water found to be 0.7C. DSC purged with nitrogen at 50 ml/min. Aliquots (about 10 mg) of sample material were placed in aluminum sample pans and hermetically sealed. Temperature was increased as the rate of 10C/minute from -100C to 30 C.	
Test substance Conclusion	Ethyltriacetoxysilane (CAS# 17689-77-9) purity >98% DSC provides unambiguous melting point and provides a qualitative purity confirmation as materials within mixture have distinct DSC peaks. Absolute error in melting point depends on calibration. Calibration value within acceptable limits.	
Reliability Flag	(1) valid without restriction Critical study for SIDS endpoint	
06.04.2004		(72)
Value Sublimation	= 5 °C	
Method	other: unknown	
Year GLP	1964 no	
Test substance	as prescribed by 1.1 - 1.4	
Source 06.04.2004	Dow Corning Corporation Midland, MI	(29)

OECD SIDS

2. PHYSICO-CHEMICAL DATA

2.2 BOILING POINT

Value Decomposition Method Year GLP Test substance	 = 227 °C at 1013.25 hPa yes other: Extrapolation of lower, ebulliometric boiling points 1988 no as prescribed by 1.1 - 1.4
Remark	: Observations: Extrapolations of VP for several (OAc)3 compounds were compared. Decomposition noted ca 202 C The boiling point value selected is an extrapolation of lower, ebulliometric boiling points and is in excellent agreement with measurements reported by individual member companies.
Result	 Coefficients for the Halm-Stiel and Antoine equations were derived from regression of the following measured vapor pressure data: T (deg C) P (mm Hg) P (Pa) 87.3 4.2 565 94.8 6.7 888 108.1 12.6 1674 118.8 20.7 2758
Source Test condition	 Dow Corning Corporation Midland, MI The best-fitting Halm-Stiel and Antoine vapor pressure equations were used to extrapolate boiling point from vapor pressures measured at temperatures ranging from 87-119 C.
Conclusion	 Although the Halm-Stiel and Antoine equations are valid for interpolations, serious error may result from extrapolations outside the limits of measured data. Hence, significant error may be associated with the reported boiling point for the test substance. Nonetheless, the result is comparable to values obtained from the literature and other studies
Reliability	 (2) valid with restrictions Review of the study report and raw data indicate that the results are scientifically defensible and adequate for assessing the boiling point of the test substance. The study is considered to be reliable with the following restrictions: study was not conducted under GLP purity of test substance was not documented methods used to generate vapor pressure/temperature data were not documented boiling point is extrapolated from vapor pressures measured at elevated temperatures ranging from 87-119 C.
Flag 10.07.2003	: Critical study for SIDS endpoint (34) (78)
Value Decomposition Method Year GLP Test substance	: = 201 °C at 1013 hPa : : other : 1971 : no : as prescribed by 1.1 - 1.4
Source Test substance Reliability 25.02.2004	 Dow Corning Corporation Midland, MI Ethyltriacetoxysilane (CAS No. 17689-77-9) (2) valid with restrictions (34) (54)

OECD SIDS		RIACETOXYSILANE
2. PHYSICO-CHEMI	CAL DATA	ID: 17689-77-9 DATE: 01.11.2005
Value	: = 220 °C at 1013 hPa	
Decomposition Method	: : other	
Year		
GLP	: no data	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: General Electric	
Test substance Reliability	 Ethyltriacetoxysilane (CAS No. 17689-77-9) (2) valid with restrictions 	
25.02.2004		(46)
2.3 DENSITY		
2.5 DENSIT		
Туре	: relative density	
Value	: = 1.1437 at 20 °C	
Method	: other: Densimeter	
Year GLP	: 1988 : no	
Test substance	: as prescribed by 1.1 - 1.4	
Remark	: Observations: Density relative to 4 C water densi	tv
Source	: Dow Corning Corporation Midland, MI	,
Reliability 25.02.2004	: (2) valid with restrictions	(78)
2.3.1 GRANULOMET	RY	
2.4 VAPOUR PRES	SURE	
Value	: = .05 hPa at 20 °C	
Decomposition Method	 yes other (calculated): Smoothed data by fitting it to H 	alm & Stiel CSP
Method	correlation	
Year	: 1988	
GLP Test substance	: no : as prescribed by 1.1 - 1.4	
rest substance	. as prescribed by 1.1 - 1.4	
Remark	: Ebulliometric measurements in DC Lab Book E-78	863:19-27, 41,
	42 (1988) Test substance tends to decompose as temperatu	ire approaches
	boiling point (227 C)	
Result	: Measured vapor pressure and temperature data:	
	T (deg C) P (mm Hg) P (Pa) 87.3 4.2 565	
	94.8 6.7 888	
	108.1 12.6 1674	
	118.8 20.7 2758	
	The extrapolated vapor pressure of the test subst	
	deg C was 6.0 Pa and 4.1 Pa, based on the Halm	
	equation and the Antoine equation, respectively. reported vapor pressure of 5.1 Pa at 20 C is the a	

Sourcethe two extrapolated values.Source:Dow Corning Corporation Midland, MI

ECD SIDS	ETHYLTRIACETOXYSII	LANE
PHYSICO-CHEMIC		
	DATE: 01.11	
Test substance Conclusion	: Ethyltriacetoxysilane (CAS No. 17689-77-9) Although the Halm-Stiel and Antoine equations are valid for interpolations, serious error may result from extrapolations outside the limits of measured data. Hence, significant error may be associated with the estimated vapor pressure of the test substance at 20 degrees C. Nonetheless, measured vapor pressures obtained at elevated temperatures are comparable to values obtained from other studies.	
Reliability	 (2) valid with restrictions Review of the study report and raw data indicate that the results are scientifically defensible and adequate for assessing the vapor pressure of the test substance. The study is considered to be reliable with the following restrictions: study was not conducted under GLP purity of test substance was not documented methods used to generate vapor pressure/temperature data were not documented vapor pressure at 20 C is extrapolated from vapor pressures measured at elevated temperatures ranging from 87-119 C. 	
Flag 22.03.2004	: Critical study for SIDS endpoint	(78
Value	: = .025 hPa at 20 °C	
Decomposition Method		
Year		
GLP	: no data	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
27.06.2003		(34
		X -
Value	: = .013 hPa at 65 °C	
Decomposition	:	
Method		
Year	: 1975	
GLP	: no	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
10.07.2003		(50
Value	: = .015 hPa at 65 °C	
Decomposition		
Method		
Year	: 1969	
GLP	: no	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: Degussa AG Duesseldorf	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
27.06.2003	<u></u>	(51
		(01

PHYSICO-CHEMI	CAL DATA	ID: 17689-77-
		DATE: 01.11.200
Value	: = .2 hPa at 80 °C	
Decomposition	:	
Method	:	
Year	: 1959	
GLP	: no	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
27.06.2003		(1
Value	: = .267 hPa at 89 °C	
Decomposition	:	
Method	:	
Year	: 1960	
GLP	: no	
Test substance	as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
10.07.2003		(1
Value	: = .533 hPa at 97.5 °C	
Decomposition		
Method		
Year	. 1961	
GLP	: no	
Test substance	as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
10.07.2003		(8
Value	: = .533 hPa at 98 °C	
Decomposition	000 m a at 00 0	
Method	:	
Year	: 1947	
GLP	: 1947 : no	
Test substance	as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
27.06.2003		(7
Value	: = 1.466 hPa at 98 °C	
Decomposition	•	
Method	:	
Year	: 1987	
GLP	: 1987 : no	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	 Ethyltriacetoxysilane (CAS No. 17689-77-9) (2) valid with restrictions 	
Reliability 27.06.2003		1
21.00.2003		(

ECD SIDS PHYSICO-CHEMICA	ETHYLTRIACETOXYS	
	DATE: 01.	
Value	: = .533 hPa at 101 °C	
Decomposition	:	
Method		
Year	: 1951	
GLP	: 1951 : no	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
10.07.2003		(6
Value	: = .533 hPa at 101 °C	
Decomposition		
Method		
Year	: 1958	
GLP	: no	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	
10.07.2003		(6
., .		
Value	: = 1.066 hPa at 108 °C	
Decomposition	:	
Method	:	
Year	: 1957	
GLP	: no	
Test substance	: as prescribed by 1.1 - 1.4	
Source	: SEHSC	
Test substance		
	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Reliability	: (2) valid with restrictions	(0)
27.06.2003		(2
5 PARTITION COEF		
5 FARIHON COLI		
	: octanol-water	
Partition coefficient		
Log pow	: = .74 at 25 °C	
Log pow pH value	:	
Log pow pH value Method	: : other (calculated)	
Log pow pH value Method Year	:	
Log pow pH value Method	: : other (calculated)	
Log pow pH value Method Year GLP	: : other (calculated) : 2003	
Log pow pH value Method Year GLP Test substance	: other (calculated) 2003 no as prescribed by 1.1 - 1.4	
Log pow pH value Method Year GLP	: other (calculated) 2003 no	
Log pow pH value Method Year GLP Test substance	: other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated	
Log pow pH value Method Year GLP Test substance	 other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). This value may 	
Log pow pH value Method Year GLP Test substance Remark	 other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). This value may not be applicable because the material is hydrolytically unstable. 	
Log pow pH value Method Year GLP Test substance Remark Reliability	 other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). This value may not be applicable because the material is hydrolytically unstable. (2) valid with restrictions 	
Log pow pH value Method Year GLP Test substance Remark	 other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). This value may not be applicable because the material is hydrolytically unstable. 	(9
Log pow pH value Method Year GLP Test substance Remark Reliability Flag 01.11.2005	 other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). This value may not be applicable because the material is hydrolytically unstable. (2) valid with restrictions Critical study for SIDS endpoint 	(9
Log pow pH value Method Year GLP Test substance Remark Reliability Flag 01.11.2005 Partition coefficient	 other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). This value may not be applicable because the material is hydrolytically unstable. (2) valid with restrictions Critical study for SIDS endpoint octanol-water 	(9
Log pow pH value Method Year GLP Test substance Remark Reliability Flag 01.11.2005 Partition coefficient Log pow	 other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). This value may not be applicable because the material is hydrolytically unstable. (2) valid with restrictions Critical study for SIDS endpoint 	(9
Log pow pH value Method Year GLP Test substance Remark Reliability Flag 01.11.2005 Partition coefficient	 other (calculated) 2003 no as prescribed by 1.1 - 1.4 Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). This value may not be applicable because the material is hydrolytically unstable. (2) valid with restrictions Critical study for SIDS endpoint octanol-water 	(9

OECD SIDS		ETHYLTRIACETOXYSILANE
2. PHYSICO-CHEMICAL DATA		ID: 17689-77-9
		DATE: 01.11.2005
Year	: 2004	
GLP	: no	
Test substance	: other TS	
Test substance	: Ethylsilanetriol	
Reliability	: (2) valid with restrictions	
01.11.2005		(92)
2.6.1 SOLUBILITY IN	DIFFERENT MEDIA	

Solubility in : Water Value = 41.6 g/l at 25 °C : pH value at °C concentration : Temperature effects : Examine different pol. 1 pKa at 25 °C : Description 2 Stable : no Deg. product : Method : other: estimated Year 2003 : GLP : no Test substance : as prescribed by 1.1 - 1.4 Remark : Water solubility of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model WSKOWWIN® (version 1.40). This value may not be applicable because the material is hydrolytically unstable. Reliability : (2) valid with restrictions 27.05.2004

2.6.2 SURFACE TENSION

2.7 FLASH POINT

Value Type Method Year GLP Test substance	 = 104 °C other: Open Cup 1971 no as prescribed by 1.1 - 1.4
Source Reliability 10.07.2003	Dow Corning Corporation Midland, MI(2) valid with restrictions

2.8 AUTO FLAMMABILITY

FLAMMABILITY 2.9

Result : other: N/A

47

(30)

(93)

OECD SIDS	ETHYLTRIACETOXYSILANE
2. PHYSICO-CHEMICAL DATA	ID: 17689-77-9
	DATE: 01.11.2005
Source : Dow Corning Corporation Midland 26.02.2003	d, MI
2.10 EXPLOSIVE PROPERTIES	
2.11 OXIDIZING PROPERTIES	

2.13 VISCOSITY

2.14 ADDITIONAL REMARKS

2.12 DISSOCIATION CONSTANT

3.1.1 PHOTODEGRADATION

Type Light source Light spectrum Relative intensity INDIRECT PHOTOLYSIS Sensitizer Conc. of sensitizer Rate constant Degradation Deg. product Method Year GLP Test substance	 air Sun light nm based on intensity of sunlight OH 500000 molecule/cm³ = .000000000013212 cm³/(molecule*sec) = 50 % after 12 day(s) other (calculated) 2003 no as prescribed by 1.1 - 1.4 	
Method	: Rate constant estimated using the model AOPWIN (ver. 1.90) as provided in the Estimations Program Interface (EPI) Suite	
Remark	 as provided in the Estimation's Program Interface (EPF) Suite (ver. 3.10), which was obtained from the US EPA. Photodegradation as a mode of removal is unlikely as ethyltriacetoxysilane is hydrolytically unstable. Ethyltriacetoxysilane is highly reactive and hydrolytically unstable, such that acetic acid and ethylsilanetriol are rapidly generated upon contact with water or water vapor. Consequently, reaction with water vapor is likely the predominant degradation process for ethyltriacetoxysilane in air and the overall reaction half life in air should include both the oxidation half life and the hydrolytic half life. The ethylsilanetriol resulting from hydrolysis in the atmosphere is expected to further react with hydroxyl radicals. 	
Result	 The overall reaction half life of ethyltriacetoxysilane in air is estimated to be < 3 min because of rapid hydrolysis of the material with moisure in the atmosphere. 	
Test substance	 Estimated rate constant was based on the SMILES notation: O=C(O[Si](OC(=O)C)(OC(=O)C)CC)C 	
Conclusion	: Ethyltriacetoxysilane in air is not expected to undergo direct photolysis, but may undergo indirect photolysis through hydroxyl radical oxidation. Because ethyltriacetoxysilane is highly reactive and hydrolytically unstable it is expected that reaction with water vapor is likely the predominant degradation process for the material in air.	
Reliability Flag	 (2) valid with restrictions Critical study for SIDS endpoint 	
19.03.2004		(71)

3.1.2 STABILITY IN WATER

Туре	: abiotic
t1/2 pH4	: < .2 minute(s) at 25 °C
t1/2 pH7	: < .2 minute(s) at 25 °C
t1/2 pH9	: < .2 minute(s) at 25 °C
Deg. product	: yes
Method	: OECD Guide-line 111 "Hydrolysis as a Function of pH"

Year GLP Test substance	:	2001 no as prescribed by 1.1 - 1.4
Remark	:	This study was not designed to monitor the subsequent condensation reaction involving silanol hydrolysis product. Values of upper limit on estimated t1/2 (shown above) refer to disappearance of test substance and appearance of acetic acid as a hydrolysis co-product.
Result	:	 *In all experiments, test substance was completely hydrolyzed by the time the first 1H-NMR spectrum was acquired and remained unchanged thereafter. *Initial spectra were acquired after 77-100 seconds and 7-8 spectra were subsequently acquired at 15 seconds intervals. *Since the hydrolysis is so rapid, there is no data to determine the rate constants (k1, k2, and k3) for the hydrolysis reactions by regression modeling. *Rate constants and half-lives could not be determined quantitatively, although the data is certainly adequate for estimating the upper limit of t1/2. *First order or pseudo-first order behavior could not be confirmed because: a) unable to measure the decrease of parent peak intensity from test substance or increase of peak intensity of hydrolysis co-product due to a rapid hydrolysis reaction, b) no data obtained during the critical portion of the process (20-70% hydrolyzed), and c) the relationship between k1, k2, and k3 is not known. *Breakdown products from hydrolysis: acetic acid and silanol. For given solution conditions, the degradation product acetic acid was observed to be stable during data collection. Consequently, acetic acid was considered stable. The stability of silanol was not measured, however silanols will undergo condensation reactions to form siloxanes. The stabilities of silanols lie in the order R3SiOH > R2Si(OH)2 > RSi(OH)3, with the bulkier R groups lending more stability to the SiOH function. Estimated t1/2 (seconds) @ ~ 25 C: @pH 4.06 <13 @pH 9.13 <1 Nominal: 1x10-3 M (243.28 mg/L) Ethyltriacetoxysilane
		Measured value (the value with units preferably mg/L): 0 M (0 mg/L) No -CH3 peak of -OC(O)CH3 group from test substance observed at pH 4.06
		0 M (0 mg/L) No -CH3 peak of -OC(O)CH3 group from test substance observed at pH 7.14
Source Test condition	:	0 M (0 mg/L) No -CH3 peak of -OC(O)CH3 group from test substance observed at pH 9.13 Dow Corning Corporation Midland, MI Analytical procedures: o The hydrolysis reaction was followed by monitoring the decrease of peak intensity for the methyl (i.e., -CH3) of acetoxy (i.e., -OC(O)CH3) group from test substance and the increase of peak intensity for the methyl (i.e., -CH3) of acetic acid (i.e., HO-C(O)CH3) from hydrolysis co-product using proton-nuclear magnetic resonance spectroscopy

	 (1H-NMR). *A Varian Mercury 300 MHz spectrometer was used and has been verified to be fully operational at 6 month intervals as part of our ISO9001 quality system. *Samples were run under standard 1-pulse acquisition conditions on the spectrometer in a 5mm H1/BB switchable PFG probe. Samples were spun at 20 Hz and one scan was acquired per experiment utilizing 4 sec acquisition times and 90 degree pulses. *Buffer solutions were prepared with deuterated water (99.9% of D2O, 0.1% of DOH residual, ISOTEC INC.) *Samples were locked to D2O and referenced to the residual water peak at ~ 4.7 ppm. *Verification of the neat test substance was conducted prior to prepare samples for hydrolysis study. *Constant ionic strength was maintained for samples and buffers (0.5 M) by addition of sodium chloride. *Temperature: Room temperature (~ 25 oC) *Replicates: Two at pH 4.06, 7.14, and 9.13 *Vessels: High-density polyethylene bottles of 60-mL capacity with screw caps. Vessels were not sterilized. *Co-solvent: None *Buffer volume for hydrolysis: 50 mL *Buffers *Buffers Target Buffer System Measured pH pH (before addition of test subst.)
Test substance Conclusion Reliability Flag 22.03.2004	 4.0 F Formic Acid/Sodium Hydroxide4.06 7.0 Monobasic Sodium Phosphate 7.14 9.0 Boric Acid/Sodium Hydroxide 9.13 Data treatment: For given solution conditions, the hydrolysis of test substance was followed to completion as indicated by disappearance of -CH3 peak of -OC(O)CH3 group from test substance. The elapsed time between the addition of the test substance to the aqueous buffer solution and the first acquired spectrum was used to estimate an upper limit on t1/2 (seconds) assuming that at least 7 half-lives represents exhaustive hydrolysis (99.2% complete). Ethyltriacetoxysilane (CAS No. 17689-77-9) Ethyltriacetoxysilane (CAS No. 17689-77-9) Ethyltriacetoxysilane (CAS No. 17689-77-9); Gelest Inc., product number SIE 4899.0; purity of 98.5% by GC According to the definition put forth in the test guidelines, the test substance was found to be hydrolytically unstable (Estimated t½ < 1 year at ~ 25 oC) over the range of environmentally relevant pH values and the temperature tested. (2) valid with restrictions Critical study for SIDS endpoint
Type t1/2 pH4 t1/2 pH7 t1/2 pH9 Deg. product Method	 abiotic at °C at °C at °C yes other: Experimental - no recognized guideline available

Year GLP Test substance	:	2002 no as prescribed by 1.1 - 1.4
Remark	:	The study described above was not designed to monitor the subsequent (> 4 hrs) condensation reactions. The estimated hydrolysis half-life for the test substance
Result	:	at pH 4.06 and ~ 25°C is less than 13 seconds Value (mg/L) at temperature °C: Quantitation was not conducted. Based on the qualitative analytical results, hydrolysis products from the test substance underwent continuous, condensation reactions to produce higher molecular weight cyclic and linear siloxanes. Description of solubility (e.g., miscible to soluble to not soluble):Soluble pH value of the test system and concentration of the test system at temperature °C: pH = 1.29 and 3.4 x 105 (mg/L)(*) of ethyltriacetoxysilane/0.1 N HCl at 37°C
		Breakdown products: Yes - Acetic acid and transient silanol materials
		(*)= Calculation as following Density of ethyltriacetoxysilane: 1.143 g/ml (obtained from Gelest Inc. catalog) 0.3 ml (ethyltriacetoxysilane)/1ml (0.1 N HCl) x 1.143 g/ml x 98.5% x 1000 mg/g x 1000 ml/1L(0.1 N HCl) = 3.4 x 105 mg/L
		 The GPC chromatograms consisted of one main low molecular weight peak with a high molecular weight shoulder. The 4-hr sample had a larger high molecular weight shoulder in comparison to the 1-hr sample when both samples appeared to be completely dissolved in the THF solvent. At the 1-hr reaction time, the number-average and weight-average molecular weights of the test substance solution were determined by GPC to be 633 and 809, respectively, with 22% of the chromatogram represented by a MW range higher than 1000. At the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085, respectively, with 38% of the chromatogram represented by a MW range higher than 1000. ESI-MS analyses showed that similar hydrolysis/condensation species were observed in both liquid and gel samples at both reaction times. However, the relative peak intensities of the higher MW species occurred more in the gel than in the liquid. More extensive condensation reactions occurred by the 4-hr reaction time. The major component observed by ESI-MS for both 1-hr and 4-hr was T'4 (monocyclic structure) in the liquids and T2T'4 (bicyclic structure) in the gels, where T = CH3CH2SiO3/2 and T' = CH3CH2(Z'O)SiO2/2, Z' = H or Me. The NMR results support the findings from the GPC and ESI-MS analyses, indicating that the condensation reactions continued over the period of time. In the NMR analysis, a small ratio of CH3CH2Si(OZ)3 [Z = most likely H(2) or can be assigned as OC(O)CH3)] species still existed in the liquid layer for both 1-hr and 4-hr

ID: 17689-77-9 DATE: 01.11.2005

	samples. •Breakdown products from hydrolysis: acetic acid and silanol. The stabilities of acetic acid and silanol were not measured. However, in general, silanols will undergo condensation reactions to form siloxanes. The stabilities of silanols follow the order R3SiOH > R2Si(OH)2 > RSi(OH)3, with the bulkier R groups lending more stability to the SiOH function.
Test condition	 Analytical procedures: o0.1 N HCl solution in water (Lot# 04126DA, Conc. 0.0994 N) was purchased from Sigma-Aldrich company. o0.6:2 (v/v) of the neat ethyltriacetoxysilane and 0.1 N HCl were mixed in a HDPE bottle inside N2 bag as test solution to simulate gastric conditions. oThe test solution was immediately aliquot into six HDPE vials followed by hand mixing for ~ 3 sec. and then placed into an Digital Incubator Shaker (innovaTM 4000/4080, New Brunswick Scientific Co., Inc.) which was pre-set at 37 ± 0.2oC and 25 RPM. Three of the sub-samples were allowed to equilibrate in the Incubator for 1 hour ± 10 minutes, and the other three was in there for 4 hours ± 10 minutes prior to analysis.
	oTemperature: 37 ± 0.2oC oReplicates: Single oVessels: 60-mL High-density polyethylene (HDPE) bottles with screw caps. 20-mL HDPE Scintillation vials with cone-shaped plastic liner screw cap for GPC and NMR sub-samples, and with Teflon septum screw caps for MS sub-samples. Vessels were not sterilized. oCo-solvent: None oGel permeation chromatography (GPC) was used to determine
	the relative molecular weight distribution (MWD) of the hydrolysis and condensation products. oThe chromatographic equipment consisted of a Waters 600 pump, a Waters 717 autosampler and a Waters 410 differential refractometer. The separation was made with two PLgel 5 um Mixd-C columns (Polymer Laboratories, 300 mm x 7.5 mm, molecular weight separation range of 200 to 2,000,000), preceded by a PLgel 5 um guard column (50 mm x 7.5 mm).
	oThe samples were prepared in THF at about 2% w/v solids (using the entire sub-samples), and filtered through a 0.45 µm PTFE syringe filter into glass autosampler vials. All samples appeared to completely dissolve in THF. oESI-MS spectra were acquired on a Sciex API 350 triple quadrupole mass spectrometer (Sciex, Toronto, Canada) or a Bruker (Bruker Daltonics, Billerica) APEX II 47e Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS).
	oThe samples (total of 8) were prepared separately by dissolving approximately 10 ul liquid and 0.01 g gel into ~ 6 ml CH3CN/CHCl3 (1:1) from each sub-sample at 1-hr and 4-hr reaction times. oA Varian Mercury 300 MHz spectrometer equipped with a switchable probe was used to collect the NMR data for the gels.
	OA Varian Mercury 400 MHz FT-NMR spectrometer equipped with 13C/29Si Silicon-free probe was used to collect the NMR data for the liquids. O 29Si NMR spectra were acquired at the two reaction times for both liquid (in D2O) and gel (in d-DMSO) NMR samples

(total of 8).

Test substance Conclusion	: :	•Data treatment: oFor GPC analysis, molecular weight averages were determined relative to a calibration curve (3rd order) created using polystyrene standards covering the molecular weight range of 580 - 2,300,000. Also, the area percent values were not only relative to the polystyrene standards, but the responses of the higher and lower molecular weight species (assuming equal responses for all species). Data collection and processing was performed using PE Nelson Access*SEC software. o The ESI-MS instrument was calibrated with a Hewlett Pakard ES tuning mix with molecular weight spanning a mass range of m/z 118 - m/z 2722. Data acquired in the broadband mode were typically collected using 512 K data points. oNMR data were acquired and processed using both merc300 and merc400. Data was processed using Varian's VNMR version 6.1. Based on the NMR peak integration and chemical shift, molar ratio of each type of produced species at the two reaction times were determined. Estimated relative error for the gel samples is ±8%. Ethyltriacetoxysilane CH3CH2Si[OC(0)CH3]3; CAS number:17689-77-9; Purity: 98.5% by GC In general, both NMR and ESI-MS analyses showed that similar hydrolysis/condensation species were observed in both liquid and gel samples at both reaction times. The major component observed by ESI-MS for both 1-hr and 4-hr was T¢4 (monocyclic structure) in the liquids and T2T¢4 (bicyclic structure) in the gels, where T = CH3CH2Si/3/2 and T¢ =? CH3CH2(Z¢O)Si/2/2, Z¢ = H or Me. The number-average and weight-average molecular weights of the ethyltriacetoxysilane solution were determined by GPC to be 633 and 809, respectively, with 22% of the chromatogram represented by a MW range higher than 1000 at the1-hr reaction time. At the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085, respectively, with 38% of the chromatogram represented by a MW range higher than 1000. The test substance was found to be hydrolytically unstable at	
Paliability		condition.	
Reliability 17.03.2004	•	(1) valid without restriction	(84)
3.1.3 STABILITY IN SOIL			
3.2.1 MONITORING DATA	4		
3.2.2 FIELD STUDIES			

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Гуре

: other: Fugacity model Level III

-

OECD SIDS ETHYLTRIACETOXYSILANE 3. ENVIRONMENTAL FATE AND PATHWAYS ID: 17689-77-9 DATE: 01.11.2005 Media : Air % (Fugacity Model Level I) 2 Water % (Fugacity Model Level I) 2 % (Fugacity Model Level I) Soil : % (Fugacity Model Level II/III) Biota • Soil % (Fugacity Model Level II/III) Method other: calculated using EQC (equilibrium criterion) model; version 1.01 Year • 2001 Remark : Acetoxysilane materials, including ethyltriacetoxysilane, are highly reactive and hydrolytically unstable. Upon contact with water or water vapor, acetoxysilane materials rapidly generate acetic acid and the corresponding silanol which, depending upon concentration, will condense to form a highly cross-linked polymeric gel. The measured hydrolysis half-life for ethyltriacetoxysilane at pH 7.1 is < 13 seconds at 25 °C (1). As such, ethyltriacetoxysilane will not exist in the environment but will rapidly hydrolyze to acetic acid and ethylsilanetriol. The fate, transport, and distribution of ethyltriacetoxysilane in the environment were evaluated using the fugacity-based EQC (equilibrium criterion) model Level-I Simulation: Results from the Level-I simulation Result indicate that ethyltriacetoxysilane has the tendency to partition almost exclusively into the water compartment, which holds essentially 99% of the total chemical mass. About 1% of the total mass of ethyltriacetoxysilane is equally distributed between the air and soil compartments, with an insignificant amount (< 0.1% of the total mass) found in the sediment compartment. Environmental distribution of ethyltriacetoxysilane, based on Level-I fugacity modeling. Environmental Distribution (%) Air Water Soil Sediment 0.6 98.9 0.5 0.0 Level-II Simulation: Results from the Level-II simulation show the same environmental distribution characteristics as the Level-I simulation, with 99% of the total mass of ethyltriacetoxysilane found in the water compartment. The results also show that degradation (i.e., hydrolysis) in water is the primary mechanisms of removal for ethyltriacetoxysilane in the local environment. Degradation in air and soil, and advective losses account for < 0.2% of the total mass removed. Output from the model indicates that ethyltriacetoxysilane will have a local persistence of about 0.005 hours (18 sec) and a global persistence of about 0.005 hours (18 sec). Table 3. Distribution and environmental residence time of ethyltriacetoxysilane, based on Level-II fugacity modeling. **Environmental Compartment** Air Water Soil Sediment 0.0 Distribution(%) 98.9 0.5 0.6 Reaction losses(%) 99.9 0.1 0.1 0.0 Advective losses(%) 0.0 0.0 0.0

Overall residence time(h) 0.005

ID: 17689-77-9 DATE: 01.11.2005

	Reaction residence time(h) 0.005 Advective residence time(h) 955 Level-III Simulation: Results from the Level-III simulations demonstrate that 100% of the total mass of ethyltriacetoxysilane released into an environmental compartment (i.e., air, water, or soil) will be rapidly degraded within that compartment. Emission of ethyltriacetoxysilane directly to air results in 100% of the total chemical mass residing in the air compartment, with degradation in air accounting for >99% of the total mass removed from the local environment. Similar results were obtained when ethyltriacetoxysilane was released directly to soil or water. In all simulations, intermedia exchange of ethyltriacetoxysilane between the other compartments was insignificant. Likewise, advective losses of the total chemical mass removed from the system were insignificant (< 0.1%). Persistence of ethyltriacetoxysilane in the model system was about 0.05 hours (3 min) or less, regardless if the material is emitted to air, soil, or water.
	Distribution and environmental residence time of ethyltriacetoxysilane emitted to the the air, soil and water compartments, based on Level III fugacity modeling.
	Emission Rates (Kg/h): Air = 1000; Soil = 1000; Water = 1000
	Environmental Compartment Air Water Soil Sediment Distribution (%) 47.3 5.3 47.4 0.0 Reaction losses (%) 33.3 33.3 33.3 0.0 Advective losses (%) 0.0 o.o 0.0
Source : Test condition :	Overall residence time (h) .037 Reaction residence time (h) .037 Advective residence time (h) 209 SEHSC (Note 1): Water solubility of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model WSKOWWIN® (version 1.40). The model was used as received from the United States Environmental Protection Agency (USEPA, 2000). A melting point of 8.4 °C (Principe, 2000) was used for the
	estimation. (Note 2): Vapor pressure of ethyltriacetoxysilane at 25 °C was extrapolated from a temperature-vapor pressure relationship that was developed using peer-reviewed experimental data measured at temperatures ranging from 87-119 °C (Smith, 1988). (Note 3): Log Kow of ethyltriacetoxysilane at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). The
	model was used as received from the United States Environmental Protection Agency (USEPA, 2000). (Note 4): Hydrolysis is the primary degradation pathway for ethyltriacetoxysilane, which rapidly generates acetic acid and ethylsilanetriol upon contact with water or water vapor. The half-life of ethyltriacetoxysilane in sediment was assumed to be equal to the measured half-life in water. Because of the decreased activity of water in air and soil, the half-life of ethyltriacetoxysilane in these two compartments was assumed to be 10 times longer than the measured half-life in water.

ID: 17689-77-9
DATE: 01.11.2005

	The EQC model (Mackay, D., A. Di Guardo, S. Paterson, C.E. Cowan. 1996) was used for all fugacity calculations as recommended by EPA. All simulations were conducted at a data temperature of 25degC using default values of the model for compartment dimensions and properties. If chemical-specific data required for the simulations were not available, estimated values were obtained using structure activity relationship (SAR) models developed by the EPA Office of Pollution Prevention Toxics and Syracuse Research Corporation, as provided with the EPI Suite™ (version 3.10) package (EPA, 2000). Level-I, -II, and -III fugacity models for a Type-1 chemical (i.e., chemicals that partition into all environmental media) were used for the simulation.
Conclusion :	Physical and chemical properties of ethyltriacetoxysilane: Molecular weight: 234.28 Data temperature (deg C): 25 Water solubility (g/m3): 41,570 (estimated value) (Note 1) (USEPA, 2000) Vapor pressure (Pa): 5.1 (interpolated from temperature-vapor pressure correlation) (Note 2) (Smith, 1988) Log Kow: 0.74 (estimated value) (USEPA, 2000) Melting point (deg C): 8.4 (Principe, 2000) Half-life in air (h): 0.036 (Assumed to be 10 times longer than the half-life in water) (Note 4) Half-life in water (h): 0.004 (Measured at pH 7.1 and 25 °C) (Sun and Taylor, 2001) Half-life in soil (h): 0.036 (Assumed to be 10 times longer than the half-life in water) (Note 4) Half-life in sediment (h): 0.004 (Assumed to be equal to the half-life in water) (Note 4) Half-life in water) (Note 4) Results from the multimedia model simulations indicate that ethyltriacetoxysilane will not exist in the environment. Rather, ethyltriacetoxysilane will rapidly degrade (i.e., hydrolyze) to acetic acid and ethylsilanetriol within the environmental compartment (air, water, soil) in which it is released. Because of the rapid rates of degradation, advective losses and intermedia exchange of ethyltriacetoxysilane between environmental compartments is insignificant. However, the fate, transport, and distribution of the hydrolysis product, ethylsilanetriol, will be dependant upon the environmental compartment in which ethyltriacetoxysilane is released. Because of its high solubility and relatively low volatility, ethylsilanetriol is not expected to partition to air, even when the material is produced from ethyltriacetoxysilane emitted directly to the air compartment. Biodegradation in soil and water remove about 90% of total mass of ethylsilanetriol from the local environment, whereas advection in water accounts for about 10%. In contrast,
	emission of ethyltriacetoxysilane directly to water results in ethylsilanetriol remaining almost exclusively to the water compartment (>99% of the total mass), with biodegradation and advection accounting for 66% and 34%, respectively, of the total mass removed from the model system. Global persistence of ethylsilanetriol in the model system was about 22 days, regardless if

DECD SIDS		ETHYLTRIACETOXYSILANE
. ENVIRONMENTAL	FATE AND PATHWAYS	ID: 17689-77-9 DATE: 01.11.2005
Reliability Flag 01.11.2005	 ethyltriacetoxysilane was released water. Hence, the environmental ethyltriacetoxysilane, based on fo product ethylsilanetriol (and ignoriacid), are water and soil. (1) valid without restriction Critical study for SIDS endpoint 	compartments of concern for rmation of the degradation
Type Media Air Water Soil Biota Soil Method	 other % (Fugacity Model Level I) % (Fugacity Model Level I) % (Fugacity Model Level I) % (Fugacity Model Level II/III) % (Fugacity Model Level II/III) other: calculated 	
Year	: 2001	
Remark	The measured hydrolysis half-life at pH 7.1 is < 13 seconds at 25 °C ethyltriacetoxysilane will not exist will rapidly hydrolyze to acetic acid Hence, the environmental fate, tra of ethylsilanetriol were evaluated realistic assessment of ethyltriace model was used for all fugacity ca by EPA. All simulations were con temperature of 25*C using default compartment dimensions and pro data required for the simulations estimated values were obtained u relationship (SAR) models develo Pollution Prevention Toxics and S Corporation, as provided with the package. The Level-III fugacity m (i.e., chemicals that partition into a media) was used for the simulation in Tables 6a-6c.	C. As such, in the environment but d and ethylsilanetriol. ansport, and distribution to provide a more etoxysilane. The EQC alculations as recommended nducted at a data t values of the model for operties. If chemical-specific were not available, using structure activity oped by the EPA Office of Syracuse Research EPI Suite [™] (version 3.10) nodel for a Type-1 chemical all environmental
	Physical and chemical properties (hydrolysis product of ethyltriacetor Molecular weight: 108.17 Data temperature (deg C): 25 Water solubility (g/m3): 4.3 x 10Er 1) (USEPA, 2000) Vapor pressure (Pa): 0.039 (estim (USEPA, 2000) Log Kow: -1.87 (estimated value) Melting point (deg C): 36.02 (estim (USEPA, 2000) Half-life in air (h): 11.1 (estimated (USEPA, 2000) Half-life in water (h): 360 (estimate (USEPA, 2000) Half-life in soil (h): 360 (Assumed in water) (Note 6) Half-life in water) (Note 6)	oxysilane): 6 (estimated value) (Note nated value) (Note 2) (Note 3) (USEPA, 2000) mated value) (Note 4) value) (Note 5) ed value) (Note 6) to be equal to half-life

(Note 1): Water solubility of ethylsilanetriol at 25 °C was estimated using the SAR Model WSKOWWIN® (version 1.40). The model was used as received from the United States Environmental Protection Agency (USEPA, 2000). (Note 2): Vapor pressure of ethylsilanetriol at 25 °C was estimated using the SAR Model MPBPWIN® (version 1.40). The model was used as received from the United States Environmental Protection Agency (USEPA, 2000). (Note 3): Log Kow of ethylsilanetriol at 25 °C was estimated using the SAR Model KOWWIN® (version 1.66). The model was used as received from the United States Environmental Protection Agency (USEPA, 2000). (Note 4): Melting point of ethylsilanetriol at 25 °C was estimated using the SAR Model MPBPWIN® (version 1.40). The model was used as received from the United States Environmental Protection Agency (USEPA, 2000). (Note 5): Half-life of ethylsilanetriol in air was estimated using the SAR Model AOPWIN® (version 1.90). The model was used as received from the United States Environmental Protection Agency (USEPA, 2000). (Note 6): Half-life of ethylsilanetriol in water was estimated using the SAR Model BIOWIN® (version 4.00). The model was used as received from the United States Environmental Protection Agency (USEPA, 2000). The BIOWIN result for ultimate biodegradation timeframe (2.9601: "weeks") was converted to an estimated half-life in water (360 days) using the EPA default conversion factors in EPI Suite™ (USEPA, 2000). Similarly, default half-life factors in EPI Suite™ were used to estimate the half-life of ethylsilanetriol in soil (1x the half-life in water) and sediment (4x the half-life in water). Table 6a. Distribution and environmental residence time of ethylsilanetriol (hydrolysis product of

ethyltriacetoxysilane) generated in the atmospheric compartment, based on Level-III fugacity modeling.

Emission Rates (kg/h): Air = 1000; Soil = 0; Water = 0 Environmental Compartment

	Air	Water	Soil	Sedime	ent
Distribution (%)	0.0	28.0	71.9	0.0	
Reaction losses	(%) 0.	0	24.5	62.8	0.0
Advective losses (%)0.0			12.7		0.0
Overall residence	454				
Reaction residence time (h)			520		
Advective residence time (h)			3568		

Table 6b. Distribution and environmental residence time of ethylsilanetriol (hydrolysis product of ethyltriacetoxysilane) generated in the soil compartment, based on Level-III fugacity modeling.

Emission Rates (kg/h): Air = 0; Soil = 1000; Water = 0						
Environmental Compartment						
Air	Water	Soil	Sedim	ent		
Distribution (%)0.0	22.2	77.8	0.0			
Reaction losses (%)	0.0	19.9	69.8	0.0		
Advective losses (%)	0.0	10.3		0.0		

OECD SIDS			ETHYLTRIACE	TOXYSILANE
3. ENVIRONMENTAL FAT	E AND PATHWAYS			ID: 17689-77-9
			DA	TE: 01.11.2005
	AirWateDistribution (%)0.099.8Reaction losses (%)0.0	duct of ed in the odeling. 0; Soil = ental Cor Soil	ital residence time o water compartment 0; Water = 1000 npartment Sediment 0.2	f
0	Advective residence time (h)	1002		
Source : Test substance :	Dow Corning Corporation Mi Other: ethylsilanetriol	diand, Mi		
Reliability :	(1) valid without restriction			
27.05.2004				(70)

3.3.2 DISTRIBUTION

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 **BIODEGRADATION**

Type Inoculum Concentration	:	aerobic other: domestic sewage 1086 mg/l related to Test substance
Contact time Degradation Result Kinetic of testsubst.	:	457 mg/l related to DOC (Dissolved Organic Carbon) 21 day(s) = 74 (\pm) % after 21 day(s) readily biodegradable 0 day(s) = 0 - 0 % 7 day(s) = 77.16 - 77.39 % 14 day(s) = 71.28 - 72.27 %
		21 day(s) = 72.47 - 76.16 %
Control substance Kinetic		Benzoic acid, sodium salt 0 day(s) = 0 - 0 % 21 day(s) = 96.63 - 98.33 %
Deg. product Method	:	not measured Directive 84/449/EEC, C.4 "Biotic degradation - modified AFNOR test NF T90/302"
Year	:	1995
GLP Test substance	:	yes as prescribed by 1.1 - 1.4
Method	:	DOC-DIE AWAY TEST (EEC Guideline 79/831/EEC, Appendix V,Part C (updated edition dated July 1990), Method C.4-A.
Remark	:	Rates of hydrolysis have been determined for

OECD SIDS	
3. ENVIRONMENTAL FATE AND PATHWAYS	

ETHYLTRIACETOXYSILANE

ID: 17689-77-9 DATE: 01.11.2005

Test condition	:	methyltriacetoxysilane and ethyltriacetoxysilane. The hydrolytic half-lives were < .2 minutes for pH 7.1 at 25 °C. These results confirm that these close structural analogs are hydrolytically unstable and will immediately hydrolyze upon contact with water or watervapor. Methyl- and ethyltriacetoxysilane rapidly hydrolyzeand generate 3 moles of acetic acid for every mole of parent material. The test material rapidly hydrolyzes to acetic acid and silanetriol. Inoculum was a living slime from a primary communal sewage treatment plant (Marl-East). The test consisted of two flasks with test substance (14.99 mg DOC/I after 3 h) and inoculum; two flasks without test substance with inoculum;and two flasks with sodium benzoate (13.71 mg DOC/I after 3h) and inoculum.	
Test substance	:	DOC analyses was performed at 0 and 3 hours and on the 7th,14th and 21st days. DOC analyses were in the form of a double determination of oxygen-enriched and de-gassed samples (removal of inorganic carbon). The DOC analysis was performed using two-point calibration in a carbon analyzer. DYANSYLAN ATAC: 99.4% Ethyltriacetoxysilane.	
Conclusion	:	The test substance is susceptible to hydrolysis. DYNASYLAN ATAC achieved a breakdown rate of 74% (DOC reduction) within 21 days. Since the degree of breakdown within 10 days after an initial exceedance of the 10% breakdown threshold was greater than 70%, the substance may be considered "readily biodegradable".	
Reliability Flag 02.12.2004	:	The control substance achieved a breakdown rate of >70% (DOC reduction) within 14 days. Thus, the sludge specimen used possessed sufficient biological activity. (1) valid without restriction Critical study for SIDS endpoint	(26)
T	_		
Туре	:	aerobic	
Inoculum Concentration	:	other: activated sludge 100 mg/l related to Test substance related to	
Contact time	:	14 day(s)	
Degradation	:	(±) % after	
Result	:	readily biodegradable	
Deg. product	:		
Method	:	OECD Guide-line 301 C "Ready Biodegradability: Modified MITI Test	(I)"
Year	:	1993	. /
GLP	:	no data	
Test substance	:	other TS	
Method	:	Concentration of Activated Sludge = 30 ppm MITI-I(OECD TG 301C)	
Result	:	BOD = 74%	
Test substance	:	Acetic acid; 64-19-7	
Conclusion	:	Chemical substance determinated to be ready biodegradable	
Reliability	:	(1) valid without restriction	
Flag	:	Critical study for SIDS endpoint	
31.10.2005		, .t	(67)

OECD SIDS

3. ENVIRONMENTAL FATE AND PATHWAYS

ETHYLTRIACETOXYSILANE

ID: 17689-77-9 DATE: 01.11.2005

Type Inoculum Concentration	 anaerobic domestic sewage, non-adapted 30 mg/l related to DOC (Dissolved Organic Carbon) related to 	
Contact time Degradation Result Deg. product Method Year GLP Test substance	 28 day(s) = 99 (±) % after 7 day(s) readily biodegradable other 1995 no data other TS 	
Method	: Medium: Sewage treatment Test procedures were carried out in an enclosed glove box with N2 atmosphere. Oxygen-free water was used. The test period was 4 weeks at 37 °C and with pH adjusted to 7. Biodegradation was determined by analyzing the decrease of DOC.	
Remark Test substance	 Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Acetic acid (64-19-7) 	
Reliability 31.10.2005	: (2) valid with restrictions	(2) (58)

3.6 BOD5, COD OR BOD5/COD RATIO

3.7 BIOACCUMULATION

Elimination Method Year GLP Test substance	:	other: estimated 2004 no as prescribed by 1.1 - 1.4
Remark	:	Bioaccumulation is not anticipated since this material is hydrolytically unstable. Rapid hydrolysis of this material produces acetic acid and trisilanols. The Si-C bond will not undergo further hydrolysis. That bond is hydrolytically stable. Only the acetoxy groups will be hydrolyzed. The transient silanol groups will condense with other silanols to yield:
		Et-Si(OR)3 type resins where R=H or -Si(Et)(OR)2
		As a result silanol-functional resins are generated.
		If the silane is slowly released such that the concentration of the resulting silanetriol is not high enough to result in polymerization, the trisilanol will exist largely as a monomer. The monomer is known to be water soluble by virtue of the three hydroxy groups on the silicon. It is expected

OECD SIDS		ETHYLTRIACETOXYSILANE
3. ENVIRONMENTAL FAT	E AND PATHWAYS	ID: 17689-77-9
		DATE: 01.11.2005
Reliability : 02.12.2004	that this silanetriol will have a low hydroxy groups and so is not ex water solubility of the silanetriol because of the tendency to cond greater than 500 ppm. It is know silanetriol and small condensation precipitate out of water due to for insoluble polymeric resins. (2) valid with restrictions	pected to bioaccumulate. The cannot be measured dense at concentrations in however that the on products will only

3.8 ADDITIONAL REMARKS

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type Species Exposure period Unit LC0 LC50 LC100 Limit test Analytical monitoring Method Year GLP Test substance		semistatic Brachydanio rerio (Fish, fresh water) 96 hour(s) mg/l = 180 = 251 = 350 yes yes Directive 92/69/EEC, C.1 1995 yes as prescribed by 1.1 - 1.4
Method	:	Analytical evaluation of test substance concentrations was performed by TOC determination. Groups of ten fish per 20 I aquarium were exposed for 96 hours to test substance target concentrations of 0, 100, 180, 350, 550 or 1000 mg/l.
Remark	:	The test solutions were not neutralized. Because ethyltriacetoxysilane generates considerable amounts of acetic acid when exposed to water, results from aquatic tests reflect the toxicity of acetic acid rather than the toxicity of the parent triacetoxysilane. Acetoxysilanes are highly reactive and undergo rapid hydrolysis when exposed to moisture. When ethyltriacetoxysilane is added to water, 100% of the parent compound is hydrolyzed in less than 0.2 minutes, producing 3 moles of acetic acid and 1 mole of silanetriol for every mole of parent material. Studies indicate that the observed acute toxicity of ethyltriacetoxysilane (CAS No. 17689-77-9) to aquatic organisms is due to acetic acid. When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane is comparable to the reported toxicity of acetic acid (EC50 =50-450 mg/L), depending on test species. Mortality may be attributed to the low pH values in higher concentrations. At 0 hours, the pH of the test solutions at concentrations of 0, 100, 180, 350, 550, and 1000 mg/L was 7.6, 6.2, 5.6, 4.6, 4.3, and 3.9, respectively. By 24 hours, the pH was 7.5, 6.2, 5.6, and 4.8 in solutions containing 0, 100, 180, and 350 mg/L, respectively (100% mortality in solutions containing 350 and 1000 mg/L). By 48 hours, pH values of 7.6, 6.3, and 5.6 were recorded for solutions of 0, 100, and 180 mg/L, respectively (100% mortality in solution containing 350 mg/L). At 72 hours, pH values of 7.9, 6.8, and 6.2 were recorded for solutions of 0, 100, and 180 mg/L, respectively. OECD Guideline 203 indicates that the test should be carried out without adjustment of pH. However, if there is evidence of marked change in the pH of the tank water after addition of the test substance, it is advisable that the test be

ECOTOXICITY	ID: 1	7689-77-
ECOTOXICITY)1.11.200
	DATE. (/1.11.200
	repeated, adjusting the pH of the stock solution to that of	
	the tank water before addition of the test substance. This	
	pH adjustment should be made in such a way that the stock	
	solution concentration is not changed to any significant	
	extent and that no chemical reaction or precipitation of the	
	test substance is caused.	
Result	: Measured concentrations after 24 hours deviated < 20% from	
Result	fresh concentrations. It was assumed that neither the test	
	substance or any hydrolysis products were removed from the	
	test system, and were considered biologically available.	
	Target Concentrations Geometric Measured	
	(mg/l) Concentrations (0-24 hrs)	
	(mg/l)	
	100 115	
	180 191	
	350 376	
	550 568	
	1000 971	
	The LC50 values for 24, 48, 72 and 96 hours were 313, 251,	
	251, and 251, respectively.	
Test substance	: DYNASYLAN ATAC: 99.4% Ethyltriacetoxysilane.	
	The test substance is susceptible to hydrolysis. As the test	
	substance has low water solubility, it was dissolved at 1	
	g/l in VE water and stirred for 18 h and then filtered.	
Reliability	: (1) valid without restriction	
-		
Flag 01.11.2005	: Critical study for SIDS endpoint	(2
01.11.2003		(2)
Туре	: flow through	
Species	: Carassius auratus (Fish, fresh water)	
Exposure period	: 96 hour(s)	
Unit	: mg/l	
mortality	: = 100	
Method	: other	
	: 1937	
Year		
GLP Test substance	: no : other TS	
Method	: Age/Life Stage: 60-90 millimeters, 3-5 grams	
	Water Parameters:	
	Temperature: 18-23 deg C	
	Hardness: HARD	
	Dissolved O2: 6-7 mg/L	
	pH: 6.8 (mean value)	
	Exposure Duration: 48-96 hours	
Remark	: Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
Tastaul (of (alkyl) triacetoxysilane parent material.	
Test substance	: Acetic acid (64-19-7)	
Poliobility	: (2) valid with restrictions	
Reliability 31.10.2005		(38) (8

ECD SIDS		ETHYLTRIACETOX	
4. ECOTOXICITY ID: 17 DATE: 0			7689-77-9
		DAIL.	01.11.200.
Туре	:	other: not reported	
Species		Cyprinus carpio (Fish, fresh water)	
Exposure period	÷	48 hour(s)	
Unit		mg/l	
LC50	:	= 49	
Method	:	other	
Year	:	1976	
GLP	:	no data	
Test substance	:	other TS	
Method	:	Age/Life Stage: not reported	
		Water Parameters:	
		Temperature:17-18 deg C	
		pH = 5.8 (minimum value)-7.2 (maximum value)	
Remark	:	Acetoxysilanes are not stable when exposed to moisture and	
		undergo rapid hydrolysis. When added to water, 100% of the	
		parent material is hydrolyzed to acetic acid and the	
		corresponding silanetriol in less than 0.2 minutes at 25°C	
		and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
		and 1 mole of alkyl substituted silanetriol for every mole	
		of (alkyl) triacetoxysilane parent material.	
Test substance	:	Acetic acid (64-19-7)	
Reliability	:	(2) valid with restrictions	
31.10.2005			(44) (8
Туре	:	static	
Species	:	Gambusia affinis (Fish, fresh water)	
Exposure period	:	96 hour(s)	
Unit	:	mg/l	
LC50	:	= 251	
Limit test	:		
Analytical monitoring	:	no data	
Method	:	other	
Year	:	1957	
GLP	:	no	
Test substance	:	other TS	
Method	:	Age/Life Stage: Adult female	
		Water Parameters:	
		Temperature: 16-25 deg C	
		Alkalinity: <100 mg/l CaCO3 (mean value)	
		pH: 6.9 (minimum value)-8.7 (maximum value)	
		Turbidity <= 25 TO 169 mg/l	
		Ten fish were exposed to test concentrations for a period of	
		96 hours. The concentrations used for the first experiment	
		were 10, 18, 32, 56 and 100 ppm. When deaths did not occur	
		at these concentrations within 96 hours the same series was	
		run between 100 and 1,000 ppm. The temperature, turbidity,	
		and pH of the experimental water were measured after the	
		test substance was added and daily throughout the	
		experiment. Survivor observations were made at 24, 48, 72	
		and 96 hours. Test water was maintained at pH 6.9 - 8.7 and	
		16-25°C.	
Remark	:	Acetoxysilanes are not stable when exposed to moisture and	
	•	undergo rapid hydrolysis. When added to water, 100% of the	
		parent material is hydrolyzed to acetic acid and the	
		parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C	

ECD SIDS	ETHYLTRIACETOX	
ECOTOXICITY		7689-77-
	DATE:	01.11.200
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Result	: Fish transferred to concentrations between 100 and 1,000 ppm	
	swam frantically and at 100 and 180 ppm returned to normal	
	in 24 hours. At 320 ppm and higher all fish were dead at 24	
	hours.	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (2) valid with restrictions	
31.10.2005		(2) (89) (9
Turne	· statia	
Туре	: static	
Species	: Ictalurus punctatus (Fish, fresh water)	
Exposure period	: 72 hour(s)	
Unit	: mg/l	
LC50	: = 446	
Method	: other	
Year GLP	: 1959	
GLP Test substance	: no : other TS	
Test substance	: other 15	
Method	: Age/Life Stage: FINGERLINGS, 2-3 inches	
	Water Parameters: 25 deg C (mean value)	
Remark	: Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (2) valid with restrictions	
03.06.2005		(19) (8
_		
Туре	: static	
Species	: Lepomis macrochirus (Fish, fresh water)	
Exposure period	: 96 hour(s)	
Unit	: mg/l	
LC50	: = 75	
Method	: other	
Year	: 1960	
GLP	: no	
Test substance	: other TS	
Method	: Age/Life Stage: 5.3-7.2 centimeters, 3.5-3.9 grams	
Method	Water Parameters:	
	Temperature: 18-20 deg C	
	Hardness: 10 mg/l CaCO3 (mean value)	
	Dissolved O2: 5-9 mg/l	
Remark	: Acetoxysilanes are not stable when exposed to moisture and	
Kemark	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Test substance	: Acetic acid (64-19-7)	
	: (2) valid with restrictions	
Reliability 31.10.2005		(00) (0
51.10.2003		(89) (9
_	: static	
Туре	- static	

ECD SIDS	ETHYLTRIACETO	
ECOTOXICITY): 17689-7′ E: 01.11.20
•		
Species	: Lepomis macrochirus (Fish, fresh water)	
Exposure period	: 96 hour(s)	
Unit	: mg/l	
NOEC	: = 56	
LC50	: = 68	
LC100	: = 100	
LOEC	: = 100	
Limit test	:	
Analytical monitoring	: no	
Method	: other: Methods for acute toxicity tests with fish, macroinvertel amphibians. United States Environmental Protection Agency 75 009, 1975	
Year	: 1980	
GLP	: no	
Test substance	: other TS	
Method	 Test Vessels: Polyethylene-lined containers Test System: Bluegill sunfish (Lepomis macrochirus) - 10 fish/control; 10 fish/exposure concentration. Endpoint: 96-h mortality 	
	Statistics: Probit analysis based on Finney's Method (Statistical Methods In Biological Assay, 1952)	
	Exposure Concentrations (product, mg/L) " nominal: 0, 10, 18, 32, 56, 100	
	nominal. 0, 10, 16, 52, 50, 100	
	Test Procedure and Conditions " exposure period: 96 h	
	"dilution water: reconstituted soft-water	
	"temperature: 22 C	
	"study design: static exposure	
	"carrier solvent: none	
	"observation periods: 0, 24, 48, 72, 96 h	
	The test solutions were not neutralized.	
Remark	: Vinyltriacetoxysilane is a structural analogue for	
	methyltriacetoxysilane (CAS 4253-34-3) and	
	ethyltriacetoxysilane (CAS 17689-77-9)	
Result	: "NOEC = 56	
Nesun		
	"LC10 = 34 (15-47; 95% CI)	
	"LOEC = 100	
	"LC50 = 68 (51-103; 95% CI)	
	"LC100 = 100	
	"LC90 = 133 (92-421; (95% CI)	
	Test substance added directly to each test chamber, a	
	carrier solvent was not used. Dissolved oxygen and pH were	!
	measured at test initiation and termination. No mortality	
	observed in controls. One mortality observed in 32 mg/L	
	exposure at 96-h observation-was not considered dose	
	related. No mortality observed in 56 mg/L exposure (NOEC).	
	No mortality observed in 100 mg/L exposure (LOEC and LC1	
	until 24-h observation (100% mortality).	,
Test substance	: Dow Corning Z-6075 Silane	
rest substalle		
	Specified composition - not specified; Dow Corning MDMS	
	database indicates that the test material is 93%	
	vinyltriacetoxysilane (CAS 4130-08-9)	
Reliability	: (2) valid with restrictions	
31.10.2005		(
Туре	: static	
Species	: Oncorhynchus mykiss (Fish, fresh water)	
00000		

ECD SIDS	ETHYLTRIACETOXYSILAN
ECOTOXICITY	ID: 17689-77-
	DATE: 01.11.200
Exposure period	: 96 hour(s)
Unit	: mg/l
NOEC LC0	: 128 : 128
LC50	: 271
Limit test	: no
Analytical monitoring	: yes
Method	: OECD Guide-line 203 "Fish, Acute Toxicity Test"
Year	: 2004
GLP Test substance	: yes : other TS
Test substance	
Method	: OECD. 1993. OECD Guidelines for Testing of Chemicals.
	Guideline 203: Fish, Acute Toxicity Test. Updated
	Guideline adopted on 17 July 1992.
	USEPA. 1996. Fish Acute Toxicity Test, Freshwater and
	Marine. Series 850 - Ecological Effects Test Guidelines
	(draft), OPPTS Number 850.1075.
	Statistical methods: Binomial Probability, Probit Met
	96-Hour Static-Renewal Acute (Daily Renewals)
	Test fish: Age 77 Days/Mean Total Length 5.9 cm (Range 5.5
	to 6.3 cm)/Wet Weight 1.7 g (Range 1.4 to 2.3 g), Loading
	0.58 g/L, Fish were acclimated to laboratory conditions for
	a minimum of 2 weeks prior to the test.
	Test Conditions:
	oSemi-Static
	oDilution water source: Well Water
	oDilution water chemistry: Hardness 122 mg/L as CaCO3, Alkalinity 180 mg/L as CaCO3, Conductivity 270 mhos/cm,
	pH 8.6
	oStock and test solution and how they were prepared:
	Direct addition of test article to dilution water
	oConcentrations dosing rate: Negative Control, 63, 125,
	250, 500 and 1000 mg/L in dilution water
	oVehicle/solvent and concentrations: No organic solvent
	oStability of the test chemical solutions: Not Stable
	oExposure vessel type: 38-L or 54-L stainless steel
	aquaria containing 30-L of test solution
	oNumber of replicates, fish per replicate: Two replicates per treatment, 10 Fish per replicate
	oWater chemistry in test: DO, pH and temperature
	measured in each test chamber daily (old and new solutions
	as appropriate)
	Test Temperature Range: 11.3 - 12.2 C
	Method of Calculating Mean Arithmetic mean.
	Measured Concentrations: Negative Control, 63, 125, 250,
	500 and 1000 mg/l.
	Measurement of test concentrations in each test chamber at
	test initiation, on Day 1 (old solutions) and at test
Remark	termination by GC/FID. Content of the second state of the second s
	acetic acid. The toxicity of trimethylsilanol was
	determined in this study, as a means to further characterize
	the toxicity of the parent material.
Result	: Measured concentrations (as mg/L): <loq, 128,="" 250,="" 481<="" 65,="" td=""></loq,>
	and 949
	Statistical results (95% confidence interval), as

OECD SIDS	ETHYLTRIACETOXYSILANE	
4. ECOTOXICITY	ID: 17689-77-9	
	DATE: 01.11.2005	
	appropriate: 24-Hour LC50: >949 mg/L (not calculable) 48-Hour LC50: 523 mg/L (250 - 949) 72-Hour LC50: 476 mg/L (402 - 565) 96-Hour LC50: 271 mg/L (128 - 481 mg/L) No Mortality Concentration - 128 mg/L NOEC - 128 mg/L	
	Biological observations: After 96 hours of exposure, all surviving fish appeared normal. Table showing cumulative mortality: Mean Measured Concentration Number Dead/Number Exposed (hours) (mg/L) 0 24 48 72 96	
	0 0/20 0/20 0/20 1/20 65 0/20 0/20 0/20 0/20 0/20 128 0/20 0/20 0/20 0/20 0/20 250 0/20 0/20 1/20 8/20 481 0/20 0/20 20/20 20/20 949 0/20 6/20 20/20 20/20	
	Lowest test substance concentration causing 100% mortality: 481 mg/L "Mortality of controls: 5% "Abnormal responses: Surfacing, loss of equilibrium,	
	erratic swimming and lying on bottom "Any observations, such as precipitation that might cause a difference between measured and nominal values: All test solutions appeared clear and colorless.	
Test substance Conclusion	 Trimethylsilanol (CAS Number 1066-40-6) The 96-hour LC50 for rainbow trout (Oncorhynchus mykiss) exposed to trimethylsilanol under static-renewal test conditions was 271 mg/L with 95% confidence limits of 128 and 481 mg/L. The no mortality concentration and NOEC were 128 mg/L. 	
Reliability	 (1) valid without restriction This was a GLP compliant study with measured test concentrations. The study is scientifically defensible because a concentration-effect relationship was demonstrated 	
Flag 31.10.2005	: Critical study for SIDS endpoint (96)	
Type Species Exposure period	: static : Oncorhynchus mykiss (Fish, fresh water) : 96 hour(s)	
Unit NOEC LC50	: mg/l : = 32 : = 51	
LC100	: = 100	
LOEC Method	 = 56 other: Methods for acute toxicity tests with fish, macroinvertebrates, and amphibians. United States Environmental Protection Agency, EPA 660/3 75 009, 1975 	
Year GLP	: 1980	
GLP Test substance	: no : other TS	
Method	: Test Vessels: Polyethylene-lined containers	

ECD SIDS ECOTOXICITY	ETHYLTRIACETOXYSILANE ID: 17689-77-9
ECOTOXICITI	DATE: 01.11.2005
	DATE. 01.11.200.
	Test System: Rainbow trout (Oncorhynchus mykiss) - 10
	fish/control; 10 fish/exposure concentration
	Endpoint: 96-h mortality
	Statistics: Probit analysis based on Finney's Method
	(Statistical Methods In Biological Assay, 1952)
	Exposure Concentrations (product, mg/L) " nominal: 0, 10, 18, 32, 56, 100
	Test Procedure and Conditions
	" exposure period: 96 h
	" dilution water: reconstituted soft-water
	"temperature: 12 C
	" study design: static exposure
	"dissolved oxygen:
	" carrier solvent: none
	" observation periods: 0, 24, 48, 72, 96 h
	The test solutions were not neutralized.
Remark	: Vinyltriacetoxysilane (CAS 4130-08-9) is a structural
	analogue for methyltriacetoxysilane (CAS 4253-34-3) and
	ethyltriacetoxysilane (CAS 17689-77-9)
Result	: "NOEC = 32
	"LC10 = 29 (15-18; 95% CI)
	"LOEC = 56
	"LC50 = 51 (39-67; 95% CI)
	"LC100 = 100
	"LC90 = 88 (67-175; 95% CI)
	Test substance added directly to each test chamber, a
	carrier solvent was not used. Dissolved oxygen and pH were
	measured at test initiation and termination. No mortality
	observed in controls. No mortality observed in 56 mg/L
	exposure (LOEC) until 48-h observation (30% mortality)-60%
	mortality observed at 96-h observation. No mortality
	observed in 100 mg/L exposure (LC100) until 24-h observation
	(100% mortality).
Test substance	: Dow Corning Z-6075 Silane
	Specified composition - not specified; Dow Corning MDMS
	database indicates that the test material is 93%
-	vinyltriacetoxysilane (CAS 4130-08-9)
Reliability 31.10.2005	: (2) valid with restrictions (31
51.10.2005	
Туре	: static
Species	: Pimephales promelas (Fish, fresh water)
Exposure period	: 96 hour(s)
Unit	: mg/l
LC50	: = 79
Method	: other
Year	: 1976
GLP Test substance	: no : other TS
Test substance	
Method	: Age/Life Stage: JUVENILE, 4-8 weeks, 1.1-3.1 centimeters
	Water Parameters:
	Temperature: 18 - 22 deg C
	Dissolved O2: >4.0 mg/L (mean value)
	Dissolved O2: >4.0 mg/L (mean value) pH: <=5.9 (mean value)
Remark	Dissolved O2: >4.0 mg/L (mean value)

DECD SIDS	ETHYLTRIACETOX	
. ECOTOXICITY	ID: 1 DATE: 0	7689-77-)1.11.200
Test substance Reliability	 parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Acetic acid (64-19-7) (2) valid with restrictions 	
03.06.2005		(65) (8
Type Species Exposure period Unit LC50 Method Year GLP Test substance	 static Pimephales promelas (Fish, fresh water) 96 hour(s) mg/l = 88 other 1976 no data other TS 	
Method	 Age/Life Stage: JUVENILE, 4-8 weeks, 1.1-3.1 centimeters Water Parameters: Temperature: 18 - 22 deg C Dissolved O2: >4.0 mg/L (mean value) pH: <=5.9 (mean value) 	
Remark	: Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.	
Test substance Reliability 03.06.2005	Acetic acid (64-19-7)(2) valid with restrictions	(65) (8
Туре	: other	
Species		
Exposure period Unit		
Method	: other: analogy	
Year	: 2004	
GLP Test substance	: no : as prescribed by 1.1 - 1.4	
Remark	: Ethyltriacetoxysilane (CAS No. 17689-77-9) and vinyltriacetoxysilane (CAS No. 4130-08-9) have been tested and the results show the resulting toxicity to aquatic organisms is due to acetic acid. When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane and vinyltriacetoxysilane are comparable to the reported toxicity of acetic acid (EC50 = 50-450 mg/L, depending on test species):	
	Reported Toxicity (mg/L) of Ethyltriacetoxysilane, Vinyltriacetoxysilane, HOAc and Acetic Acid to Fish (96-h EC50; lethality):	
	Brachydanio rerio: 251 (Ethyltriacetoxysilane); 194 (HOAc(1))	

OECD SIDS	ETHYLTRIACETOXYSILANE
4. ECOTOXICITY	ID: 17689-77-9
	DATE: 01.11.2005
	Oncorhyncus mykiss: 51 (Vinyltriacetoxysilane); 40 (HOAc)
	Lepomis macrochirus: 68 (Vinyltriacetoxysilane); 53 (HOAc); 75 (Acetic acid)
	Pimephales promelas: 88, 79 (Acetic acid)
	Cyprinus carpio: 49 (Acetic acid)
	Carassius auratus: 100 (Acetic acid)
	Ictalurus punctatus: 446 (Acetic acid)
	Gambusia affinis: 251 (Acetic acid)
Source Reliability 20.05.2004	 (1) = HOAc is the estimated toxicity based on the estimated amount of acetic acid generated from the hydrolysis reaction. The amount of acetic acid generated was estimated using the assumption that 1 mole of test material (ethyl- or vinyl- triacetoxysilane) produces 3 moles of acetic acid. SEHSC (2) valid with restrictions

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Type Species Exposure period Unit NOEC EC50 EC100 24 hr EC50 Limit Test Analytical monitoring Method Year GLP Test substance	:	static Daphnia magna (Crustacea) 48 hour(s) mg/l = 43 = 62 = 129 = 85 no yes Directive 92/69/EEC, C.2 1995 yes as prescribed by 1.1 - 1.4
Method	:	The test included seven test substance concentrations (target values of 8.6, 15, 26, 43, 75, 129, and 215 mg/l) and a control. Test substance concentrations were determined using a TOC-500 Infrared Analyzer. Daphnia were observed for immobilization at 24 and 48 hours. Potassium dichromate was used as a reference substance in order to determine the test specimen's sensitivity.
Remark	:	The test solutions were not neutralized. Because ethyltriacetoxysilane generates considerable amounts of acetic acid when exposed to water, results from aquatic tests reflect the toxicity of acetic acid rather than the toxicity of the parent triacetoxysilane. Acetoxysilanes are highly reactive and undergo rapid

OECD SIDS	ETHYLTRIACETOXYSILANE
4. ECOTOXICITY	ID: 17689-77-9
	DATE: 01.11.2005
	hydrolysis when exposed to moisture. When ethyltriacetoxysilane is added to water, 100% of the parent compound is hydrolyzed in less than 0.2 minutes, producing 3 moles of acetic acid and 1 mole of silanetriol for every mole of parent material. Studies indicate that the observed acute toxicity of ethyltriacetoxysilane (CAS No. 17689-77-9) to aquatic organisms is due to acetic acid. When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane is comparable to the reported toxicity of acetic acid (EC50 =50-450 mg/L), depending on test species. When the results are interpreted, the hydrolysis of the test substance during the preparation of the initial solution or during the test should be considered.
	The pH value decreased with increased test concentration: control pH=8.7 43 mg/l pH=7.5 75 mg/l pH=5.9 129 mg/l pH=4.7 215 mg/l pH=4.1
Result	: The geometric mean of analytical values at 0 and 48 hrs deviated <20% from the nominal concentrations as follows:
	Target Concentration 48 hr Measured Concentrations (mg/l) (mg/l) 8.6 9.3 15 13.0 26 25.1 43 41.9 75 75.3 129 131 215 215
	Nominal concentrations were assumed for the purposes of the evaluation.
Test substance	 The measured concentrations at 48 hrs deviated <20% (up to 8.6 and 15 mg/l) from the fresh concentrations. It was assumed that neither the test substance nor its hydrolysis products were removed from the test system, and are considered biologically available. DYNASYLAN ATAC: 99.4% Ethyltriacetoxysilane.
	The test substance is susceptible to hydrolysis.
Reliability Flag 01.11.2005	 As the test substance has low water solubility, it was added to synthetic fresh water at 1 g/l and stirred for 18 h. The solution was filtered and the carbon content was determined. : (1) valid without restriction : Critical study for SIDS endpoint (24)
Type Species Exposure period Unit EC50	 other: renewal Crangon crangon (Crustacea) 48 hour(s) mg/l = 100

ECD SIDS	ETHYLTRIACETC	XYSILANE
ECOTOXICITY		: 17689-77-9 2: 01.11.2005
Method	: other	
Year	: 1971	
GLP	: no	
Test substance	: other TS	
Method	: Age/Life Stage: ADULT	
	Water Parameters:	
	Temperature: 15 deg C (mean value)	
Remark	: Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (2) valid with restrictions	(
03.06.2005		(69) (89)
Туре	: static	
Species	: Daphnia magna (Crustacea)	
Exposure period	: 24 hour(s)	
Unit EC50	: mg/l : = 6000	
Analytical monitoring	: = 6000 : no data	
Method	: other	
Year	: 1982	
GLP	: no data	
Test substance	: other TS	
Method	: The stock cultures of test organisms were fed dry algae, but	
	no feeding occurred during the 24-hour exposure. The testing	
	took place in a defined standardized culture medium	
	(artificial fresh water). The endpoint was immobilization. Stud	У
Remark	temperature was 20°C. : Acetoxysilanes are not stable when exposed to moisture and	
Rellidik	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
	The stated result was for test solutions neutralized (pH	
	8.0) prior to daphnid exposures. For the un-neutralized test, the 24-hour EC50 was 95 mg/L. The pH of unneutralized	
	test solutions was not stated. Study	
	temperature was 20°C.	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (2) valid with restrictions	
31.10.2005		(2) (14)
Туре	: static	
Species	: Daphnia magna (Crustacea)	
Exposure period	: 48 hour(s)	
Unit	: mg/l	
EC50	: = 65	
Method Year	: other : 1993	
GLP	: no data	
Test substance	: other TS	

DECD SIDS	ETHYLTRIACETOXYS	SILANE
		89-77-9
	DATE: 01.	11.2005
Method Remark	 Daphnia magna were exposed to a series of concentrations of acetic acid. The endpoint was immobilization. The test solutions were not neutralized. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Test solutions were apparently un-neutralized. 	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (2) valid with restrictions	
31.10.2005		(2) (57)
Туре	: static	
Species	: Daphnia magna (Crustacea)	
Exposure period	: 48 hour(s)	
Unit	: mg/l	
NOEC EC50	: = 32 : > 100	
EC100	: = 100	
LOEC	: = 100	
Analytical monitoring	: no	
Method Year	: 1980	
GLP	: no	
Test substance	: other TS	
Method	 Test Method: Not specified. Other Daphnid studies in 1980 were conducted according to: Methods for acute toxicity tests with fish, macroinvertebrates, and amphibians. United States Environmental Protection Agency, EPA 660/3 75 009, 1975. Test Vessels: Glass beakers, 250-mL Test System: Daphnid (Daphnia magna) - 20 daphnids/control; 20 daphnids/exposure concentration Replicates: Duplicate controls and duplicate exposure concentrations (10 organisms/replicate) Endpoint: 48-h immobility Statistics: Probit analysis based on Finney's Method (Statistical Methods In Biological Assay, 1952) Exposure Concentrations (product, mg/L) "nominal: 0, 1, 3.2, 10, 32, 100 Test Procedure and Conditions "exposure period: 48 h 	
Remark	 "photo-period: 18L/6D, 600 foot-candle "dilution water: reconstituted hard-water "temperature: 23 ± 1 C "study design: static exposure "dissolved oxygen: "carrier solvent: none "observation periods: 0, 24, 48 h Test solutions were not neutralized. Vinyltriacetoxysilane (CAS 4130-08-9) is a structural analogue for methyltriacetoxysilane (CAS 4253-34-3) and 	
Result	ethyltriacetoxysilane (CAS 17689-77-9) : "NOEC = 32	

Recencion de la companya de la compa		
. ECOTOXICITY		7689-77-9
	DATE: 0)1.11.2005
	"LOEC = 100	
	"EC50 > 100	
	"EC100 = >100	
	Test substance added directly to each test chamber, a	
	carrier solvent was not used. Dissolved oxygen and pH were	
	measured at test initiation and termination. One immobilization in controls at 24-h observation. No	
	immobilization observed in 100 mg/L exposure (LOEC) until	
	24-h observation (20% immobilized)-20% immobilized at 48-h	
	observation.	
Test substance	: Dow Corning Z-6075 Silane	
	Specified composition - not specified; Dow Corning MDMS	
	database indicates that the test material is 93%	
Reliability	vinyltriacetoxysilane (CAS 4130-08-9) : (2) valid with restrictions	
31.10.2005		(31)
		()
Туре	: other: renewal	
Species	: other: Carcinus maenas	
Exposure period Unit	: 48 hour(s) : mg/l	
EC50	: = 180	
Method	: other	
Year	: 1971	
GLP	: no	
Test substance	: other TS	
Method	: Age/Life Stage: ADULT Water Parameters:	
	Temperature: 15 deg C (mean value)	
Remark	: Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (2) valid with restrictions	(00) (00)
03.06.2005		(69) (89)
Туре	: other	
Species		
Exposure period	:	
Unit	:	
Method Year	: other: analogy : 2004	
GLP	: no	
Test substance	: as prescribed by 1.1 - 1.4	
Remark	: Ethyltriacetoxysilane (CAS No. 17689-77-9) and	
	vinyltriacetoxysilane (CAS No. 4130-08-9) have been tested	
	and the results show the resulting toxicity to aquatic	
	organisms is due to acetic acid. When results are expressed on the basis of the amount of acetic acid generated from the	
	hydrolysis reaction, the toxicity of ethyltriacetoxysilane	
	and vinyltriacetoxysilane are comparable to the reported	
	toxicity of acetic acid (EC50 = 65-180 mg/L, depending on test species):	

OECD SIDS	ETHYLTRIACETOXYSILANE	
4. ECOTOXICITY	ID: 17689-77-9	
	DATE: 01.11.2005	
	Reported Toxicity (mg/L) of Ethyltriacetoxysilane, Vinyltriacetoxysilane, and Acetic Acid to Aquatic Invertebrates (48-h EC50 Immobility):	
	Daphnia magna: 62 (Ethyltriactoxysilane); 100 (Vinyltriactoxysilane); 48, 78 (HOAc)(1); 65, 6000 (Acetic acid)	
	Carcinus maenas: 180 (Acetic acid)	
	Crangon crangon: 100 (Acetic acid)	
Source Reliability 20.05.2004	 (1) = HOAc is the estimated toxicity based on the estimated amount of acetic acid generated from the hydrolysis reaction. The amount of acetic acid generated was estimated using the assumption that 1 mole of test material (ethyl- or vinyl- triacetoxysilane) produces 3 moles of acetic acid. SEHSC (2) valid with restrictions 	

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

Species Endpoint Exposure period Unit NOEC EC50 Limit test Analytical monitoring Method Year GLP Test substance		Scenedesmus subspicatus (Algae) biomass 72 hour(s) mg/l = 54 measured/nominal = 73 measured/nominal no yes other: EC Guideline 92/69/EWG 1995 yes as prescribed by 1.1 - 1.4
Method	:	Recommended procedure of the ad-hoc working group of the Federal Environment Bureau for development of ecological and toxicological testing procedures in aquatic systems: Suppression of cell reproduction among green alga Scenedesmus subspicatus 1984; OECD 201.
Remark	:	The test solutions were not neutralized. Because ethyltriacetoxysilane generates considerable amounts of acetic acid when exposed to water, results from aquatic tests reflect the toxicity of acetic acid rather than the toxicity of the parent triacetoxysilane. Acetoxysilanes are highly reactive and undergo rapid hydrolysis when exposed to moisture. When ethyltriacetoxysilane is added to water, 100% of the parent compound is hydrolyzed in less than 0.2 minutes, producing 3 moles of acetic acid and 1 mole of silanetriol for every mole of parent material. Studies indicate that the observed acute toxicity of ethyltriacetoxysilane (CAS No. 17689-77-9) to aquatic organisms is due to acetic acid. When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane is comparable to the reported toxicity

ECD SIDS	ETHYLTRIACETOXYSILANE
ECOTOXICITY	ID: 17689-77-9
	DATE: 01.11.2005
	of acetic acid (EC50 =50-450 mg/L), depending on test
	species.
	When the results are interpreted, the hydrolysis of the test substance during the preparation of the initial solution or
	during the test should be considered.
	pH at test start: 4.4-8.1; pH at test end: 4.2-9.2: There
	was a partial strong increase in pH value in some test
	solutions. Since the growth was not influenced by this
	increase, the alteration in pH value was not considered to have an effect on quality.
Result	: The following effective concentrations were reported: On the
liooun	basis of cell growth, a median concentration is calculated
	of 72 hour EbC50 = 73 mg/L; On the basis of growth rate, a
	median effective concentration was achieved at (0-72
	hour)ErC10 = 76 mg/L; The NOEC value was 54 mg/L (on the
	basis of cell growth). All concentrations are with respect
Test condition	to the material.
rest condition	: As the test substance has low water solubility, it was dissolved at 1 g/l in VE water and agitated for 18 h. The
	solution was filtered and served as the initial solution for
	testing.
	Algae cell counts were made photometrically at 0, 24, 48 and
	72 hrs.
	Test substance concentrations were determined using a TOC
	Infrared Analyzer.
	Target test substance concentrations were 0, 6.5, 11, 20,
	33, 54 and 98 mg/l. The 72 hr values were 0, 5.3, 8.7, 19,
	32, 41 and 95 mg/l. The geometric mean of analytical values
	at 0 and 72 hrs deviates <20% from that of the nominal
	concentrations (except at the target concentration of 54
	mg/l). Therefore, the nominal concentrations were used for the evaluation.
Test substance	: DYANSYLAN ATAC: 99.4% Ethyltriacetoxysilane.
B. I. I. II.	The test substance is susceptible to hydrolysis.
Reliability Flag	: (1) valid without restriction : Critical study for SIDS endpoint
01.11.2005	. Childal study for SiDS enupoint (23
Species Endnoint	: Anabaena flos-aquae (Algae)
Endpoint Exposure period	: other: biomass and growth rate : 96 hour(s)
Exposure period Unit	: mg/l
NOEC	: = 10
LOEC	: = 32
Limit test	:
Analytical monitoring	: no
Method	: other: Biological field and laboratory methods. The algal assay procedure: bottle test. United States Environmental Protection Agency, EPA 670/4 73
Voor	00, 1973
Year GLP	: 1980 : no
Test substance	: other TS
Method	: Test Vessels: Polycarbonate flasks
	Test System: Blue-green algae (Anabaena flos-aquae) - 1.00 ×

ECD SIDS ECOTOXICITY	ETHYLTRIACETOXYSILANE ID: 17689-77-9
LCOTOXICITI	DATE: 01.11.2005
	104 cells/mL at test initiation.
	Replicates: triplicate controls, triplicate exposure concentrations
	Endpoint: 7-d growth inhibition
	7-d final yield
	Statistics: Probit analysis based on Finney's Method
	(Statistical Methods In Biological Assay, 1952).
	Calculations conducted as described in the Handbook of
	Phycological Methods, Culture Methods and Growth Measurements, J. Stein (ed.), Cambridge Press, pp 220-229
	(1973).
	Exposure Concentrations (product, mg/L)
	"nominal: 0, 10, 32, 100
	Test Procedure and Conditions
	"exposure period: 7 d "dilution water: sterile algal broth
	"study design: static exposure
	"carrier solvent: none
	"observation periods: 0, 3, 4, 5, 6, 7 d
	The test solutions were not neutralized.
	The algae study was conducted with vinyltriacetoxysilane in accordance with EPA "Biological Field and Laboratory Methods" (EPA 67014-73-00).
	The Anabaena study was conducted for 13-d with cell counts at days 0, 3,
	4, 5, 6, 7, 12, and 13. Visual examination of the growth curve for the
	Anabaena test indicates exponential growth through the initial seven days
	of the test with the exception of the 100 mg/L dose. At the 100 mg/L dose
	an initial decline in cell number was observed from days 0-3 followed by exponential growth from days 3-6. The statistical calculations were made
	using methods described in "Handbook of Phycological Methods" (1973).
	No pH data were included in the report and presumably pH was not
	adjusted.
Remark	: Vinyltriacetoxysilane (CAS 4130-08-9) is a structural
	analogue for methyltriacetoxysilane (CAS 4253-34-3) and ethyltriacetoxysilane (CAS 17689-77-9)
Result	: Results - 96 hour Growth Rate (mg/L)
Rooun	"NOEC = 10
	"LOEC = 32
	"EC50 > 100
	Results - 96 hour Final Yield (mg/L)
	"NOEC = 10 "EC10 = 28 (23-34; 95% CI)
	"LOEC = 32
	"EC50 = 57 (51-65; 95% CI)
	"EC90 = 117 (99-146; 95% CI)
	-
	Test substance added directly to each test chamber, a carrier solvent was not used. Dissolved oxygen and pH were
	measured at test initiation and termination. Mean cell
	density (cells/mL ± S.D.) after 7 days was 15.0 ± 12.0 ×
	104, 18.7 ± 4.2 × 104, 12.7 ± 9.8 × 104, and 2.4 ± 1.9 ×
	104 in the control, 10 mg/l, 32 mg/l, and the 100 mg/l
Test substance	exposures, respectively. Dow Corning Z-6075 Silane
i esi substance	Specified composition - not specified; Dow Corning MDMS
	database indicates that the test material is 93%
	vinyltriacetoxysilane (CAS 4130-08-9)
Reliability	: (2) valid with restrictions
31.10.2005	(31
Species	: Microcystis aeruginosa (Algae, blue, cyanobacteria)
opecies	. microcysus acruginosa (Aigae, biue, cyanobaciella)

ECD SIDS	ETHYLTRIACETOXYSILAN
ECOTOXICITY	ID: 17689-77
	DATE: 01.11.200
Endpoint	: other: biomass
Exposure period	: 8 day(s)
Unit	: mg/l
Method	: other
Year	: 1978
GLP	: no data
Test substance	: other TS
Remark	: Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.
Result	: A change in the number of species groups in a community (i.e. biomass) was reported at 90 mg/l.
Test substance	: Acetic acid (64-19-7)
Reliability	: (2) valid with restrictions
31.10.2005	(12) (8
Species	: Scenedesmus quadricauda (Algae)
Endpoint	
	: other: growth inhibition
Exposure period	: 8 day(s)
Unit	: mg/l
Toxicity Threshold (TT)	: = 4000
Method	: other
Year	: 1980
GLP	: no data
Test substance	: other TS
Method Remark	 Filled culture tubes were maintained at 27 °C and relative humidity of 50%. The concentration of the algal suspension is measured turbidmetrically (while diffused light is screened off) and expressed by the extinction of the primary light of the monochromatic radiation at 578 nm for a layer of 10 mm thickness. The test temperature was 25°C. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.
Test substance	: Acetic acid (64-19-7)
Reliability	: (3) invalid Algae were not in an exponential growth phase over the whole duration or
31.10.2005	the test (2) (1
Species Endpoint	: Selenastrum capricornutum (Algae)
Endpoint	: other: biomass and growth rate
Exposure period Unit	: 96 hour(s)
	: mg/l : = 0
NOEC	
LOEC	: = 1
Limit test	
Analytical monitoring	: no

DECD SIDS	ETHYLTRIACETOXYSILANE
ECOTOXICITY	ID: 17689-77-9 DATE: 01.11.2005
Method	: other: Biological field and laboratory methods. The algal assay procedure: bottle test. United States Environmental Protection Agency, EPA 670/4 73 00, 1973
Year	: 1980
GLP	: no
Test substance	: other TS
Method	 Test Vessels: Polycarbonate flasks Test System: Green algae (Selenastrum capricornutum) - 1.0 × 104 cells/mL at test initiation Replicates: triplicate controls, triplicate exposure concentrations Endpoint: 7-d growth inhibition 7-d final yield Statistics: Probit analysis based on Finney's Method (Statistical Methods In Biological Assay, 1952). Calculations conducted as described in the Handbook of Phycological Methods, Culture Methods and Growth Measurements, J. Stein (ed.), Cambridge Press, pp 220-229 (1973). Exposure Concentrations (product, mg/L) "nominal:0, 18, 32, 56 Test Procedure and Conditions "exposure period: 7 d "dilution water: sterile algal broth "study design: static exposure "carrier solvent: none "observation periods: 0, 3, 4, 5, 6, 7 d
Remark Result	 The algae study was conducted with vinyltriacetoxysilane in accordance with EPA "Biological Field and Laboratory Methods" (EPA 67014-73-00). The Selenastrum test was conducted for 10-d with algal cell counts on days 0, 3, 4, 6, 7, and 10. Visual examination of the growth curve for the Selenastrum test shows exponential growth from days 3-7 for the control and 3-6 for the algae exposed to the test material. The statistical calculations were made using methods described in "Handbook of Phycological Methods" (1973). No pH data were included in the report and presumably pH was not adjusted. Vinyltriacetoxysilane (CAS 4130-08-9) is a structural analogue for methyltriacetoxysilane (CAS 4253-34-3) and ethyltriacetoxysilane (CAS 17689-77-9) Results - 96 hour Growth Rate (mg/L) "NOEC = 0 "EC10 = 19 (9-25; 95% CI) "LOEC = 1 "EC50 = 111 (72-387; 95% CI) "EC90 = 651 (238-14343; 95% CI)
	Results - 96 hour Final Yield (mg/L) "NOEC = 0 "EC10 = 4 (1-8; 95% Cl) "LOEC = 1 "EC50 = 23 (16-28; 95% Cl) "EC90 = 136 (84-448; 95% Cl) Test substance added directly to each test chamber, a carrier solvent was not used. Dissolved oxygen and pH were measured at test initiation and termination. Mean cell density (cells/mL \pm S.D.) after 7 days was 2.05 \pm 0.24 \times 106, 1.12 \pm 0.36 \times 106, 0.93 \pm 0.09 \times 106, and 0.48 \pm 0.61 \times 106 in the control, 18 mg/l, 32 mg/l, and the 56 mg/l

OECD SIDS	ETHYLTRIACETOXYSIL	ANE
4. ECOTOXICITY	ID: 17689- DATE: 01.11.	
Test substance	 exposures, respectively. Dow Corning Z-6075 Silane Specified composition - not specified; Dow Corning MDMS database indicates that the test material is 93% vinyltriacetoxysilane (CAS 4130-08-9) 	
Reliability 31.10.2005	: (2) valid with restrictions	(31)
Method Year GLP Test substance	 other: analogy 2004 no as prescribed by 1.1 - 1.4 	
Remark	: Ethyltriacetoxysilane (CAS No. 17689-77-9) and vinyltriacetoxysilane (CAS No. 4130-08-9) have been tested and the results show the resulting toxicity to aquatic organisms is due to acetic acid. When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane and vinyltriacetoxysilane are comparable to the reported toxicity of acetic acid (EC50 = 90 mg/L):	
	Reported Toxicity (mg/L) of Ethyltriacetoxysilane, Vinyltriacetoxysilane, and Acetic Acid to Aquatic Plants (7-d EC50 growth rate)	
	Scenedesmus subspicatus: 76 (Ethyltriactoxysilane); 59 (HOAc)(1)	
	Selenastrum capricornutum: 111 (Vinyltriacetoxysilane); 87 (HOAc)	
	Anabaena flos-aquae: 100 (Vinyltriacetoxysilane); 78 (HOAc) Anacystis aeruginosa: 90 (Acetic acid)	
Source Reliability 20.05.2004	 (1) = HOAc is the estimated toxicity based on the estimated amount of acetic acid generated from the hydrolysis reaction. The amount of acetic acid generated was estimated using the assumption that 1 mole of test material (ethyl- or vinyl- triacetoxysilane) produces 3 moles of acetic acid. SEHSC (2) valid with restrictions 	

4.4 TOXICITY TO MICROORGANISMS E.G. BACTERIA

Type Species Exposure period Unit EC10 EC100 Analytical monitoring Method		other Pseudomonas putida (Bacteria) 5 hour(s) mg/l = 60 - 80 calculated = 60 - 80 calculated no other: DIN 38412, Part 8
Method Year	:	other: DIN 38412, Part 8 1995
GLP	:	yes
Test substance	:	as prescribed by 1.1 - 1.4

OECD SIDS	ETHYLTRIACETOXYSII	LANE
4. ECOTOXICITY	ID: 17689 DATE: 01.11	
Remark Test condition	 The pH value decreased with increased test concentration: 10 mg/l pH= 7 60 mg/l pH= 5.7 80 mg/l pH= 5.2 Because triacetoxysilanes generate considerable amounts of acetic acid when exposed to water, results from aquatic tests reflect the toxicity of acetic acid rather than the toxicity of the parent triacetoxysilane. Acetoxysilanes are highly reactive and undergo rapid hydrolysis when exposed to moisture. When methyl- or ethyltriacetoxysilane is added to water, 100% of the parent compound is hydrolyzed in less than 0.2 minutes, producing 3 moles of acetic acid and 1 mole of silanetriol for every mole of parent material. Studies indicate that the observed acute toxicity of ethyltriacetoxysilane (CAS No. 17689-77-9) to aquatic organisms is due to acetic acid. When results are expressed on the basis of the amount of acetic acid generated from the hydrolysis reaction, the toxicity of ethyltriacetoxysilane is comparable to the reported toxicity of acetic acid (EC50 =50-450 mg/L), depending on test species. Six 250 ml Erlenmeyer flasks were coated with the culture solution, the bacterial suspension, and the test substance in staged concentrations (10, 20, 40, 60, 80 and 100 mg/l), were sealed without air, and were incubated for 5 to 6 hours at 252 deg C. Three additional flasks were included in parallel for analytical determination. Six control bottles without the test substance were used as reference; four of these contained HgCl2 to determine the final oxygen content. At the end of testing HCl was added to stop biochemical processes. 	
Test substance	 An emulsifier was added into the test medium due to the lowwater solubility of the test substance. The differential between the oxygen content of the solutions stored in the individual containers at the initial time (0)and after the incubation period reveals the bacterial oxygen consumption. Comparison of the amounts of oxygen consumed in there ference and test preparations provides information regarding the concentration-related influence on oxygen consumption by the test substance. CMANSYLAN ATAC: 99.4% Ethyltriacetoxysilane. 	
Reliability 02.12.2004	The test substance is susceptible to hydrolysis.(1) valid without restriction	(21)

4.5.1 CHRONIC TOXICITY TO FISH

4.5.2 CHRONIC TOXICITY TO AQUATIC INVERTEBRATES

4.6.1 TOXICITY TO SEDIMENT DWELLING ORGANISMS

4.6.2 TOXICITY TO TERRESTRIAL PLANTS

4.6.3 TOXICITY TO SOIL DWELLING ORGANISMS

Type Species Endpoint Exposure period Unit LC10 Method	 artificial soil Eisenia fetida (Worm (Annelida), soil dwelling) mortality 14 day(s) mg/kg soil dw > 1000 calculated Directive 87/302/EEC, part C, p. 95 "Toxicity for earthworms: Artificial soil test"
Year	: 1995
GLP	: ves
Test substance	: as prescribed by 1.1 - 1.4
Method Remark	 One group of 40 earthworms was exposed for 14 days to a limit concentration of 1000 mg/kg. A second group of 40 earthworms was also included as a control. Mortality was recorded at 7 and 14 days. Original report cited the method as 88/302/EEC.
Result	 There were no deaths recorded for the control group at 7 or 14 days or for the test substance group at 7 days. At 14 days, one animal in the test substance treated group had died.
Test substance	: DYANSYLAN ATAC: 99.4% Ethyltriacetoxysilane.
Reliability 02.12.2004	The test substance is susceptible to hydrolysis.(1) valid without restriction (25)

4.6.4 TOX. TO OTHER NON MAMM. TERR. SPECIES

4.7 BIOLOGICAL EFFECTS MONITORING

4.8 **BIOTRANSFORMATION AND KINETICS**

4.9 ADDITIONAL REMARKS

5.0 TOXICOKINETICS, METABOLISM AND DISTRIBUTION

5.1.1 ACUTE ORAL TOXICITY

Type Value Species Strain Sex Number of animals Vehicle Doses Method Year GLP Test substance		LD50 = 1462 mg/kg bw rat Sprague-Dawley male/female 50 other: none 300, 600, 1000, 1500 or 2000 mg/kg OECD Guide-line 401 "Acute Oral Toxicity" 2000 yes as prescribed by 1.1 - 1.4
Result	:	The acute median lethal dose (LD50), calculated by the method of Litchfield and Wilcoxon (probit analysis) was 1462 mg/kg for male and female rats (combined data) with 95% confidence limits of 1269-1683 mg/kg. By sex, the LD50 was 1441 mg/kg for both males and females. (It should be noted that the results from the two lowest dosages where no deaths occurred were excluded from the LD50 calculation.) There were 0, 0, 0, 3 and 4 deaths among males and 0, 0, 0, 3 and 4 deaths among females at dosages of 300, 600, 1000, 1500 and 2000 mg/kg, respectively. There was a tendency for deaths to be delayed. In the 1500 mg/kg group, there was one death on day 1 (the day of dosing), one on day 2, one on day 3, two on day six and one on day 9. In the 2000 mg/kg group, there was one death on day 2, three on day 3 and one
		 each on days 4, 5, 9 and 10. Rats in the 300 mg/kg group exhibited few clinical signs and appeared essentially normal throughout the study. Clinical signs seen in the 600, 1000, 1500 and 2000 mg/kg groups in a general dose response pattern included decreased activity, lacrimation, excessive salivation, rales, irregular gait and/or hunched posture, decreased food consumption and fecal volume, red urine, abnormal stool 9watery, unformed, absent), various anogenital stains and red staining of the snout, eyes and extremities. In addition, one-half or more of the rats in the 1500 and 2000 mg/kg groups exhibited lethargy and labored respiration. The majority of the surviving rats in the 600 and 1000 mg/kg groups did not fully return to a clinically normal condition by study termination. All rats in the 300, 600 and 1000 mg/kg groups (except one
		All rats in the 300, 600 and 1000 mg/kg groups (except one 1000 mg/kg female) gained weight during the study, surpassing their prefasted weights. One-half of the six survivors in the 1500 and 2000 mg/kg groups lost weight over the 14-day study period.

ECD SIDS	ETHYLTRIACETOXYSILA	
TOXICITY	ID: 17689-7	
	DATE: 01.11.2	.005
Source	 Although the majority of rats that died (>60%) were within normal limits at necropsy, several remarkable findings were seen in the stomach/gastrointestinal tract in a dose-responsive pattern. These included discoloration, adhesions and thickened mucosa. Similar but more severe gastric and intestinal findings were seen in nearly all rats that died, including adhesions (often multiple), discoloration (often black), thickened mucosa, enlargement or distention and abnormal contents (usually brown or black). SEHSC 	
Test condition	 Each rat received a single dose of the test substance. Young adult rats weighing 282 +/- 45 grams (males) and 201 +/- 23 grams (females) were used. The rats were fasted overnight prior to test substance administration and received dosages of 300, 600, 1000, 1500 or 2000 mg/kg body weight of undiluted test substance The rats were observed frequently after dosing and at least once daily thereafter for fourteen days. Body weights were recorded prior to fasting, on the day of dosing and weekly thereafter. Gross necropsies were performed on all animals. 	
Test substance Conclusion	 Ethyltriacetoxysilane (CAS No. 17689-77-9) There was an excellent dose response on the study, and it was possible to calculate LD50 values for each sex individually, as well as when the data were combined. The test substance was moderately toxic to rats by the oral route of exposure. The clinical signs observed, delayed deaths, weight losses and gross necropsy findings all indicate an irritative mechanism of toxicity. 	
Reliability	: (1) valid without restriction	
Flag 22.03.2004	: Critical study for SIDS endpoint	(55
22.03.2004		(0.
Туре	: LD50	
Value	: = 4280 mg/kg bw	
Species Strain	: rat : Wistar	
Sex	: male	
Number of animals	: 5	
Vehicle	: water	
Doses	: 0.1 g/ml	
Method	: other	
Year	: 1951	
GLP	: no	
Test substance	: other TS	
Method	 Range-finding toxicity tests were conducted in which five non-fasted male rats were given a single oral dose by gastric intubation of 100 mg/L (0.1 g/mL) of acetic acid, calcium salt in water. Rats were observed for 14 days 	
Remark	 and the number of mortalities counted. Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. 	

ECD SIDS	וח. 1	7680 77
TOXICITY		7689-77-
	DATE: 0	01.11.200
Result Test substance Reliability 07.06.2005	 Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. The 95% confidence limits were 3860-4760 mg/kg. Acetic acid, calcium salt (62-54-4) (2) valid with restrictions Peer reviewed published information. 	(79) (8
07.00.2003		(79)(0
Туре	: LD50	
Value	: = 3250 mg/kg bw	
Species	: rat	
Strain	: Wistar	
Sex	: male	
Number of animals Vehicle	: 5 : water	
Doses	: 0.1 g/ml	
Method	: other	
Year	: 1962	
GLP	: no	
Test substance	: other TS	
Method Remark Result Test substance Reliability	 Range-finding toxicity tests were conducted in which five non-fasted male rats were given a single oral dose by gastric intubation of 100 mg/L (0.1 g/mL) of acetic acid, potassium salt in water. Rats were observed for 14 days and the number of mortalities counted. Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. The 95% confidence limits were 2480-4260 mg/kg. Acetic acid, potassium salt (127-08-2) (2) valid with restrictions Peer reviewed published information. 	
07.06.2005		(80) (8
Туре	: LD50	
Value	: = 3530 mg/kg bw	
Species	: rat	
Strain	: no data	
Sex	: no data	
Number of animals	:	
Vehicle		

OECD SIDS	ETHYLTRIACETOXYSILA	ANE
5. TOXICITY	ID: 17689- DATE: 01.11.2	
Method Year GLP Test substance	: other : : no data : other TS	
Remark	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. 	
Test substance Reliability	 Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. 	
03.06.2005		(42)
Type Value Species Strain Sex Number of animals Vehicle Doses Method Year GLP	LD50 3250 - 5600 mg/kg bw rat no data no data no data other	
Test substance Remark Result	 other TS Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. These values cover acetic acid, its potassium, sodium and acelium aceta and acedium dispectate. 	
Test substance	 calcium salts and sodium diacetate. Doses in the region of the LD50 values caused central nervous system depression in rats (Woodard et al, 1941). Acetic Acid, and its potassium and sodium salts, and sodium 	
Reliability	 diacetate. (2) valid with restrictions 	

OECD SIDS	ETHYL	TRIACETOXYSILANE
5. TOXICITY		ID: 17689-77-9 DATE: 01.11.2005
03.06.2005	Peer reviewed published information.	(8) (79) (80) (88) (97)
Type Value Species Strain Sex Number of animals Vehicle Doses Method Year GLP Test substance	LD50 = 5600 mg/kg bw rat no data no data no data tother 1991 no data other TS	
Remark	: Acetic acid and its salts include acetic acid, calci acetate, potassium acetate and sodium acetate. structures, physical-chemical properties, environ behavior, and aquatic and mammalian toxicity of compounds are similar. Acetic acid and its salts dissociation in aqueous media into the acetate a respective cations. The toxicity of each compoun by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to r undergo rapid hydrolysis. When added to water, parent material is hydrolyzed to acetic acid and t corresponding silanetriol in less than 0.2 minutes and pH 7.1. This hydrolysis produces 3 moles of and 1 mole of alkyl substituted silanetriol for even of (alkyl) triacetoxysilane parent material.	The chemical mental fate these undergo nion and the id is driven noisture and 100% of the he s at 25°C f acetic acid
Test substance Reliability	 Sodium diacetate (126-96-5) (2) valid with restrictions Data used in support of a published EPA registra document 	ition
03.06.2005	uocument	(88)
Type Value Species Strain Sex Number of animals Vehicle Doses Method Year GLP Test substance	LD50 = 4960 mg/kg bw mouse no data no data i no data i 1941 no other TS	
Remark	: Acetic acid and its salts include acetic acid, calci acetate, potassium acetate and sodium acetate. structures, physical-chemical properties, environ behavior, and aquatic and mammalian toxicity of compounds are similar. Acetic acid and its salts dissociation in aqueous media into the acetate ar respective cations. The toxicity of each compound by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to r undergo rapid hydrolysis. When added to water,	The chemical mental fate these undergo nion and the id is driven noisture and

OECD SIDS	ETHYLTRIACETOXYSILA	
5. TOXICITY	ID: 17689-7 DATE: 01.11.2	
		.005
Test substance Reliability	 parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Acetic acid (64-19-7) (2) valid with restrictions 	
	Peer reviewed published information.	(0-7)
03.06.2005	(8)	(97)
5.1.2 ACUTE INHALAT		
Туре	: LC50	
Value	: = 11.4 mg/l	
Species	: rat	
Strain	: no data	
Sex	: no data	
Number of animals	:	
Vehicle	:	
Doses	: no data	
Exposure time	: 4 hour(s)	
Method	: other	
Year GLP	: 1989	
Test substance	: no : other TS	
Method Remark Test substance	 BASF Test protocol Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Acetic acid (64-19-7) Purity 96% 	
Reliability 03.06.2005	: (2) valid with restrictions	(5)
Type Value Species Strain Sex Number of animals Vehicle Doses Exposure time Method Year	: LC50 : > 30000 mg/m ³ : rat : no data : no data : : : no data : 1 hour(s) : other : 1971	

5. TOXICITY ID: 17689-77-9 DATE: 01.11.2005 GLP Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, polassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to valer, 100% of the parent material is hydrolyzeis to acetic acid and the corresponding silanetrol in tess than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substitude silanetrol of alkyl tracetoxysilane parent material. Test substance :: Acetic acid, sodum salt (127-09-3) (2) valid with restrictions 03.06.2005 : (2) valid with restrictions see :: no data sex :: other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate: The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate and sodium acetate, potassium acetate and sodium acetate and sodium acetate, potassium acetate and sodium acetate and sodium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, enviro	OECD SIDS	ETHYLTRIACETOXYSI	
GLP Test substance : no cother TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, polassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and marmalian toxibly of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pt 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of aklyl substituted silanetriol for every mole of (akly) thracetoxysilane parent material. Test substance Test substance : Acetic acid, sodium sait (127-09-3) Reliability Reliability : (2) valid with restrictions Peer reviewed published information. 03.06.2005 : no data Sex Type : LC50 Value Yatin : no data Exposure time Exposure time : 4 hour(s) Method Method : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potasium acetate and sodium acetate and no difference of alkyl bracetoxysilane parent material fate bravior, and aquatic and mammalian toxicity of these compounds are sublica. The toxicity of these compounds are subation in aqueous media into the acetate anion and the respective			
Test substance: other TSRemark: Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodum acetate. rotassium acetate and sodum acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysines are and table when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolysis produces 3 moles of acetic acid and 1 mole of alky substituted silanetriol for every mole of (alky) this produces 3 moles of acetic acid and 1 mole of alky substituted silanetriol for every mole of (alky) this concerving the parent material. (2) valid with restrictions Peer reviewed published information.(9)Type: LC50 Value : > 16000 ppmSpecies Strain Cate Year: no data sex : no data sex : no data sex : no data sex by other TSRemark: Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structure, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structure, physical-chemical appertent, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective calons. The toxicity of e		DATE: 01.1	1.2005
Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquate cand mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When addet to water, 100% of the parent material is hydrolysis produces 3 moles of acetic acid and 1 mole of alkly it substituted silanetriol. Test substance Test substance : (2) viail with restrictions Peer reviewed published information. 03.06.2005 (9) Type : LCS0 value Yalue : no data Number of animals Strain : no data Number of animals Number of animals : value Year : no data strain Number of animals : value Year : no data Number of animals : <b< th=""><th>_</th><th></th><th></th></b<>	_		
acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetricion in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alky substituted silanetriol for every mole of (alky) triacetoxysilane parent material. Test substance : Acetic acid, sodium salt (127-09-3) Reliability : (2) valid with restrictions Peer reviewed published information. 03.06.2005 Type : LC50 Value :> 16000 ppm Species : rat Strain : no data Number of animals : Vehicle : Dases : no data Sex : no data Number of animals : Vehicle : Dases : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate anion and the crespective cations in aqueous media into the acet	Test substance	: other TS	
Test substance:Acétic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information.03.06.2005(9)Type:LC50 ValueYalue:> 16000 ppmSpecies:ratStrain:no data Beer reviewed publishedSwa:no data BeerSex:no data BeerSyscies:no data BeerSyscies:no data BeerSyscies:no data BeerExposure time:4 hour(s) MethodMethod:other Other Test substanceYear:1951 GLPRemark:Acetic acid and its saits include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and marmalian toxicity of these compounds are similar. Acetic acid and its saits undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl bitacetoxysilane parent material.Result:Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substanceTest substance:(2) valid with restrictions Peer reviewed published information.03.06.2005:(79)Type:LC50 <td>Remark</td> <td>acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole</td> <td></td>	Remark	acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole	
Péer reviewed published information. (9) O3.06.2005 (9) Type :: LC50 Value :: > 16000 ppm Species :: rat Strain :: no data Sex :: no data Number of animals :: Vehicle Doses :: no data Exposure time :: 4 hour(s) Method :: other Year : 1951 GLP :: no Test substance :: other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alk			
 03.06.2005 (9) Type : LC50 Value : > 16000 ppm Species : rat Strain : no data Sex : no data Number of animals : Vehicle : Doses : no data Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolyzed to acetic acid cald the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and 1 hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Result : Exposure at 16.000 pm to acetic acid killed one of 6 rats. Test substance : Acetic acid (64-19-7) Reliability : (2) valid with restrictions Peer reviewed published information. 03.06.2005 (79) 	Reliability		
Type : LC50 Value : > 16000 ppm Species : rat Strain : no data Sex : no data Number of animals : Vehicle : Doses : no data Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxsilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Result : Exposure at 16,000 ppm to acetic acid	03 06 2005	Peer reviewed published information.	(0)
Value : > 16000 ppm Species : rat Strain : no data Sex : no data Sex : no data Wentoel : Doses : Doses : no data Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and H H Parent material. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : Acet	05.00.2005		(9)
Species : rat Strain : no data Sex : no data Number of animals : Vehicle : Doses : no data Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : Acetic acid (64-19-7) Reliability : (2) valid with restrictions Peer reviewed published information. 03.06.2005 (79) <td></td> <td></td> <td></td>			
Strain : no data Sex : no data Number of animals : Vehicle : Doses : no data Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolyzeit to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and the parent material. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : Acetic acid (64-19-7)		: > 16000 ppm	
Sex : no data Number of animals : Vehicle : Doses : Doses : no data Exposure time : 4 hour(s) Method : Year : 1951 GLP : Test substance : Other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolyzeis. When added to water, 100% of the parent material is hydrolyzeis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : Acetic acid (64-19-7) Reliability : (2) valid with restrictions Peer reviewed published information. </td <td></td> <td></td> <td></td>			
Number of animals : Vehicle : Doses : no data Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetrial. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : Acetic acid (64-19-7) Reliability : (2) valid with restrictions Peer reviewed published information. 03.06.2005 . (79)			
Vehicle : Doses : no data Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetrial. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : Acetic acid (64-19-7) Reliability : (2) valid with restrictions Peer reviewed published information. 03.06.2005 (79)		i no data	
Doses : no data Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : Acetic acid (64-19-7) Reliability : (2) valid with restrictions Peer reviewed published information. 03.06.2005 (79)			
Exposure time : 4 hour(s) Method : other Year : 1951 GLP : no Test substance : Other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : Acetic acid (64-19-7) Reliability : (2) valid with restrictions Peer reviewed published information. 03.06.2005 : (250		. no data	
Method : other Year : 1951 GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : (2) valid with restrictions Peer reviewed published information. 03.06.2005			
GLP : no Test substance : other TS Remark : Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Result : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Test substance : (2) valid with restrictions Peer reviewed published information. 03.06.2005 : (2) valid with restrictions Peer reviewed published information. 03.06.2005 : (250			
Test substance: other TSRemark: Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.Result Test substance Reliability: Exposure at 16,000 ppm to acetic acid killed one of 6 rats. : Acetic acid (64-19-7) : (2) valid with restrictions Peer reviewed published information.(79)Type: LC50	Year	: 1951	
Remark: Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. : Exposure at 16,000 ppm to acetic acid killed one of 6 rats. : Acetic acid (64-19-7) : (2) valid with restrictions Peer reviewed published information.(79)Type: LC50			
acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.Result Test substance Reliability:Exposure at 16,000 ppm to acetic acid killed one of 6 rats. : Acetic acid (64-19-7) : (2) valid with restrictions Peer reviewed published information.(79)Type:LC50	Test substance	: other TS	
Type : LC50	Result Test substance	 acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Exposure at 16,000 ppm to acetic acid killed one of 6 rats. Acetic acid (64-19-7) (2) valid with restrictions 	
	03.06.2005		(79)
	_	1.052	. ,

TOXICITY	ID: 176	89-77-
	DATE: 01.1	
Species	: mouse	
Strain	: no data	
Sex	: no data	
Number of animals	· 10 data	
Vehicle		
Doses	: no data	
Exposure time	: 1 hour(s)	
Method	: other	
Year	: 1957	
GLP	: 1957 : no	
Test substance	: other TS	
Remark	: Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.	
Result	 Mice exposed at 1000 ppm (2500 mg/m3) acetic acid for 1 hr showed ruffled coats, reddening of eyes, ears and nose, and rapid breathing. Inhalation of > 1,000 ppm produced irritation of the conjunctiva and upper respiratory tract. Autopsy of animals exposed to unspecified concentrations (but including 4500 ppm) revealed heart dilation, and congestion (fluid accumulation) in the lungs, kidneys, spleen and liver. 	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (2) valid with restrictions	
Renability	Peer reviewed published information.	
03.06.2005		(8) (4
00.00.2000		(0) (4
Туре	: other	
Value		
Species	: mouse	
Strain	: no data	
Sex	: no data	
Number of animals		
Vehicle		
Doses	: no data	
Exposure time		
Method	: other	
Year	: 1987	
GLP	: no data	
Test substance	: other TS	
Remark	: Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the	

ECD SIDS	ETHYLTRIACETOXYS	
TOXICITY	ID: 1768	
	DATE: 01.1	1.200
	respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole	
Result	 of (alkyl) triacetoxysilane parent material. 4-5 hr exposure at 4-12 ppm caused increased activity in mice. Continuous exposure at 360 ppm for 24 hrs produced a marked decrease in spleen weight. 	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (3) invalid	
	BIBRA (1993) described this study as doubtful regarding validity.	
03.06.2005	,	(7
Туре	: other	
Value		
Species	: guinea pig	
Strain	: no data	
Sex	: no data	
Number of animals	. no uala	
Vehicle	•	
Doses	: no data	
Exposure time	: 1 hour(s)	
Method	: other	
Year	: 1957	
GLP	: no	
Test substance	: other TS	
Remark	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Guinea pigs exposed to 5000 ppm acetic acid showed mild 	
Test substance	effects. : Acetic acid (64-19-7)	
Reliability	: (2) valid with restrictions	
Reliability	Peer reviewed published information.	
03.06.2005		(8) (4

5.1.3 ACUTE DERMAL TOXICITY

Туре	:	LD50	
Value	:	> 2000	mg/kg bw

CD SIDS	ETHYLTRIACETOXY	
FOXICITY		689-77-9
	DATE: 01	1.11.2005
Species	: rat	
Strain	: no data	
Sex	: no data	
Number of animals	:	
Vehicle	:	
Doses	: no data	
Method	: other	
Year	: 1991	
GLP Test substance	: no data : other TS	
Method	: Conditions unspecified	
Remark	: Acetic acid and its salts include acetic acid, calcium	
	acetate, potassium acetate and sodium acetate. The chemical	
	structures, physical-chemical properties, environmental fate	
	behavior, and aquatic and mammalian toxicity of these	
	compounds are similar. Acetic acid and its salts undergo	
	dissociation in aqueous media into the acetate anion and the	
	respective cations. The toxicity of each compound is driven	
	by acetate, with the cations playing a minor role.	
	Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.	
Test substance		
	 Sodium diacetate (126-96-5) (2) valid with restrictions 	
Reliability	Data used in support of a published EPA registration	
	document	
03.06.2005		(88)
Гуре	: other	
Value		
Species	: rat	
Strain	: no data	
Sex	: male	
Number of animals	: 5	
/ehicle	:	
Doses	: 2 ml	
Vethod	: other	
lear	: 1960	
GLP	: no	
Test substance	: other TS	
Mathad	2 ml (approximately 5 g/kg by) of apptic apid was applied to	
Method	: 2 ml (approximately 5 g/kg bw) of acetic acid was applied to	
Domark	the skin of five male rats for up to 40 minutes.	
Remark	: Acetic acid and its salts include acetic acid, calcium	
	acetate, potassium acetate and sodium acetate. The chemical	
	structures, physical-chemical properties, environmental fate	
	behavior, and aquatic and mammalian toxicity of these	
	compounds are similar. Acetic acid and its salts undergo	
	dissociation in aqueous media into the acetate anion and the	
	respective cations. The toxicity of each compound is driven	
	by acetate, with the cations playing a minor role.	
	Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C	

OECD SIDS	ETHYLTRIACETOXYSILAN	E
5. TOXICITY	ID: 17689-77- DATE: 01.11.200	
Result	 and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Decreased urine production and red blood cell damage, as indicated by the urinary excretion of the red blood cell protein, hemoglobin. 	_
Test substance Reliability 03.06.2005	 Acetic acid (64-19-7) (2) valid with restrictions Reviewed and summarized in BIBRA (1993) 	4)
Type Value Species Strain Sex Number of animals Vehicle Doses Method Year GLP Test substance	: LD50 : = 1060 mg/kg bw : rabbit : no data : no data : : : no data : other : 1963 : no : other TS	
Method Remark Test substance Reliability	 Conditions unspecified Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Acetic acid (64-19-7) (2) valid with restrictions 	
03.06.2005	Reviewed and summarized in BIBRA (1993) (8) (8)	7)

5.1.4 ACUTE TOXICITY, OTHER ROUTES

5.2.1 SKIN IRRITATION

Species	: rabbit
Concentration	: undiluted
Exposure	: Semiocclusive
Exposure time	: 3 minute(s)
Number of animals	: 6
Vehicle	: other: none
PDII	: 4.28
Result	: corrosive

ECD SIDS	ETHYLTRIACETOXYSII	
TOXICITY	ID: 17689	
	DATE: 01.11	.200
Classification	: highly corrosive (causes severe burns)	
Method	Directive 84/449/EEC, B.4 "Acute toxicity (skin irritation)"	
Year	: 1989	
GLP	: yes	
Test substance	as prescribed by 1.1 - 1.4	
Result	: Application of 0.5 ml for 3 minutes produced severe lesions	
	observed at 72 hours with slight reversibility at the day 14	
	reading in 4 of the 6 rabbits.	
Source	: Wacker Chemie GmbH	
Test condition	: Rabbits were dosed with 0.5 ml of the test substance. The	
	dose was applied to the clipped, intact skin under a gauze	
	patch held in contact with the skin with a semi-occlusive	
	dressing for a contact period of 3 minutes. The animals were	
	kept in individual boxes during the exposure period. The	
	dressings were then removed and the rabbits returned to	
	their individual cages. Cutaneous examinations were	
	performed at 1, 24, 48 and 72 hours after removal of the	
	dressing. Due to the severity of the lesions observed at 72	
	hours, these readings were repeated at day 7 and day 14.	
Test substance	: Ethyltriacetoxysilane (CAS No. 17689-77-9)	
Conclusion	: The test substance was corrosive under the conditions of the	
	study	
Reliability	: (1) valid without restriction	
25.02.2004		(5
Species	: other	
Concentration	:	
Exposure	:	
Exposure time	:	
Number of animals	:	
Vehicle	: no data	
PDII	:	
Result	:	
Classification		
Method	other: in vitro	
Year	: 1994	
GLP	: no	
Test substance	: as prescribed by 1.1 - 1.4	
Result	: Skin2 ZK-1350 model correctly identified the corrosivity of	
	ethyltriacetoxysilane, although it appeared to slightly	
	underestimate the degree of corrosivity. CORROSITEX model	
	also correctly identified ethyltriacetoxysilane as	
	corrosive. CORROSITEX appeared to be more sensitive than the	
	Skin2 ZK-1350. However, TER assay did not identify	
Source	ethyltriacetoxysilane as corrosive.	
Source	: Dow Corning Corporation Midland, MI	
Conclusion	: Skin2 ZK-1350 and CORROSITEX models correctly identified the	
	corrosivity of ethyltriacetoxysilane. However, TER assay did	
	not identify ethyltriacetoxysilane and certain other	
	acetoxysilanes as corrosive. Therefore, TER assay may not be	
	suitable for testing corrosivity of the silane compounds.	
	The author proposed that future work should focus on the	
	Skin2 ZK-1350 assay while maintaining a vigilant watch on	
	other emerging in vitro technologies.	
Reliability	: (2) valid with restrictions	
		(3
02.12.2004		

5. TOXICITY

(33)

5.2.2 EYE IRRITATION

Species Concentration Dose Exposure time Comment Number of animals	cother
Vehicle Result Classification	: none :
Method Year GLP Test substance	 other: in vitro 1994 no as prescribed by 1.1 - 1.4
Result	 The severe irritancy of ethyltriacetoxysilane was correctly detected by Skin2 1200 in vitro model.
Source Conclusion	 Dow Corning Corporation Midland, MI The results described in this report indicate that Skin2 1200 model is useful technique for the in vitro assessment of eye irritation and the model correctly predicted the irritancy potential of ethyltriacetoxysilane. The author proposed that future work should focus on the Skin2 1200 while maintaining a vigilant watch on other emerging in vitro technologies.
Reliability 02.12.2004	: (2) valid with restrictions

5.3 SENSITIZATION

5.4 REPEATED DOSE TOXICITY

Type Species	-	Sub-chronic rat
Sex		no data
Strain	-	no data
Route of admin.		drinking water
Exposure period	:	9-15 weeks
Frequency of treatm.	:	continuously
Post exposure period	:	
Doses	:	0.01, 0.1, 0.25, or 0.5 percent (8 to 390 mg/kg bw/day)
Control group	:	
NOAEL	:	= .25 %
LOAEL	:	= .5 %
Method	:	other
Year	:	1921
GLP	:	no
Test substance	:	other TS
Method	:	In a subchronic study four groups of three to six rats were given 0.01, 0.1, 0.25, or 0.5 percent acetic acid in drinking water (up to 390 mg/kg body weight) for periods of nine to 15 weeks.
Remark	:	Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical

ECD SIDS TOXICITY	ETHYLTRIACETOXYSILAN ID: 17689-77-
юлент	DATE: 01.11.200
	DATE: 01.11.200
	structures, physical-chemical properties, environmental fate
	behavior, and aquatic and mammalian toxicity of these
	compounds are similar. Acetic acid and its salts undergo
	dissociation in aqueous media into the acetate anion and the
	respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role.
	Acetoxysilanes are not stable when exposed to moisture and
	undergo rapid hydrolysis. When added to water, 100% of the
	parent material is hydrolyzed to acetic acid and the
	corresponding silanetriol in less than 0.2 minutes at 25°C
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid
	and 1 mole of alkyl substituted silanetriol for every mole
	of (alkyl) triacetoxysilane parent material.
Result	: Fluid intake was the same in all groups. Rats at the 0.5
	percent level (390 mg/kg bw/day) experienced immediate,
	progressive reduction in body weight gain, loss of appetite,
	and up to a 27 percent reduction in food consumption.
	Mortality was unaffected. None of these effects were seen at
	the lower doses (8 to 210 mg/kg bw/day). NOAEL (systemic toxicity) = 21
	mg/kg bw
Test substance	: Acetic acid (64-19-7)
Reliability	: (2) valid with restrictions
•	Data used in support of a published EPA registration
	document. Peer-reviewed and published information. Reviewed
	andsummarized in BIBRA (1993).
Flag	: Critical study for SIDS endpoint
31.10.2005	(8) (16) (39) (40) (8
Туре	: Sub-acute
Species	: rat
Sex	: male/female
Strain	: Sprague-Dawley
Route of admin.	: gavage
Exposure period	: 7 days
Frequency of treatm.	: Daily for 7 days
Post exposure period	
Doses	: 0, 17 (males only), 23 (females only), 100, 500, 1000 mg/kg/day
Control group	 other: concurrent, sham dosed 17 - 23 mg/kg bw
Method	: other
Year	: 2004
GLP	: no
Test substance	: as prescribed by 1.1 - 1.4
Mothod	: Analysis of variance was performed on the mean body weight,
Method	mean body weight gain and food consumption data using
	Microsoft Excel 9.0.
	Test Subjects
	Age at study initiation: approximately 9 weeks
	No. of animals per sex per dose: Five
	Study Design
	Vehicle: None
	Satellite groups and reasons they were added: None
	Individual body weights were recorded on study days one and
	four prior to dosing, and on study day eight prior to the
	scheduled necropsy. Feeder weights were recorded on study
	day 1 prior to dosing and on the days of scheduled

. TOXICITY	ID: 17689-77
	DATE: 01.11.200
	euthanasia, unscheduled euthanasia, or the day that an
	animal was found dead. Food consumption was calculated from
	these initial and final feeder weights.
	Clinical observations performed and frequency: Once a day
	and at approximately one hour after dosing. Observations
	included changes in the skin, fur, eyes, mucous membranes,
	respiratory, circulatory, autonomic and central nervous
	systems functions, motor activity, and behavior.
	Organs examined at necropsy (macroscopic and microscopic): A
	detailed gross necropsy was performed and included
	examination of the external surface of the body, all orifices, and the cranial, thoracic and abdominal cavities
	and their contents.
Remark	: Ethyltriacetoxysilane is sensitive to rapid hydrolysis,
Roman	which may occur during testing, such that observed toxicity
	is likely due primarily to acetic acid. Abiotic hydrolysis
	studies show that hydrolysis products from the test
	substance undergo continuous, condensation reactions to
	produce higher molecular weight cyclic and linear siloxanes
	(the number-average and weight-average molecular weights
	were 633 and 809 with 22 area % of the chromatogram higher
	than 1000 molecular weight at the1-hr reaction time; at the
	4-hr reaction time, the number-average and weight-average
	molecular weights increased to 750 and 1085 with 38 area %
	of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane
	oligomers; this condensation of silanols is affected by both
	concentration and pH, and since both change over time it is
	not feasible to isolate specific silanols for analysis (the
	structures continue to evolve until they either reach
	equilibrium or precipitate out of solution). While the
	hydrolysis of ethyltriacetoxysilane is rapid, the
	polymerization products, while not volatile, are in a
	molecular weight range small enough to be considered, at
	least in part, biologically available.
Result	: All animals in the 0, 17, 23, and 100 mg/kg/day dose groups
	survived to the scheduled necropsy. There were two early deaths (one 500 mg/kg/day dose group female on day 3 and one
	1000 mg/kg/day dose group male on day 4). All remaining 500
	and 1000 mg/kg/dose group males and females were euthanized
	on day 4 as a consequence of decreased physical condition,
	marked body weight loss, and macroscopic findings
	(stomach/esophagus ulceration) observed during necropsy of
	the dead and moribund animals. Body weight gain and food
	consumption were reduced in the 100 mg/kg/day dose group
	males and females. Body weight, body weight gain, and food
	consumption for males and females in the low dose groups (17
	and 23 mg/kg/day) were not different from control.
	Macroscopic findings on day four of the 500 and 1000
	mg/kg/day dose group animals revealed severe lesions
	(ulcerations/erosions in the esophagus and stomach). These
	lesions were consistent in appearance and location with
	deposition of a corrosive material. The known moisture
	sensitivity of this test substance and associated liberation
	of acetic acid suggests that acetic acid liberation at the
	site of dose administration is responsible for the lesions. Thickening of the esophagus wall and minor glandular stomach

DECD SIDS	ETHYLTRIACETOXYSILAN
. TOXICITY	ID: 17689-77
	DATE: 01.11.20
	ulceration were observed in many of the 100 mg/kg/day dose group males and females along with minimal glandular stomach erosion present in two of the 23 mg/kg/day dose group females.
	This study was conducted to provide data in support of dose selection for a subsequent repeated-dose toxicity study with screening reproductive and developmental endpoints with ethyltriacetoxysilane (OECD422). The results have provided sufficient information to indicate that conduct of a repeated-dose toxicity study is not warranted. Ethyltriacetoxysilane is a corrosive material producing significant tissue destruction upon contact. Administration of 23 mg/kg bw/day (5 ul of neat material) results in macroscopically observable erosions in the glandular stomach after seven daily administrations. Repeated dosing for even longer durations can reasonably be expected to result in an increase in the proportion of animals with such lesions, as well as to increase the severity of the resulting lesions. Administration of lower dose levels presents the obvious challenges of administering sub-microliter volumes, realizing differentiation of dose levels, and in achieving systemic exposures of any toxicological importance.
Source	 The no observable adverse effect level (NOAEL) for ethyltriacetoxysilane in this study was 17 mg/kg/day for male rats. The NOAEL for female rats could not be determined, but was less than 23 mg/kg/day. Dow Corning Corporation Midland, MI
Test condition	 Dow corning corporation initiatid, initiat
Test substance	 Ethyltriacetoxysilane - Test article of >= 94.8% purity was used
Conclusion	 Daily oral administration of ethyltriacetoxysilane to male and female rats at 500 and 1000 mg/kg resulted in ulceration of the stomach and/or esophagus. Also, administration of 100 mg/kg test article to male and female rats and 23 mg/kg to female rats produced similar stomach and esophageal lesions as those observed with the higher dose levels. However, no evidence of injury to the stomach or esophagus was observed in male rats at the 17 mg/kg dose level. The NOAEL for ethyltriacetoxysilane in this study was 17 mg/kg/day for male rats. The NOAEL for female rats could not be determined, but was less than 23 mg/kg/day. The data provided in this range-finder study indicate a practical and humane dose range for subsequent longer term studies is below the limit of technical practicality and toxicological significance. The results indicate that conduct of a subsequent repeated dose toxicity study (such as an OECD 422) is not warranted. (2) valid with restrictions Study was Non-GLP
Flag	Study was Non-GLP : Critical study for SIDS endpoint
06.12.2004	(5
Type Species Sex Strain	: Sub-chronic : rat : male : no data

OECD SIDS	
-----------	--

5. TOXICITY

Route of admin. Exposure period Frequency of treatm. Post exposure period Doses Control group LOAEL Method Year GLP Test substance	 gavage 90 days approximately 750 mg/kg bw = 750 mg/kg bw other 1952 no other TS
Method Remark	 Rats were treated by gavage with 3 ml of a 10% acetic acid solution for 90 days. Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.
Result Test substance Reliability 31.10.2005	 The treatment decreased the red blood cell count and hemoglobin concentration. The LOAEL (systemic toxicity) = 750 mg/kg bw. Acetic acid (64-19-7) (2) valid with restrictions Peer-reviewed and published information. Reviewed and summarized in BIBRA (1993) (8) (98)
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Post exposure period Doses Control group NOAEL Method Year GLP Test substance	 Sub-acute rat no data oral feed 8 week 2% in diet > 1000 mg/kg bw other no data other TS
Remark	: Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven

ECD SIDS	ETHYLTRIACETOXYSILAN
TOXICITY	ID: 17689-77-
	DATE: 01.11.200
Result Test substance Reliability	 by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. There were no effects Sodium diacetate (126-96-5) (2) valid with restrictions Data used in support of a published EPA registration
16.06.2005	document (8
10.00.2003	(0
Туре	: Sub-acute
Species	: rat
Sex	: no data
Strain	: no data
Route of admin.	: gavage
Exposure period	: 3-14 days
Frequency of treatm. Post exposure period	: daily
Doses	. 1800 mg/kg bw free acid or 4200 - 4800 mg/kg bw of sodium acetate
Control group	· 1000 mg/kg bw nee acid of 4200 - 4000 mg/kg bw of sodialit acetate
LOAEL	: >= 4200 - 4800 mg/kg bw
Method	: other
Year	: 1970
GLP	: no
Test substance	: other TS
Method	: Groups of three to four rats were given 1800 mg/kg body weight per day of free acid intragastrically or 4200 - 4800 mg/kg body weight of sodium acetate.
Remark	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.
Result	: Groups of three to four rats survived for 14 days when given 1800 mg/kg body weight per day of free acid intragastrically or 4200 - 4800 mg/kg body weight of sodium acetate, but survived only three to five days on daily intra-gastric doses of 2400 mg/kg body weight of free acid. Animals lost weight and showed blistered paws and reddened noses before death at fourteen days. No autopsies were done.
	LOAEL (systemic toxicity) >/= 4200-4800 mg/kg bw
Test substance	: Acetic acid, sodium salt (127-09-3)
Reliability	: (2) valid with restrictions

ECD SIDS	ETHYLTRIACETOXYSILANE
TOXICITY	ID: 17689-77-9
	DATE: 01.11.2005
	Data used in support of a published EPA registration
	document
31.10.2005	(56)
Туре	: Sub-chronic
Species	: pig
Sex	: no data
Strain Route of admin.	: no data : oral feed
Exposure period	: 150 days
Frequency of treatm.	: successive 30 day periods
Post exposure period	:
Doses	: 0, 240, 720, 960, or 1200 mg/kg bw
Control group	: yes
NOAEL Method	: 1200 mg/kg bw : other
Year	: 1919
GLP	: no
Test substance	: other TS
Method	: Four groups of two young pigs each were fed daily diets containing 0, 240, 720, 960, or 1200 mg/kg body weight per day for successive 30-day periods to a total of 150 days.
Remark	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.
Result	: There were no significant differences in growth rate, weight gain, early morning urinary ammonia, and terminal blood pH between controls and test groups. No autopsies were done. NOAEL (no effects reported) - 1200 mg/kg bw.
Test substance Reliability	 Acetic acid (64-19-7) (2) valid with restrictions
31.10.2005	Data used in support of a published EPA registration document (39) (60
01.10.2000	(39) (60
Туре	: Sub-chronic
Species	: rat
Sex Stroip	: no data
Strain Route of admin.	: no data : oral feed
Exposure period	: 3 months
Frequency of treatm.	: daily
Post exposure period	
Post exposure period Doses	21 mg/kg b.w./day
Doses Control group	: no data specified
Doses	

CD SIDS	ETHYLTRIACETOXYSIL	
ΓΟΧΙCITY	ID: 17689 DATE: 01.11	
Year	: 1981	
GLP	: no data	
Test substance	: other TS	
Method	: Ten rats were used.	
Remark	: Acetic acid and its salts include acetic acid, calcium	
	acetate, potassium acetate and sodium acetate. The chemical	
	structures, physical-chemical properties, environmental fate	
	behavior, and aquatic and mammalian toxicity of these	
	compounds are similar. Acetic acid and its salts undergo	
	dissociation in aqueous media into the acetate anion and the	
	respective cations. The toxicity of each compound is driven	
	by acetate, with the cations playing a minor role.	
	Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Result	: Indications of altered thyroid function and decreased	
	growth were reported. LOAEL (systemic toxicity) = 21 mg/kg bw.	
est substance	: Acetic acid, sodium salt (127-09-3)	
Reliability	: (2) valid with restrictions	
	Peer reviewed published information. Reviewed and summarized in BIBRA (1993).	
31.10.2005		(48)
	. Cub shrania	
Гуре	: Sub-chronic	
Species Sex	: rat : no data	
Strain	: no data	
Route of admin.	: oral feed	
Exposure period	: 8 months	
Frequency of treatm.	: daily	
Post exposure period	. dany	
Doses	- 4500 mg/kg bw	
Control group	:	
LOAEL	: = 4500 mg/kg bw	
Vethod	: other	
Year	: 1952	
GLP	: no	
Test substance	: other TS	
Method	: A small number of rats were fed approximately 4.5 g acetic	
	acid/kg bw daily in the diet for 30 or 325 days.	
Remark	: Acetic acid and its salts include acetic acid, calcium	
	acetate, potassium acetate and sodium acetate. The chemical	
	structures, physical-chemical properties, environmental fate	
	structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these	
	structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo	
	structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the	
	structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role.	
	structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and	
	structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the	
	structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and	
	structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the	

OECD SIDS	ETHYLTRIACETOXYSILANE
5. TOXICITY	ID: 17689-77-9 DATE: 01.11.2005
Result Test substance Reliability	 of (alkyl) triacetoxysilane parent material. Stomach damage was observed. LOAEL (irritation) = 4500 mg/kg bw. Acetic acid (64-19-7) (2) valid with restrictions Peer-reviewed and published information. Reviewed and
31.10.2005	summarized in BIBRA (1993) (7) (66)
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm.	 Sub-chronic rat male no data gavage 8 months 3 times per week
Post exposure period Doses Control group LOAEL Method Year	 0.5 ml of 3% water solution of acetic acid (about 60 mg/kg bw/treatment) ca. 60 mg/kg bw other 1989
GLP Test substance	: no data : other TS
Method	: Nine outbred white male rats weighing approximately 100 gwere used in the acetic acid alone study. Rats were given either N-nitrosarcosin ethyl ester (NSEE; a known carcinogen) alone, NSEE with the acetic acid solution, or the acetic acid solution alone. All doses were given by intubation into the esophagus. Animals were killed by ether inhalation after 8 months of experiments and autopsied.
Remark	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.
Result	 Prolonged administration of acetic acid alone did not induce tumors. All nine of these rats, however, did experience hyperplasia in the esophagus and forestomach. LOAEL (irritation) ~ 60 mg/kg bw.
Test substance Reliability	 Acetic acid (64-19-7) (2) valid with restrictions Reviewed and summarized in BIBRA (1993)
31.10.2005	(1) (2)
Type Species Sex Strain Route of admin.	 Sub-acute rat male Wistar oral feed

5. TOXICITY	DATE: 01.11.20	
Exposure pariod	: 4 weeks	
Exposure period Frequency of treatm.	: 4 weeks : daily	
Post exposure period	. dany	
Doses	. 3.58% of the diet (approx. 3.6 g/kg bw)	
Control group	• 5.56 % of the diet (applox. 5.6 g/kg bw)	
NOAEL	: 3600 mg/kg bw	
Method	: other	
Year	: 1971	
GLP	: no	
Test substance	: other TS	
Method	: Thirteen male Wistar rats were fed ad libitum a 25% protein, vitamin B12-deficient ration. The rats came from mothers who were transferred from a stock ration to a vitamin B12-deficient ration at parturition and continued on the deficient ration during lactation. They were weaned at 25 days old and at 28 days old they were	
Remark	 divided into experimental groups. Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. 	
Result	: Growth and survival were normal. NOAEL (no effects reported) = 3600 mg/kg bw.	
Test substance Reliability	 Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. Reviewed and summarized in BIBRA (1993). 	
31.10.2005		37)
Туре	: Sub-chronic	
Species	: rat	
Sex	: male	
Strain	: Long-Evans	
Route of admin.	: drinking water	
Exposure period	: 8 months	
Frequency of treatm.	: daily ad libitum	
Post exposure period	:	
Doses	: 50 and 500 ppm	
Control group	:	
LOAEL	: 500 mg/l	
Method	: other	
Year	: 1986	
GLP	: no	
Test substance	: other TS	
Method	Two groups of 12 male Long-Evans hooded rats 21 days old and weighing between 32-44 g were each subdivided into groups of equal mean weight. The 4 groups of 6	

OECD SIDS

into groups of equal mean weight. The 4 groups of 6

TOXICITY	ID: 17689	DAN
юлент	DATE: 01.11	
	rate ware administered a regimen of EQ or EQQ nom	
	rats were administered a regimen of 50 or 500 ppm sodium acetate (controls) or 50 or 500 ppm lead acetate	
	in distilled water. The test material was administered ad	
Remark	libitum for eight months.	
Remark	: Acetic acid and its salts include acetic acid, calcium	
	acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate	
	behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo	
	dissociation in aqueous media into the acetate anion and the	
	respective cations. The toxicity of each compound is driven	
	by acetate, with the cations playing a minor role.	
	Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Result	: No significant effects on survival, reinforcement behavior,	
	or body weight gain were observed. The rats treated with	
	acetic acid, sodium salt served as the control for a lead	
	exposure study. Therefore, no separate untreated controls	
	are available for comparison. LOAEL (no effects reported) = 500 ppm	i.
Test substance	: Acetic acid, sodium salt (127-09-3)	
Reliability	: (2) valid with restrictions	
31.10.2005	Peer reviewed published information.	15
31.10.2005		(2
Туре	: Sub-chronic	
Species	: rat	
Sex	: male	
Strain	: Wistar	
Route of admin.	: drinking water	
Exposure period	: 112 days	
Frequency of treatm.	: continuous	
Post exposure period		
Doses	: 100 ppm	
Control group	: yes	
NOAEL	: 100 mg/l	
Method Year	: other : 1987	
GLP	: no data	
Test substance	: other TS	
Method	: Eight young adult male Wistar rats were exposed to acetic	
	acid, sodium salt in their drinking water beginning at 31	
	days of age. Training in mazes began on day 112 and lasted	
	until day 157 at which time all animals were sacrificed.	
Remark	: Acetic acid and its salts include acetic acid, calcium	
	acetate, potassium acetate and sodium acetate. The chemical	
	structures, physical-chemical properties, environmental fate	
	behavior, and aquatic and mammalian toxicity of these	
	compounds are similar. Acetic acid and its salts undergo	
	dissociation in aqueous media into the acetate anion and the	
	respective cations. The toxicity of each compound is driven	
	by acetate, with the cations playing a minor role.	
	Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	

ECD SIDS	ID 17/00	$\frac{AN}{77}$
TOXICITY	ID: 17689-	
	DATE: 01.11.	200
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
	The rats treated with acetic acid, sodium salt served as	
	the control for a lead exposure study. Therefore, no	
	untreated controls are available for comparison.	
Desult		_
Result	No mortality or cognitive impairment was observed. NOAEL (no effects	ذ
Teeteubetenee	reported) = 100 ppm	
Test substance	Acetic acid, sodium salt (127-09-3)	
Reliability	(3) Invalid	
	The ABSTRACT does not contain the same methodological informatio	
	the MATERIALS and METHODS section of the published report. It is r	ot
	possible to determine the exact conduct of the study.	
31.10.2005		(64
Turno	Cub couto	
Type Species	Sub-acute	
Species Sex	rat no doto	
	no data	
Strain	no data	
Route of admin.	gavage	
Exposure period	14 days	
Frequency of treatm.	daily	
Post exposure period		
Doses	1.8 or 2.4 g/kg bw	
Control group		
Method	other	
Year	1942	
GLP	no	
Test substance	other TS	
Method	Groups of three or four rats were given 1800 or 2400 mg/kg	
	bw for 14 days.	
Remark	Acetic acid and its salts include acetic acid, calcium	
	acetate, potassium acetate and sodium acetate. The chemical	
	structures, physical-chemical properties, environmental fate	
	behavior, and aquatic and mammalian toxicity of these	
	compounds are similar. Acetic acid and its salts undergo	
	dissociation in aqueous media into the acetate anion and the	
	respective cations. The toxicity of each compound is driven	
	by acetate, with the cations playing a minor role.	
	Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Result	All animals in the 1800 mg/kg bw group survived.	
	Administration of 2400 mg/kg bw was lethal after 3-5 days.	
Test substance	Acetic acid (64-19-7)	
Reliability	(2) valid with restrictions	
-	Peer-reviewed and published information. Reviewed and	
	summarized in BIBRA (1993)	
16.06.2005	(8) (5
Туре	Sub-chronic	
	rat	
Species Sex	rat no data	

5. TOXICITY

Route of admin. Exposure period Frequency of treatm. Post exposure period Doses Control group Method Year GLP Test substance	gavage c c c c c c c c c c c c c
Method	 Rats were given about 20 mg sodium acetate/kg bw on days 6, 9, 12 and 18 of age. A second group of eight 21 day old rats were given 4 mg sodium acetate/kg bw in drinking water for 112 days.
Remark	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.
Result	 No cognitive impairment was observed in either group of rats.
Test substance Reliability	 Sodium diacetate (126-96-5) (3) invalid The ABSTRACT does not contain the same methodological information as the MATERIALS and METHODS section of the published report. It is not possible to determine the exact conduct of the study.
16.06.2005	(64)
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Post exposure period Doses Control group Method Year GLP Test substance Method	 Chronic rabbit female no data drinking water 13 months twice daily up to 700 mg/kg bw other 1953 no other TS Female rabbits received varying doses, up to 700 mg/kg bw acetic acid twice daily, in drinking water for 13 months during a 16 month period.
Remark	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate

OECD SIDS	ETHYLTRIACETOXYSILAN	ΙE
5. TOXICITY	ID: 17689-77	
	DATE: 01.11.200)5
	behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material.	
	BIBRA (1993) indicates there may have been changes in the mammary glands.	
Result	: Lactation was induced	
Test substance	: Acetic acid (64-19-7)	
Reliability	: (3) invalid	
40.00.0005	Considered an inadequate study in BIBRA (1993)	
16.06.2005	(4	1)
Туре	: Sub-chronic	
Species	: rat	
Sex	: male	
Strain	: no data	
Route of admin.	: inhalation	
Exposure period	: 95 days	
Frequency of treatm.	:	
Post exposure period		
Doses Control group	: 0.01, 0.2, or 5.0 mg/m3	
Control group NOAEL	$\frac{1}{2}$	
Method	: .01 mg/m³ : other	
Year	: 1974	
GLP	: no	
Test substance	: other TS	
Method	: Male rats exposed for 95 days to 0.01, 0.2, or 5.0 mg/m3 acetic acid vapor in air.	
Result	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Rats developed progressive muscle imbalance, increases of blood cholinesterase activity and serum globulins, and decreases of serum albumins in the two bigher doses. The 	
	decreases of serum albumins in the two higher doses. The highest dose group also had raised white blood cell counts and decreases in ascorbic acid levels. NOAEL (systemic toxicity) = 0.01 mg/m3.	
Test substance	: Acetic acid (64-19-7)	

CD SIDS	ETHYLTRIACETOXYSILAN
FOXICITY	ID: 17689-77
	DATE: 01.11.20
Reliability	: (2) valid with restrictions
	Peer reviewed published information. Data used in support of
	a published EPA registration document.
31.10.2005	(8
Туре	: Sub-acute
Species	: other: rat and mouse
Sex	: no data
Strain	: no data
Route of admin.	: inhalation
Exposure period	: 3-35 days
Frequency of treatm.	: continuous
Post exposure period	:
Doses	: 11-35 ppm
Control group	: no data specified
NOAEL	: 27 mg/m ³
Method Year	: other : 1987
GLP	: no data
Test substance	: other TS
Method	: Groups of at least 10 rats and 10 mice were exposed to 11-35
Remark	ppm of acetic acid.Acetic acid and its salts include acetic acid, calcium
Remark	acetate, potassium acetate and sodium acetate. The chemical
	structures, physical-chemical properties, environmental fate
	behavior, and aquatic and mammalian toxicity of these
	compounds are similar. Acetic acid and its salts undergo
	dissociation in aqueous media into the acetate anion and the
	respective cations. The toxicity of each compound is driven
	by acetate, with the cations playing a minor role.
	Acetoxysilanes are not stable when exposed to moisture and
	undergo rapid hydrolysis. When added to water, 100% of the
	parent material is hydrolyzed to acetic acid and the
	corresponding silanetriol in less than 0.2 minutes at 25°C
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid
	and 1 mole of alkyl substituted silanetriol for every mole
Decult	of (alkyl) triacetoxysilane parent material.
Result	: Exposure to 11 ppm for 22 days had no effect on activity,
	behavior, work capacity, growth, blood, or the weights and microscopic appearance of tissues examined. At 15 ppm (for
	22 days) or more, the animals showed decreased activity,
	behavioral changes and reduced work capacity. At 23-31 ppm
	(17-35 days), there was decreased growth, increased spleen
	weight, an increase of the level of iron stored in the
	spleen, signs of kidney damage and increased kidney weights. NOAEL
	(systemic effects) = 11 ppm (27 mg/m3). LOAEL (systemic toxicity) = 15
-	ppm.
Test substance	: Acetic acid (64-19-7)
Reliability	: (2) valid with restrictions
	Peer-reviewed and published information. Reviewed and
	summarized in BIBRA (1993)
31.10.2005	

5.5 GENETIC TOXICITY 'IN VITRO'

Type :	Bacterial reverse mutation assay
System of testing :	Bacterial

ECD SIDS	ETHYLTRIACETOXYSILAN
TOXICITY	ID: 17689-77-
	DATE: 01.11.200
Test concentration	: 312.5, 625, 1250 and 5000 ug plate (Plate Incorporation Method)
Cycotoxic concentr.	: >5000 ug/plate
Metabolic activation	: with and without
Result	: negative
Method	: other: The study was conducted in conformance with Draft OECD Protoco Nos. 419 and 420 and in general conformance with OECD Health Effects Test Guidelines Nos. 471 and 472 (both May 26, 1983).
Year	: 1984
GLP	: yes
Test substance	: as prescribed by 1.1 - 1.4
Method	: Statistical Methods: Means and standard deviations were calculated for each treatment. Responses (numbers of revertants) to the test substance were compared to concurrent negative and positive controls, as well as to historical data.
Result	: The test substance was not mutagenic at any concentration
	tested, either with or without metabolic activation. The
	test substance was not cytotoxic at any concentration
	tested. The highest level tested, 5000 ug/plate, is the
	maximum required dose for studies of this type.
Source	: Dow Corning Corporation Midland, MI
Test condition	: S. typhimurium: TA-97, TA-98, TA-100 and TA-1535;
	E. coli: WP2
	Species and cell type: Rat liver
	Quantity: 0.5 ml of a commercial S-9 mix was added to approximately 2.06 ml of the plating mixture
	Induced or Not Induced: Yes, Aroclor 1254
	* All treatments were plated in triplicate.
	 * The control and test substances were administered once. * The solvent (negative control) for all treatments/strains was dimethylsulfoxide (DMSO).
	* Anthracine was the positive control agent for the
	activation assays (all strains). In the nonactivation
	assays, the positive control substances were sodium azide
	(TA-1535 and TA-100), 4-nitroquinolone-N-oxide (TA-97),
	2-nitrofluorene (TA-98) and
	N-methyl-N-nitro-N-nitroquanidine (WP2). All positive
	control substance treatments were 10 ug/plate.
	* The plates were incubated for 72 hours at 37 degrees C,
	then counted.
	* The number of cells evaluated per dose group was not
	reported. Revertants per plate for positive control
	substances ranged from 161-1768, depending on the agent and
Test substance	strai : Ethyltriacetoxysilane (CAS No. 17689-77-9)
Conclusion	: The test substance, ethyltriacetoxysilane, did not induce
	any cytotoxicity or mutagenicity in the tested strains at
	dosages up to 5000 ug/plate, both with and without metabolic
	activation. Appropriate concurrent negative and positive
	controls were included, and the expected responses were
	observed. Therefore, the test substance was not a bacterial
	mutagen under the conditions of this assay.
Reliability	: (1) valid without restriction
Flag	: Critical study for SIDS endpoint
25.02.2004	(3

TOXICITY	ID: 17689-77-
Тожент	DATE: 01.11.200
Туре	: Chromosomal aberration test
System of testing	Chinese hamster ovary cells
Test concentration	: 275, 550, 1100, 2200 ug/mL
Cycotoxic concentr. Metabolic activation	 With metabolic activation: 15% at 2200 ug/mL with and without
Result	: negative
Method	: OECD Guide-line 473
Year	: 2002
GLP	: yes
Test substance	: other TS
Method	: OECD 473 (1998); Swierenga, Mutation Research (246: 301-322;ICH (1996 and 1997); Evans (1976)
	The number and type of aberrations found, the percentage of
	structurally and numerically damaged cells (% aberrant
	cells) in the total population examined and mean aberrations
	per cell were calculated for each group. Fisher's exact test
	was used to compare pairwise the percent aberrant cells of
Remark	each treatment group with that of the solvent control.
Remark	 Ethyltriacetoxysilane and methyltriacetoxysilane differ only by a -CH2- group, and thus are close structural analogues.
	Both materials are unstable and undergo rapid hydrolysis to
	acetic acid and the corresponding silanetriol.
	Specifically, the hydrolysis rates of the two materials are
	<13 and <12 seconds for ethyltriacetoxysilane and
	methyltriacetoxysilane, respectively.
Result	: Treatment time: 4 hrs
Result	Recovery time: 16 hrs
	Harvest time: 20 hrs
	S9: none
	Toxicity at highest dose scored: none at 2200 ug/plate
	Mitotic index: none
	Lowest effective dose (LED) for structural aberrations: none
	LED for numerical aberrations: none
	Treatment time: 20 hrs
	Recovery time: 0 hrs
	Harvest time: 20 hrs
	S9: none
	Toxicity at highest dose scored: none at 2200 ug/plate
	Mitotic index: none
	Lowest effective dose (LED) for structural aberrations: none
	LED for numerical aberrations: none
	Treatment time: 4 hrs
	Recovery time: 16 hrs
	Harvest time: 20 hrs
	S9: yes Taviaity at highest dags appred: 15% at 2200 ug/slats
	Toxicity at highest dose scored: 15% at 2200 ug/plate
	Mitotic index: 13%
	Lowest effective dose (LED) for structural aberrations: none LED for numerical aberrations: none
Test condition	
	 In the chromosome aberration assay, the cells were treated for 4 and 20 hours in the non-activation system and for 4
	hours in the S9 activation system. All the cells were
	harvested at 20 hours after treatment initiation. The
	solvent and negative control for all test article dose

ECD SIDS	ETHYLTRIACETOXYSILAN
TOXICITY	ID: 17689-77
	DATE: 01.11.20
	in water and used as the positive control in the nonactivated system. Cyclophosphamide was dissolved in water and used as the positive control in the S9 activation system. In the absence of substantial toxicity at any dose level in any treatment group, 2200 g/ml was selected as the high dose for microscopic analysis in all three treatment groups. The next two lower doses were also analyzed in all
Test substance	harvests. : Methyltriacetoxysilane CAS No. 4253-34-3; purity > 97%
Conclusion	: Methyltriacetoxysilane CAS No. 4253-34-3 was concluded to be negative for the induction of structural and numerical
Delichility (chromosome aberrations in CHO cells.
Reliability Flag	 (1) valid without restriction Critical study for SIDS endpoint
06.12.2004	
	· · · · · · · · · · · · · · · · · · ·
Туре	: Bacterial reverse mutation assay
System of testing Test concentration	 Bacterial (Salmonella typhimurium and E. coli) 100, 333, 1000,3333, and 5000 ug/plate
Cycotoxic concentr.	: > 5000 ug/plate
Metabolic activation	: with and without
Result	: negative
Method	: OECD Guide-line 471
Year GLP	: 2002 : yes
Test substance	: other TS
Method	: Ames, Mutation Research (1975); ICH (1996 and 1997); Maron, Mutation Research (1983). Responses (numbers of revertants) to the test substance were compared to concurrent negative and positive controls, as well as to historical data.
Remark	 Ethyltriacetoxysilane and methyltriacetoxysilane differ only by a -CH2- group, and thus are close structural analogues. Both materials are unstable and undergo rapid hydrolysis to acetic acid and the corresponding silanetriol. Specifically, the hydrolysis rates of the two materials are <13 and <12 seconds for ethyltriacetoxysilane and methyltriacetoxysilane, respectively.
Test condition	 The control and test substances were administered once. The solvent (negative control) for all treatment and strains was dimethylsulfoxide (DMSO) except for the sodium azide positive control which was diluted in water.
	Positive Control Agents and Doses (ug/plate) With activation:TA-98 - 2-AA (1.0) TA100 - 2-AA (1.0) TA1535 - 2-AA (1.0) TA1537 - 2-AA (1.0) WP2uvrA - 2-AA (10)
	Without Activation:TA98 - NF (1.0) TA100 - AZ (1.0) TA1535 - AZ (1.0) TA1537 - AA (75) WP2uvrA - MM (1000)
	2-AA = 2-Aminoanthracene NF = Nitrofluorene AZ = Sodium azide AA = Aminoacridine

OECD SIDS	ETHYLTRIACETOXYSILANE
5. TOXICITY	ID: 17689-77-9
	DATE: 01.11.2005
	MM = Methyl methanesulfonate
	All dose levels of test article, vehicle controls and positive controls were plated in triplicate. The plates were incubated at 37 degrees C for 48-72 hours. Plates that were not counted immediately following the incubation period were stored at 2-8 degrees C until counted.
Test substance	: Methyltriacetoxysilane CAS no. 4253-34-3
Conclusion	 Methyltriacetoxysilane CAS No. 4253-34-3 did not cause a positive mutagenic response in either the presence or absence of Aroclor-induced rat liver S9.
Reliability	: (1) valid without restriction
06.12.2004	(10)

5.6 GENETIC TOXICITY 'IN VIVO'

5.7 CARCINOGENICITY

5.8.1 TOXICITY TO FERTILITY

Type Species Sex Strain Route of admin. Exposure period Frequency of treatm.	 other mouse male/female no data drinking water daily
Premating exposure per	od
Male Female	 1 week prior to breeding 1 week prior to breeding
Duration of test No. of generation studies	: ' week phot to breeding
Doses	: 60 mg/kg bw/day
Control group Method Year GLP Test substance	: yes : other : 1988 : no data : other TS
Method Remark	 Groups of 20 mice of each sex were given 0.025% sodium acetate in the drinking water (about 60 mg/kg bw/day) for 1 week before breeding, during a 9-day breeding period and (females only) throughout pregnancy, lactation and until the offspring were weaned at 3 weeks of age. The male offspring were given the same solution until they were 5-7 weeks old and were then examined in a 24-hour activity test. Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role.

ECD SIDS	ETHYLTRIACET	
TOXICITY		D: 17689-77-9 E: 01.11.200
Result	Acetoxysilanes are not stable when exposed to moisture an undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Examination of the litters revealed no overt deformities,	d e
	and pup weights were normal at day 1 and day 21. The activity of offspring of the treated group was lower than that of controls during the first 12 hours but was similar during the second 12 hours (the study did not show unequivocally that the decreased activity was maternally-mediated, since the pups were also exposed post-weaning).	
Test substance	Acetic acid, sodium salt (127-09-3)	
Reliability	(2) valid with restrictions	
	Peer reviewed published information. Reviewed and summarized in BIBRA (1993)	
03.06.2005	summanzed in BIBRA (1993)	(8) (2
Туре	other: Range-finding study	
Species		
Sex		
Strain		
Route of admin.		
Exposure period Frequency of treatm.		
Premating exposure per		
Male		
Female Duration of test		
No. of generation		
studies		
Doses		
Control group		
Method	other	
Year GLP	2004	
GLP Test substance	no as prescribed by 1.1 - 1.4	
Remark	Ethyltriacetoxysilane is sensitive to rapid hydrolysis, which may occur during testing, such that observed toxicity is likely due primarily to acetic acid. Abiotic hydrolysis studies show that hydrolysis products from the test substance undergo continuous, condensation reactions to produce higher molecular weight cyclic and linear siloxanes (the number-average and weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram high than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area 9 of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the	er

OECD SIDS	ETHYLTRIACETOXYSILANI	E
5. TOXICITY	ID: 17689-77-9	9
	DATE: 01.11.2003	5
Reliability	 polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a reproduction study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. Due to the rapid hydrolysis of this material, a suitable vehicle can not be selected and all studies would utilize neat dosing. Based on the findings of the 7-day range-finder, less than 5 ul/d dose volumes and dose levels of 20 mg/kg bw/d or less would be required for a longer duration study, which would present technical difficulties, questions regarding dosing accuracy and a very low nominal systemic dose. (2) valid with restrictions 	
Rendonity	Study was Non-GLP	
Flag 06.12.2004	: Critical study for SIDS endpoint	:)
00.12.2004	(36	ク

5.8.2 DEVELOPMENTAL TOXICITY/TERATOGENICITY

Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox. NOAEL teratogen. Method Year GLP Test substance	mouse female CD-1 gavage 5 days (days 8-12 of daily three weeks 1,000 mg/kg bw yes = 1000 mg/kg bw = 1000 mg/kg bw other 1987 no data other TS	gestation)
Method Remark	a single oral dose by Animal quarters were relative humidity of 4 Acetic acid and its sa acetate, potassium a structures, physical-o behavior, and aquati compounds are simil dissociation in aqueo respective cations. T by acetate, with the o Acetoxysilanes are n undergo rapid hydrol parent material is hydro corresponding silane	ce, approximately 60 days old, were give gavage on days 8-12 of gestation. e maintained at a temperature of 22 °C, a 0-60%, and a 7 am to 7 pm photoperiod. Its include acetic acid, calcium cetate and sodium acetate. The chemical chemical properties, environmental fate c and mammalian toxicity of these ar. Acetic acid and its salts undergo ous media into the acetate anion and the he toxicity of each compound is driven cations playing a minor role. ot stable when exposed to moisture and ysis. When added to water, 100% of the drolyzed to acetic acid and the triol in less than 0.2 minutes at 25°C drolysis produces 3 moles of acetic acid

	ETHYLTRIACETOXYS	
FOXICITY	ID: 176	
	DATE: 01.	11.200
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
Result	: General parental toxicity: No effects	
	Toxicity to offspring: No effects	
Test substance	: Acetic acid, sodium salt (127-09-3)	
Reliability	: (2) valid with restrictions	
	Peer reviewed published information. Reviewed and	
-	summarized in BIBRA (1993).	
Flag	: Critical study for SIDS endpoint	(5)
03.06.2005		(59
Species	: rat	
Sex		
Strain	:	
Route of admin.	:	
Exposure period	:	
Frequency of treatm.	:	
Duration of test	:	
Doses	:	
Control group	:	
Method	: other: Range-finding study	
Year	: 2004	
GLP Toot oubstance	: no	
Test substance	: as prescribed by 1.1 - 1.4	
Remark	: Ethyltriacetoxysilane is sensitive to hydrolysis, which may occur during testing, such that observed toxicity is likely	
	due primarily to the hydrolysis products acetic acid, with	
	some potential exposure to trisilanols, and silanol	
	oligomers. Abiotic hydrolysis studies show that hydrolysis	
	products from the test substance undergo continuous,	
	condensation reactions to produce higher molecular weight	
	cyclic and linear siloxanes (the number-average and	
	weight-average molecular weights were 633 and 809 with 22	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products,	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically	
	weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available.	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were 	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled 	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range finder study 	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range finder study indicated that a maximum dose level of less than 20 	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a reproduction study in 	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a reproduction study in order to avoid death or obvious suffering due to the 	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a reproduction study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. Due to 	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a reproduction study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. Due to the rapid hydrolysis of this material, a suitable vehicle 	
	 weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available. In a 7-day range-finding study, stomach lesions were observed at low doses of ethyltriacetoxysilane and resembled acetic acid toxicity. This 7-day range finder study indicated that a maximum dose level of less than 20 mg/kg/day would be required for a reproduction study in order to avoid death or obvious suffering due to the corrosivity of the hydrolysis product, acetic acid. Due to 	

ECD SIDS	ETHYLTRIACETOXYSILAN
TOXICITY	ID: 17689-77
	DATE: 01.11.20
	bw/d or less would be required for a longer duration study,
	which would present technical difficulties, questions
	regarding dosing accuracy and a very low nominal systemic
	dose.
Reliability	: (2) valid with restrictions
	Study was Non-GLP
Flag	: Critical study for SIDS endpoint
06.12.2004	(3
Species	: rat
Sex	: female
Strain	: Wistar
Route of admin.	: gavage
Exposure period	: 10 days
Frequency of treatm.	: daily
Duration of test	: 14 days
Doses	: 0, 16, 74, 345, and 1600 mg apple cider vinegar/kg bw/day (1600 mg/kg
	bw/day is equivalent to approximately 100 mg acetic acid/kg bw/day)
Control group	: yes, concurrent no treatment
Result	: No effects on nidation or on maternal or fetal survival at doses up to 1600
	mg/kg bw/day (equal to 100 mg acetic acid/kg bw/day).
Method	: other
Year	: 1974
GLP	: no
Test substance	: other TS
Method	: Following mating, adult female albino rats (Wistar) were
	dosed daily with 1.6 g apple cider vinegar (5% acetic
	acid)/kg bw/d by oral intubation beginning on day 6 and
	ending on day 18 of gestation. Animals were observed daily
	and body weights recorded. On day 20, Caesarian sections
	were performed on all dams and the numbers of implantation
	sites, resorption sites, and live and dead fetuses was
	recorded. General external and internal examinations were
	also made of the dams.
Remark	: Acetic acid and its salts include acetic acid, calcium
	acetate, potassium acetate and sodium acetate. The chemical
	structures, physical-chemical properties, environmental fate
	behavior, and aquatic and mammalian toxicity of these
	compounds are similar. Acetic acid and its salts undergo
	dissociation in aqueous media into the acetate anion and the
	respective cations. The toxicity of each compound is driven
	by acetate, with the cations playing a minor role.
	Acetoxysilanes are not stable when exposed to moisture and
	undergo rapid hydrolysis. When added to water, 100% of the
	parent material is hydrolyzed to acetic acid and the
	corresponding silanetriol in less than 0.2 minutes at 25°C
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid
	and 1 mole of alkyl substituted silanetriol for every mole
	of (alkyl) triacetoxysilane parent material.
	Conversion of dose: 1600 mg apple cider vinegar/kg bw/day
Booult	approximately equal to 100 mg acetic acid/kg bw/day
Result	: No effects on nidation or on maternal or fetal survival at
	doses up to 1600 mg apple cider vingegar/kg bw/day (equal to
	100 mg acetic acid/kg bw/day). The number of abnormalities seen in either soft or skeletal tissues of the test groups
Test substance	did not differ from the number occurring in the controls.Apple cider vinegar; acetic acid (64-19-7) 5%
Reliability	: (2) valid with restrictions
Renability	Comparable to a guideline study. Peer-reviewed published
	Comparable to a guideline study. Feet-teviewed published

ECD SIDS TOXICITY	ETHYLTRIACETOXYSILAN ID: 17689-77
ΙΟΛΙCΗΤ	DATE: 01.11.200
03.06.2005	information. Reviewed and summarized in BIBRA (1993).
03.00.2005	(8) (4
Species	: mouse
Sex	: female
Strain	: no data
Route of admin.	: gavage
Exposure period	: 10 days
Frequency of treatm.	: daily
Duration of test	: 17 days
Doses	: 0, 16, 74, 345, and 1600 mg apple cider vinegar/kg bw/day (1600 mg app
	cider vinegar/kg bw/day approximately equivalent to 100 mg acetic acid/kg
	bw/day)
Control group Result	 yes, concurrent no treatment No effects on nidation or on maternal or fetal survival were observed at
Result	
Method	doses up to 1600 mg/kg bw/day (equal to 100 mg acetic acid/kg bw/day).
Year	: 1974
GLP	: 1974 : no
Test substance	: other TS
rest substance	
Method	: Following mating, adult female albino CD-1 mice were dosed
	daily by oral intubation beginning on day 6 of gestation.
	Animals were observed daily and body weights recorded for 10
	days. On day 17, Caesarian sections were performed on all
	dams and the numbers of implantation sites, resorption
	sites, and live and dead fetuses was recorded. General
	external and internal examinations were also made of the
	dams.
Remark	: Acetic acid and its salts include acetic acid, calcium
	acetate, potassium acetate and sodium acetate. The chemical
	structures, physical-chemical properties, environmental fate
	behavior, and aquatic and mammalian toxicity of these
	compounds are similar. Acetic acid and its salts undergo
	dissociation in aqueous media into the acetate anion and the
	respective cations. The toxicity of each compound is driven
	by acetate, with the cations playing a minor role.
	Acetoxysilanes are not stable when exposed to moisture and
	undergo rapid hydrolysis. When added to water, 100% of the
	parent material is hydrolyzed to acetic acid and the
	corresponding silanetriol in less than 0.2 minutes at 25°C
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid
	and 1 mole of alkyl substituted silanetriol for every mole
	of (alkyl) triacetoxysilane parent material.
	Conversion of dose: 1600 mg apple cider vinegar/kg bw/day
	approximately equal to 100 mg acetic acid/kg bw/day
Result	: No effects on nidation or on maternal or fetal survival at
	doses up to 1600 mg apple cider vinegar/kg bw/day (equal to
	100 mg acetic acid/kg bw/day). The number of abnormalities
	seen in either soft or skeletal tissues of the test groups
	did not differ from the number occurring in the controls.
Test substance	: Apple cider vinegar; acetic acid (64-19-7) 5%
Reliability	: (2) valid with restrictions
-	Comparable to a guideline study. Peer-reviewed published
	information. Reviewed and summarized in BIBRA (1993).
03.06.2005	(2) (4
0	
Species	: rabbit
Sex	: female
Strain	: no data

ECD SIDS	ETHYLTRIACETOXYSILANE	
TOXICITY	ID: 17689-77-9	
	DATE: 01.11.2005	
Route of admin. Exposure period Frequency of treatm.	: gavage : 13 days : daily	
Duration of test Doses	 23 days 0, 16, 74, 345, and 1600 mg apple cider vinegar/kg bw/day (1600 mg apple cider vinegar/kg bw/day approximately equivalent to 100 mg acetic acid/kg bw/day) 	
Control group Result	 yes, concurrent no treatment No effects on nidation or on maternal or fetal survival were observed at doses up to 1600 mg/kg bw/day (equal to 100 mg acetic acid/kg bw/day). 	
Method	: other	
Year	: 1974	
GLP Test substance	: no	
Test substance	: other TS	
Method	: Following artificial insemination, adult Dutch-belted female rabbits were dosed daily by oral intubation beginning on day 6 of gestation. Animals were observed daily and body weights recorded. On day 29, Caesarian sections were performed onall does and the numbers of of corpora lutea, implantation sites, resorption sites, and live and dead fetuses was recorded. General externaland internal examinations were also made of the does.	
Remark	 Acetic acid and its salts include acetic acid, calcium acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Conversion of dose: 1600 mg apple cider vinegar/kg bw/day approximately equal to 100 mg acetic acid/kg bw/day 	
Result	: No effects on nidation or on maternal or fetal survival at doses up to 1600 mg apple cider vinegar/kg bw/day (equal to 100 mg acetic acid/kg bw/day). The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring in the controls.	
Test substance Reliability	 Apple cider vinegar; acetic acid (64-19-7) 5% (2) valid with restrictions Comparable to a guideline study. Peer reviewed published information. Reviewed and summarized in BIBRA (1993) 	
03.06.2005	(2) (43	
Species	: other: Fertile single-comb white leghorn chicken eggs	
Sex		
Strain Route of admin	: other: injection into egg	
Route of admin. Exposure period	other: injection into egg	
Frequency of treatm.	: sinale injection	
Frequency of treatm. Duration of test	: single injection	
	: single injection : : maximum 10.0 mg/egg : γes	

TOXICITY	ETHYLTRIACETOXYS ID: 1768	
ΙΟΛΙCΗΤ	DATE: 01.1	
	DATE. 01.1	1.20
Method	: other	
Year	: 1980	
GLP	: no data	
Test substance	: other TS	
Method	: Fertile eggs from single-comb white leghorn chickens	
	were used. The test substance in water was	
	administered by two routes, injection via the yolk and	
	via the air cell. For each injection route, eggs were	
	treated at two stages of incubation: preincubation (0 hrs)	
	and on the fourth day (96 hrs). At least 100 embryos	
	per each of four dose levels were treated. After	
	treatment, all eggs were candled daily and nonviable	
	embryos were removed. Surviving embryos were	
	allowed to hatch.	
Remark	: Acetic acid and its salts include acetic acid, calcium	
	acetate, potassium acetate and sodium acetate. The chemical	
	structures, physical-chemical properties, environmental fate	
	behavior, and aquatic and mammalian toxicity of these	
	compounds are similar. Acetic acid and its salts undergo	
	dissociation in aqueous media into the acetate anion and the	
	respective cations. The toxicity of each compound is driven	
	by acetate, with the cations playing a minor role.	
	Acetoxysilanes are not stable when exposed to moisture and	
	undergo rapid hydrolysis. When added to water, 100% of the	
	parent material is hydrolyzed to acetic acid and the	
	corresponding silanetriol in less than 0.2 minutes at 25°C	
	and pH 7.1. This hydrolysis produces 3 moles of acetic acid	
	and 1 mole of alkyl substituted silanetriol for every mole	
	of (alkyl) triacetoxysilane parent material.	
	The LD50 is for the test condition in which the injection	
	was made to the yolk sac at 0 hrs.	
Result	: LD50: 4.58 mg/egg	
Result	: LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg	
Result	: LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test	
Result	: LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration	
	: LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected.	
Test substance	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) 	
	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions 	
Test substance Reliability	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) 	(9
Test substance	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions 	(9
Test substance Reliability 03.06.2005 Species	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat 	(9
Test substance Reliability 03.06.2005 Species Sex	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female 	(9
Test substance Reliability 03.06.2005 Species Sex Strain	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin.	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data drinking water 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm.	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox.	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data drinking water 18 days daily 44 days .03% (100 mg/kg bw) 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox. Method	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data drinking water 18 days daily 44 days .03% (100 mg/kg bw) = .03 - % other 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox. Method Year	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data drinking water 18 days daily 44 days .03% (100 mg/kg bw) = .03 - % other 1982 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox. Method Year GLP	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data drinking water 18 days daily 44 days .03% (100 mg/kg bw) = -03 - % other 1982 no data 	9)
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox. Method Year	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data drinking water 18 days daily 44 days .03% (100 mg/kg bw) = .03 - % other 1982 	9)
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox. Method Year GLP	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data drinking water 18 days daily 44 days .03% (100 mg/kg bw) = .03 - % other 1982 no data other TS 	(9
Test substance Reliability 03.06.2005 Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox. Method Year GLP Test substance	 LD50: 4.58 mg/egg NOAEL teratogenicity: 10.0 mg/egg No teratogenic response under any of the four test conditions was observed at the highest concentration injected. Acetic acid, sodium salt (127-09-3) (2) valid with restrictions Peer reviewed published information. rat female no data drinking water 18 days daily 44 days .03% (100 mg/kg bw) = -03 - % other 1982 no data 	(9

OECD SIDS	ETHYLTRIACETOXYSILANE	7	
5. TOXICITY	ID: 17689-77-9		
	DATE: 01.11.2005	5	
Result Test substance Reliability	 acetate, potassium acetate and sodium acetate. The chemical structures, physical-chemical properties, environmental fate behavior, and aquatic and mammalian toxicity of these compounds are similar. Acetic acid and its salts undergo dissociation in aqueous media into the acetate anion and the respective cations. The toxicity of each compound is driven by acetate, with the cations playing a minor role. Acetoxysilanes are not stable when exposed to moisture and undergo rapid hydrolysis. When added to water, 100% of the parent material is hydrolyzed to acetic acid and the corresponding silanetriol in less than 0.2 minutes at 25°C and pH 7.1. This hydrolysis produces 3 moles of acetic acid and 1 mole of alkyl substituted silanetriol for every mole of (alkyl) triacetoxysilane parent material. Increased body weights and a decreased activity by 44 days after birth. No effect on dams. Acetic acid (64-19-7) (3) invalid Does not meet important criteria of a guideline study. 	_	
~~~~~	Considered limited in BIBRA (1993)		
03.06.2005	(4)	)	

# 5.8.3 TOXICITY TO REPRODUCTION, OTHER STUDIES

## 5.9 SPECIFIC INVESTIGATIONS

#### 5.10 EXPOSURE EXPERIENCE

Type of experience	:	other: Volatile Species from Sealants Containing Acetoxysilanes
Result Source Test condition	:	<ul> <li>Methyltriacetoxysilane was not detected in the headspace. &gt; 100 ppm acetic acid was detected in the headspace. The same results were obtained when the study was conducted with commercial samples (DC732 silicone sealant, GE RTV108 silicone sealant or GE RTV108 with no added water). The detection limit for the acetoxysilane target compounds was estimated to be on the order of 100 ppb, based on the typical response factors noted for the siloxanes quantified and the response for neat acetoxysilanes measured as a liquid phase. It was not possible to prepare accurate gas phase standards of the acetoxysilanes without hydrolysis or other reaction rapidly occurring. GE Silicones</li> <li>-Conditions: Sealant samples (2 grams) were extruded in a dry atmosphere into a sealed vessel. Experiments were run with water present, with a 59% relative humidity, and with no additional water. Samples were incubated for 20 minutes at 27 C then headspace samples were taken.</li> <li>-Controls: Samples of each of the neat silanes were also treated in the same manner as the sealant samples and were used for calibration of the test method.</li> <li>-Analytical procedures: 200 microliter aliquots were sampled from the headspace of the sealed container and</li> </ul>

DECD SIDS	ETHYLTRIACETOXYSILAN
5. TOXICITY	ID: 17689-77- DATE: 01.11.200
Test substance	<ul><li>injected into a GC-MSThe DC732 sealant experiment was run in triplicate with identical results.</li><li>Methyltriacetoxysilane</li></ul>
	Ethyltriacetoxysilane Diacetoxydimethylsilane Acetoxytrimethylsilane Methyltriacetoxysilane @ 59% relative humidity
	DC732 silicone sealant GE RTV108 silicone sealant GE RTV108 with no added water
	Commercial silicone sealants which utilize an acetoxy alkylsilane crosslinking reaction were used. Neat samples of the individual silanes were also tested.
Conclusion	<ul> <li>None of the acetoxy alkylsilanes used as crosslinkers volatilize during cure of the sealants. Instead they hydrolyze and condense releasing acetic acid, which was</li> </ul>
	detected. Therefore there is no human exposure to the acetoxy alkylsilanes from their predominant use in silicones sealants.
Reliability 02.12.2004	: (1) valid without restriction (70
.11 ADDITIONAL R	EMARKS
Туре	: other
Remark Source 20.05.2004	<ul> <li>Ethyltriacetoxysilane is sensitive to rapid hydrolysis, which may occur during testing, such that observed toxicity is likely due primarily to acetic acid. Abiotic hydrolysis studies show that hydrolysis products from the test substance undergo continuous, condensation reactions to produce higher molecular weight cyclic and linear siloxanes (the number-average and weight-average molecular weights were 633 and 809 with 22 area % of the chromatogram higher than 1000 molecular weight at the1-hr reaction time; at the 4-hr reaction time, the number-average and weight-average molecular weights increased to 750 and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight state to and 1085 with 38 area % of the chromatogram higher than 1000 molecular weight, respectively). The alkyl silanols condense to siloxane oligomers; this condensation of silanols is affected by both concentration and pH, and since both change over time it is not feasible to isolate specific silanols for analysis (the structures continue to evolve until they either reach equilibrium or precipitate out of solution). While the hydrolysis of ethyltriacetoxysilane is rapid, the polymerization products, while not volatile, are in a molecular weight range small enough to be considered, at least in part, biologically available.</li> <li>Epona Associates, LLC</li> </ul>
Туре	: other: GRAS
Remark	<ul> <li>"Both acetic acid and sodium diacetate are considered by the Food and Drug Administration to be Generally Recognized as Safe (GRAS) (21 CFR 184.1005 and 184.1754) for use in food."</li> </ul>

OECD SIDS	ETHYLTRIACETOXYSILANE
5. TOXICITY	ID: 17689-77-9
	DATE: 01.11.2005
	"EPA has also briefly discussed above sodium diacetate's chemistry relative to sodium acetate and acetate as well as chemical and metabolic properties of these individual compounds. Given these compounds' low toxicities, natural occurrence, and inherent functions in the metabolic pathways of humans and domestic animals EPA is not concerned about the negligible human dietary exposure or risk from the use of sodium diacetate. The Agency is therefore not requiring any human health studies for sodium diacetate."
31.05.2005	(88)

OECD SIDS	ETHYLTRIACETOXYSILANE
6. REFERENC	CES ID: 17689-77-9 DATE: 01.11.2005
(1)	Alexandrov, V.A., Novikov, A.I., Zabezhinsky, M.A., Stolyarov, V.I., and Petrov, A.S. (1989) The stimulating effect of acetic acid, alcohol, and thermal burn injury on esophagus and forestomach carcinogenesis induced by n-nitrososarcosin ethyl ester in rats. Cancer Lett. 47:79-185. Cited in BIBRA (1993)
(2)	American Chemistry Council's Acetic Acid and Salts Panel (2003) U.S. HIGH PRODUCTION VOLUME (HPV) CHEMICAL CHALLENGE PROGRAM - ROBUST SUMMARIES for CARBOXYLIC FOOD ACIDS AND SALTS CATEGORY. April 16, 2003.
(3)	Anderson, R., B. Arkles, and G.L. Larson (1987) Silicon Compounds - Register and Review Catalog. Petrarch Systems, Silanes and Silicones Group, Bristol, PA.
(4)	Barrett J and Livesey PJ (1982) Neurobehav Toxicol Teratol 4, 105. Cited in BIBRA (1993)
(5)	BASF, A.G. (1989) Unpublished study No. 78/650, 21.05.1980. In European Commission. 1996. Acetic acid. International Uniform Chemical Information Database; cited in American Chemistry Council's Acetic Acid and Salts Panel (2003) U.S. HIGH PRODUCTION VOLUME (HPV) CHEMICAL CHALLENGE PROGRAM - ROBUST SUMMARIES for CARBOXYLIC FOOD ACIDS AND SALTS CATEGORY. April 16, 2003.
(6)	Beynon, R. J.; Easterby, J. S. (1996) The Basics: Buffer Solutions 1996.
(7)	BiblioLine (R) (2004) Database File: (RTECS [TOXICITY, CARCINOGENICITY, TUMORIGENICITY, MUTAGENICITY, TERATOGENICITY]) OR HSDB SUBSET [HAZARDOUS SUBSTANCES DATA BANK]
(8)	BIBRA International (1993) Toxicology profile: Acetic acid and its common salts. BIBRA International
(9)	BIOFAX Industrial Bio-Test Laboratories, Inc. (1971) Data sheets. 19-3. In Registry of Toxic Effects of Chemical Substances. 1999. Sodium acetate. National Institute for Occupational Safety and Health.[Cited in American Chemistry Council's (ACC) Acetic Acid and Salts Panel (2003). U.S. HIGH PRODUCTION VOLUME (HPV) CHEMICAL CHALLENGE PROGRAM - ROBUST SUMMARIES for CARBOXYLIC FOOD ACIDS AND SALTS CATEGORY. April 16, 2003.]
(10)	BioReliance (2002) Bacterial Reverse Mutation Assay with an Independent Repeat Assay, Study No. AA49NY.502001.BLT, Project No. 01-020, February 27, 2002.
(11)	BioReliance (2002) In Vitro Mammalian Chromosome Aberration Test, Study No. AA49NY.331.BLT, Project No. 01-021, March 4, 2002.

OECD SIDS		ETHYLTRI	ACETOXYSILANE
6. REFERENC	CES		ID: 17689-77-9 DATE: 01.11.2005
(12)	Bringmann, G. and Kuhn, R. (1978) Testing of Substand Their Toxicity Threshold: Model Organisms Microcystis (Diplocystis) aeruginosa and Scenedesmus quadricaud International Association of Theoretical and Applied Limnology. Communications, 21: 275-284.		
(13)	Bringmann, G. and Kuhn, R. (1980) Comparison of the thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Water Res. 14:231-241.	toxicity	
(14)	Bringmann, G. and Kuhn, R. (1982) Results of toxic activater pollutants on Daphnia magna strauss tested by a improved standardized procedure. Z. Wasser Abwasser 15(1):1-6.	n	
(15)	Bruner, L.B. (1959) Dow Corning Corporation, Report 1959-I0030-1794.	No.	
(16)	Celanese (2003) Material Safety Data Sheet, Glacial Aceticacid MSDS Number MSDS-002.		
(17)	Ceyzeriat, L. (1960) British Patent GB0856321		
(18)	Chemical Information System (2004) BiblioLine (R), SA [Chemical Nomenclature, Formulas, Structures]	NSS	
(19)	Clemens, H.P. and Sneed, K.E. (1959) Lethal Doses of Commercial Chemicals for Fingerling Channel Catfish. Wildl Serv Sci Rep Fish No 316, USDI, Washington, DC Reference Number: 934	US Fish	
(20)	Cory-Slechta, D.A. (1986) Prolonged lead exposure and ratio performance. Neurobehav. Toxicol. Teratol. 8:237-		
(21)	Degussa-Huls AG (1995) Determination of bacterium to of DYNASIL A In Oxygen Consumption Test (Huls meth Report. PZ-95/15. Degussa-Huls AG-Nr. 95 0225. DGO	nod). Final	
(22)	Degussa-Huls AG (1995) Determination of the acute eff DYNASYLAN ATAC On fish (in accordance with EEC 9 Final Report FK 1338. Degussa-Huls AG Nr.: 95 0221 E 9/19/95.	2/69 C 1).	
(23)	Degussa-Huls Ag (1995) Determination of the acute efford DYNASYLAN ATAC On the growth of Scenedesmus su 86.81.SAG (algae growth test per Guideline 92/69/EEC Report AW-415. Degussa-Huls AG-Nr.: 95 0215. DGO. 8/21/1995.	Ibspicatus	
(24)	Degussa-Huls Ag (1995) Determination of the acute effe DYNASYLAN ATAC On the swimming behavior of Dapl accordance with EG 92/69/EEC). Final Report DK 663. Degussa-Huls AG-Nr.: 95 0219 DGO. 9/19/95		n

OECD SIDS	ETH	YLTRIACETOXYSILANE
6. REFERENC	CES	ID: 17689-77-9 DATE: 01.11.2005
(25)	Degussa-Huls AG (1995) Determination of the acute toxicity of DYNASYLAN ATAC In earthworms (Eisenia foetida foetida (In accordance with Toxicology test for earthworms 88/302 EWG). Final Report. RW 061. Degussa AG-US-IT-NR. 95 02 DGO. 12/11/95.	
(26)	Degussa-Huls AG (1995) Determination of the biodegradabili of DYNASYLAN ATAC In DOC-DIE AWAY TEST. Final Repo 108. Degussa-Huls AG-Nr.:95 0217 DGO. 10/19/95	
(27)	Dolgov, B., V. Davydova, and M. Voronkov. 1957. Zh. Obshch. Khim. (Journal of General Chemistry) 27(6):1593.	
(28)	Donald, J.M. et al. (1988) Toxicology Lett. 42, 137. Cited in BIBRA (1993)	
(29)	Dow Corning Corporation (1964) The effect of the Alkyl Grou in the Acetoxy Cross-Linking System. Dow Corning Report N 1964-I0030-2409.	
(30)	Dow Corning Corporation (1971) Toxicity Data Sheet, 1971-I0005-40	
(31)	Dow Corning Corporation (1980) Acute static toxicity of Dow Corning Z-6075 Silane to Daphnia, bluegill, rainbow trout and two species of algae. Dow Corning Corporation, Report No. 1980 10005 0743, 14 May 1980.	
(32)	Dow Corning Corporation (1984) Internal Report No. 1984-10005-1226.	
(33)	Dow Corning Corporation (1994) Report No. 1994-I0000-394	11
(34)	Dow Corning Corporation (2001) Physical properties databas	е.
(35)	Dow Corning Corporation (2002) Material Safety Data Sheet Dow Corning (R) 3-7110 Ethyltriacetoxysilane.	
(36)	Dow Corning Corporation (2004) Non-Regulated Study: Seven-Day Range-Finding Toxicity Study of Ethyltriacetoxysilane in Sprague-Dawley Rats. Study No. 9892-102, Sponsored by Silicone, Environmental Health Council, Reston, VA 20190.	
(37)	Dryden, L.P. and Hartman, A.M. (1971) Effect of vitamin B12 on the metabolism in the rat of volatile fatty acids. J. Nutr. 101:589-592. Cited in BIBRA (1993).	
(38)	Ellis, M.M. (1937) Detection and Measurement of Stream Pollution. In: Bull Bur Fish No 22, US Dep Commerce, Washington, DC: 365-437; Reference Number: 916	
(39)	FAO/WHO Techn. Rep. Ser. No. 539, (1974) Cited in United States Environmental Protection Agency (1991)	
(40)	FASEB (1977) Evaluation of the Health Aspects of Acetic Acid, Sodium Acetate, and Sodium Diacetate as Food Ingredients". NTIS PB-274 670. Cited in United States Environmental Protection Agency (1991)	

YSILANI
7689-77-

OECD SIDS		ETHYLTRIACETOXYSILANE
6. REFERENC	CES	ID: 17689-77-9 DATE: 01.11.2005
(57)	Janssen, C.R., Espiritu, E.Q., and Persoone, G. (1993) Evaluation of the new "Enzymatic Inhibition" criterion for rapid toxicity testing with Daphnia magna. In: Soares, A and Calow, P. (Eds.), Progress in Standardization of Ac Toxicity Tests. Lewis Publishers, New York, pp. 71-81.	r 
(58)	Kameya, T., Murayama, T., Urano, K., and Kitano, M. ( Biodegradation ranks of priority organic compounds und anaerobic conditions. Sci. Total Environ. 170(1-2):43-57	der
(59)	Kavlock, R.J., Short, R.D., Jr., and Chernoff, N. (1987) Further evaluation of an in vivo teratology screen. Terat Carcinog. Mutagen. 7:7-16. Cited in BIBRA (1993)	log.
(60)	Lamb AR and Evvard MJ (1919) J Biol chem 37, 317. C BIBRA (1993)	Cited in
(61)	Mackay, D., A. Di Guardo, S. Paterson, C.E. Cowan (19 Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ. Toxicol. Che 15:1627-1637.	of
(62)	MacKenzie, K. and M. Schoffman (1951) U.S. Patent US2537073.	
(63)	MacKenzie, K. and M. Schoffman (1958) U.S. Patent US2866800.	
(64)	Massaro, E.J. and Massaro, T.F. (1987) Low level lead exposure during neonatal development perturbs cogniti function. J. Am. Coll. Toxicol. 6(4):441-450. Cited in BIE (1993)	
(65)	Mattson, V.R., J.W. Arthur, and C.T. Walbridge (1976) / Toxicity of Selected Organic Compounds to Fathead Mi Ecol Res Ser EPA-600/3-76-097, Environ Res Lab, US Duluth, MN: 12; Reference Number: 719.	innows.
(66)	Mori K (1952) Gann 43, 443. Cited in FASEB (1977) an (1993)	d BIBRA
(67)	National Institute of Technology and Evalauation (1993) Bioconcentration of Existing Chemical Substances under the Chemical Substances Control Lawhttp://www.safe.nite.go.jp/data/hazkizon/pk_e_kizor	
(68)	Perrin, D. D.; Dempsey, B. (1974) Buffers for pH and M Ion Control; Chapman and Hall Ltd, London 1974.	etal
(69)	Portmann, J.E. and K.W. Wilson (1971) The Toxicity of Substances to the Brown Shrimp and Other Marine Ani Shellfish Information Leaflet No 22 (2nd Ed), Ministry of Agric Fish Food, Fish Lab Burnham-on-Crouch, Essex, Exp Station Conway, North Wales: 12; Reference Numb	mals. f and Fish

OECD SIDS	ETHYLT	<b>TRIACETOXYSILANE</b>
6. REFERENC	CES	ID: 17689-77-9 DATE: 01.11.2005
(70)	Powell, D. (2002) Transport Between Environmental Compartments (Fugacity) for Si-Based Materials. Dow Corning Corporation for SEHSC.	
(71)	Powell, D.E. (2003) Fate, distribution, and transport of ethyltriacetoxysilane (CAS 17689-77-9) in the environment as predicted by fugacity modeling. Silicones Environmental, Health and Safety Council (SEHSC), final report, Project Number 01-014, August 2003.	
(72)	Principe, J.M. (2000) Melting Point Determination of Ethyltriacetoxysilane. Schenectady Materials and Processes Laboratory, Inc.	
(73)	Savina, V.P. and Anisimov, B.V. 1987. Kosm. Biol. Aviakosm. Med. 21:79. Cited in BIBRA (1993)	
(74)	Schultz E. (1960) Arzneimittel-Forsch. 10. 1027. Cited in BIBRA (1993)	
(75)	Schuyten, H., J. Weaver, and J. Reid. (1947) J. Am. Chem. Soc. 69:2110.	
(76)	SEHSC (2001) Internal report: Volatile Species from Sealants Containing Acetoxysilanes	
(77)	Smith, A. L. (1991) The Analytical Chemistry of Silicones; Wiley, New York, 1991; 112, 12.	
(78)	Smith, A.L. (1988) Physical and Thermodynamic Properties - Ethyl-, Methyl-, and Vinyltriacetoxysilanes. Dow Corning Corporation, Report No. 1988-I0032-112.	
(79)	Smyth H.F. Jr et al. (1951) Archs Ind Hyg (4) 119. Cited in BIBRA (1993)	
(80)	Smyth H.F. Jr et al. (1969). Am Ind Hyg Ass J (30) 470. Cited in BIBRA (1993)	
(81)	Smyth, H.F. Jr., Carpenter, C.P., Weil, C.S., Pozzani, U.C., and Striegel, J.A. (1962) Range-finding toxicity data: List VI. Amer. Ind. Hyg. Assoc. J. 23:95-207. Cited in ACC (2003)	
(82)	Sollmann T (1921) J Pharmacol Exp Therap 16, 463. Cited inBIBRA (1993)	
(83)	Sporgis, L. (1961) Latv. PSR Zinat. Akad. Vestis (Bulletin of the Academy of Sciences of the Latvian SSR) 1:71.	
(84)	Sun, Ying; Chen, Huiping; Kelly, Donald V.; Reiter, Michael R. (2002) Determination of the Approximate Molecular Weight of Acetoxysilane Hydrolysis Products in Gastric Juice Simulant-Memo Report Submitted to the Silicones Environmental, Health and Safety Council of North America (SEHSC); Dow Corning Corporation Technical Report No. 2002-10000-52204, 2002.	

. REFERENC (85)	ES Sun, Ying; Taylor, B. Richard (2001) Hydrolysis Screening Studies of HPV Acetoxysilanes-Final Report Submitted to the	ID: 17689-77-9 DATE: 01.11.2009
(85)	Studies	
	Silicones Environmental, Health and Safety Council of North America (SEHSC); Dow Corning Corporation Technical Report No. 2001-10000-50952, 2001.	
(86)	Tracor-Jitco, Inc. (1974) Scientific Literature Reviews on Generally Recognized as Safe (GRAS) Food Ingredients, Acetic Acid and Acetates. Prepared for FDA. NTIS PB-234 898. Cited in United States Environmental Protection Agency (1991)	
(87)	Union Carbide Corporation (1963) Union Carbide data sheet. Industrial Medicine & Technology. In European Commission. 1996. Acetic acid. International Uniform Chemical Information Database. Cited in BIBRA (1993)	
(88)	US Environmental Protection Agency (1991) Registration eligibility document (RED). Sodium Diacetate. US Environmental Protection Agency.	
(89)	US Environmental Protection Agency AQUIRE database.	
(90)	US Public Health Service (1960) The Sensitivity of Aquatic Life to Certain Chemicals Commonly Found in Industrial Wastes. Final Report No. RG-3965(C2R1), US Public Health Service Grant, Academy of Natural Sciences, Philadelphia, PA: 89; Reference Number: 5683.	
(91)	USEPA (2000) Estimations Programs Interface (EPI) Suite™.	
(92)	USEPA (2000) SAR Model KOWWIN® (version 1.66).	
(93)	USEPA (2000) SAR Model WSKOWWIN® (version 1.40).	
(94)	Verrett, M.J., Scott, W.F., Reynaldo, E.F., Alterman, E.K., and Thomas, C.A. (1980) Toxicity and teratogenicity of food additive chemicals in the developing chicken embryo. Toxicol Appl. Pharmacol. 56:265-273.	
(95)	Wallen I.E., Greer, W.C., and Lasater, R (1957) Toxicity to Gambusia affinis of certain pure chemicals in turbid waters. Sewage Ind. Wastes 23(6):695-711.	
(96)	Wildlife International, Ltd. (2004) Trimethylsilanol: A 96-Hour Static-Renewal Acute Toxicity Test with the Rainbow Trout (Oncorhynchus mykiss). April 29, 2004.	
(97)	Woodward, G., Lang, S.R., Nelson, K.W., and Calvery, H.O. (1941) J. Ind. Hyg. Toxicol. 23:78-82. In Clayton, G.D. and Clayton, F.E. (eds.). 1994. Patty's Industrial Hygiene and Toxicology. Volume II, Part E.Toxicology. New York: John Wiley & Sons, Inc. Cited in BIBRA (1993)	
(98)	Wysokinska Z (1952) Roczniki Panstwowego Zakladu Hig 3, 273. Cited in BIBRA (1993)	