FOREWORD

INTRODUCTION

<u>Calcium chloride</u>

CAS N°:10043-52-4

SIDS Initial Assessment Report

For

SIAM 15

Boston, USA 22-25th October 2002

- 1. Chemical Name: Calcium chloride
- **2. CAS Number:** 10043-52-4
- **3. Sponsor Country:** Japan

National SIDS Contact Point in Sponsor Country: Mr. Yasuhisa Kawamura Director Second Organization Div. Ministry of Foreign Affairs 2-2-1 Kasumigaseki, Chiyoda-ku Tokyo 100

4. Shared Partnership with:

5. Roles/Responsibilities of the Partners:

•	Name of industry sponsor	Tokuyama Corporation
	/consortium	Mr. Shigeru Moriyama,
		E-mail: s-moriyama@tokuyama.co.jp
		Mr. Norikazu Hattori, E-mail: n-hattori@tokuyama.co.jp

• Process used

6. Sponsorship History

 How was the chemical or category brought into the OECD HPV Chemicals Programme ? This substance is sponsored by Japan under ICCA Initiative and is submitted for first discussion at SIAM 15.

- 7. Review Process Prior to the SIAM:
 The industry consortium collected new data and prepared the updated IUCLID, and draft versions of the SIAR and SIAP. Japanese government peer-reviewed the documents, audited selected studies.
- 8. Quality check process:
- 9. Date of Submission:
- 10. Date of last Update:

11. Comments:

No testing (X) Testing ()

The CaCl2-HPV Consortium members:

(Japan)
Asahi Glass Co., Ltd.
Central Glass Co., Ltd.
Sanuki Kasei Co., Ltd.
Tokuyama Corporation [a global leader of the CaCl2-HPV Consortium]
Tosoh Corporation
(Europe)
Brunner Mond (UK) Ltd.
Solvay S.A.
(North America)
The Dow Chemical Company
General Chemical Industrial Products Inc.
Tetra Technologies, Inc.

The SIDS Initial Assessment Documents were prepared by Chemicals Evaluation and Research Institute (CERI), Japan.

SIDS INITIAL ASSESSMENT PROFILE

CAS No.	10043-52-4
Chemical Name	Calcium chloride
Structural Formula	CaCl ₂

SUMMARY CONCLUSIONS OF THE SIAR

Human Health

Calcium chloride is easily dissociated into calcium and chloride ions in water. The absorption, the distribution and the excretion of the ions in animals are regulated separately. Both ions are essential constituents of the body of all animals. Calcium is essential for the formation of skeletons, neural transmission, muscle contraction, coagulation of the blood, and so on. Chloride is required for regulating intracellular osmotic pressure and buffering.

The acute oral toxicity is low: LD_{50} in mice is 1940-2045 mg/kg bw, 3798-4179 mg/kg bw in rats, and 500-1000 mg/kg bw in rabbits. The acute oral toxicity is attributed to the severe irritating property of the original substance or its high-concentration solutions to the gastrointestinal tract. In humans, however, acute oral toxicity is rare because large single doses induce nausea and vomiting. The dermal acute toxicity is negligible: LD_{50} in rabbits >5000 mg/kg bw. No significant change was found by gross necropsy examination except skin lesions at or near the site of administration. Hypercalcemia may occur only when there exists other factors that alter calcium homeostasis, such as renal inefficiency and primary hyperthyroidism.

Irritation/corrosiveness studies conducted under OECD test guidelines indicate that calcium chloride is not/slightly irritating to skin but severely irritating to eyes of rabbits. Prolonged exposure and application of moistened material or concentrated solutions resulted in considerable skin irritation, however. Irritating effect of the substance was observed in human skin injuries caused by incidental contact with the substance or its high-concentration solutions.

A limited oral repeated dose toxicity study shows no adverse effect of calcium chloride on rats fed on 1000-2000 mg/kg bw/day for 12 months. Calcium and chloride are both essential nutrients for humans and a daily intake of more than 1000 mg each of the ions is recommended. The establishment of the ADI for calcium chloride has not been deemed necessary by JECFA (Joint FAO/WHO Expert Committee on Food Additives). Considering further the well-established metabolism and mechanisms of action of calcium and chloride ions in the human body, no further study is considered necessary for this endpoint.

Genetic toxicity of calcium chloride was negative in the bacterial mutation tests and the mammalian chromosome aberration test.

No reproductive toxicity study has been reported. A developmental toxicity study equivalent to an OECD Guideline study, on the other hand, reveals no toxic effects on dams or fetuses at doses up to 189 mg/kg bw/day (mice), 176 mg/kg bw/day (rats) and 169 mg/kg bw/day (rabbits). In view of the nutritional aspects, the metabolism, and the mechanisms of action of calcium and chloride ions, no further study is considered necessary for these endpoints.

Environment

Calcium chloride's vapour pressure is negligible and its water solubility is 745 g/L at 20°C. Calcium chloride is readily dissociated into calcium and chloride ions in water. These physico-chemical properties indicate that calcium chloride released into the environment is distributed into the water compartment in the form of calcium and chloride ions.

Acute toxicity studies (lowest effect values) reveal a 72-hour EC_{50} of 2900 mg/L for algae (*Selenastrum capricornutum*), a 48-hour EC_{50} of 1062 mg/L for daphnids (*Daphnia magna*) and a 96-hour LC_{50} of 4630 mg/L for fish (*Pimephales promelas*).

The chronic toxicity study with *Daphnia magna* shows that a 16% impairment of reproduction (EC16) is caused at

the concentration of 320 mg/L. The 72-hour EC_{20} for *Selenastrum capricornutum* determined by the OECD TG 201 study is 1000 mg/L. All the data compiled on the acute and chronic toxicity are greater than 100 mg/L.

Calcium is known as an essential nutrient for higher plants and one of the basic inorganic elements of algae. Calcium plays crucial roles in strengthening cell walls and plant tissues, reducing the toxicity of soluble organic acids, elongating roots, and so on. Chloride is also an essential micronutrient for plants and has important roles in the photosynthesis and osmoregulation.

Deicing agents used as road salts are usually chloride salts, mainly sodium chloride or calcium chloride with minor amounts of magnesium chloride and potassium chloride. The primary cause of the damage to roadside plants is considered to be the accumulation of chloride in plant tissues to a toxic level by excess loading of inorganic chloride salts.

Calcium chloride constituted 2% of the total composition (approx. 5 million tonnes) of deicing agents used in Canada in the 1997-1998 winter season, while sodium chloride constituted 95% of the total. In addition, there is a report that shows the uptake of chloride by plants is considerably inhibited in the presence of calcium chloride. The impact of calcium chloride on plants is expected to be minimal compared to other chloride-containing agents, given the factors discussed above as well as the difference of usage of calcium chloride as compared to sodium chloride.

Exposure

The production capacity of calcium chloride in North America was reported in 2002 to be approximately 1,687,000 tonnes per year. The estimated production volume in Japan was approximately 245,000 tonnes in 2000. The total amount used in Western Europe including Scandinavia is around 300,000 tonnes per year.

Calcium chloride is produced in the closed system by refining of natural brine, by ammonia soda process as a byproduct or by neutralization reaction of limestone with hydrochloric acid. Commercial products are supplied as flakes, pebbles, pellets, powders and solutions with varying concentrations. Calcium chloride is used for deicing, road stabilization, dust control, accelerator in concrete, industrial processing, oil and gas well fluids, and for others such as food additives and medication.

Almost half of the volume of calcium chloride is consumed as deicing agents and road stabilizers, and directly released into the environment, where the substance is dissociated into calcium and chloride ions. In the 1997-1998 winter season, 5 million tonnes of road salts including sodium chloride (95%), calcium chloride (2%), magnesium chloride, potassium chloride and ferrocyanide salts were used in Canada. Based on the global water quality monitoring conducted by UNEP, the mean, 10th-percentile and 90th-percentile of calcium concentrations in 76 rivers were 37.4, 5.1 and 86.5 mg/L, respectively. In addition, the mean, 10th-percentile and 90th-percentile of chloride concentrations in 77 rivers were 41.1, 1.1 and 64.8 mg/L, respectively. It should be noted that both the concentrations of calcium and chloride ions are tightly related to various factors, such as geological parameters, weathering and human activities.

As for human exposure, oral intake is expected via foods that contain calcium chloride in the dissociated form as food additives or as residues of food processing agents. There is potential for exposure to workers and consumers via skin contact and dust inhalation at working places or elsewhere by versatile uses such as road stabilizers.

RECOMMENDATION

The chemical is currently of low priority for further work.

RATIONALE FOR THE RECOMMENDATION AND NATURE OF FURTHER WORK RECOMMENDED

The chemical is currently of low priority for further work based on a low hazard potential.

Because of the effects of calcium chloride on soil dwelling organisms and plants and the exposure associated with the use of calcium chloride as a deicing agent in some countries, these countries may decide to assess the environmental risk related to this exposure scenario.

FULL SIDS SUMMARY

CAS N	O: 10043-52-4	SPECIES	PROTOCOL	RESULTS
PH	YSICAL-CHEMICAL			
2.1	Melting Point		Unknown	772°C
2.2	Boiling Point		Unknown	>1600°C
2.3	Density		Unknown	2.16 g/cm ³ at 25°C
2.4	Vapour Pressure			Negligible
2.5	Partition Coefficient (Log Pow)			Not applicable
2.6 A.	Water Solubility		Unknown	745 g/L at 20°C
B.	рН			
	рКа			
2.12	Oxidation: Reduction Potential			
ENV	IRONMENTAL FATE AND PATHWAY			
3.1.1	Photodegradation			Not applicable
3.1.2	Stability in Water			Dissociated into calcium and chloride ions
3.2	Monitoring Data			According to UNEP global monitoring, Calcium in 76 rivers: Mean: 37.4 mg/L 10th-percentile: 5.1 mg/L 90th-percentile: 86.5 mg/L Chloride in 77 rivers: Mean: 41.1 mg/L 10th-percentile: 1.1 mg/L 90th-percentile: 64.8 mg/L
3.3	Transport and Distribution			According to the physico-chemical properties of calcium chloride, low vapour pressure and high water solubility, the substance is likely to be distributed into the water compartment in the form of calcium and chloride ions.
3.5	Biodegradation			Not applicable

CAS N	O: 10043-52-4	SPECIES	PROTOCOL	RESULTS
E	COTOXICOLOGY			
4.1	Acute/Prolonged Toxicity to Fish	Pimephales promelas	EPA/600/4- 90/027,	$LC_{50} (96 \text{ hr}) = 4630 \text{ mg/L}$
		Lepomis macrochirus	EPA/600/6-91/003	LC ₅₀ (96 hr) = 9500-11300 mg/L LC ₅₀ (96 hr) = 10650 mg/L
		Gambusia affinis		$LC_{50} (96 \text{ hr}) = 13400 \text{ mg/L}$
4.2	Acute Toxicity to Aquatic Invertebrates	Daphnia magna	OECD TG 202	EC_{50} (48 hr) = 2400 mg/L (immobilization)
	e.g. Dapinia	Daphnia magna	EPA/600/4-90/027, EPA/600/6-91/003	LC_{50} (48 hr) = 2770 mg/L
		Daphnia magna		$EC_{50} (48 \text{ hr}) = 1062 \text{ mg/L}$ (immobilization) $LC_{50} (48 \text{ hr}) = 1285 \text{ mg/L}$
		Daphnia hyaline		LC_{50} (48 hr) = 8300 mg/L
		<i>Ceriodaphnia</i> sp.	EPA/600/4-90/027, EPA/600/6-91/003	LC_{50} (48 hr) = 1830 mg/L
		Cyclops abyssorum prealiinus		LC_{50} (48 hr) = 19400 mg/L
		Eudiaptomus padanus padanus		LC_{50} (48 hr) = 11100 mg/L
		Nitocra spinipes		LC_{50} (96 hr) = 1600 mg/L
		Tubifex tubifex		EC_{50} (96 hr) = 780 mg/L (immobilization)
		Caenorhabditis elegans		$LC_{50} (24 \text{ hr}) = 44400 \text{ mg/L}$
4.3	Toxicity to Aquatic Plants e.g. Algae	Selenastrum capricornutum	OECD TG 201	$EC_{50} (72 \text{ hr}) = 2900 \text{ mg/L (biomass)} \\ EC_{20} (72 \text{ hr}) = 1000 \text{ mg/L (biomass)} \\ EC_{50} (72 \text{ hr}) = >4000 \text{ mg/L (growth rate)} \\ EC_{20} (72 \text{ hr}) = 2700 \text{ mg/L (growth rate)} \\ \end{array}$
4.5.2	Chronic Toxicity to Aquatic Invertebrates (Daphnia)	Daphnia magna		$EC_{16} (21 d) = 320 mg/L (reproduction)$ $EC_{50} (21 d) = 610 mg/L (reproduction)$ $LC_{50} (21 d) = 920 mg/L$
4.6.1	Toxicity to Soil Dwelling Organisms			No reliable data available
4.6.2	Toxicity to Terrestrial Plants			No reliable data available

CAS N	O: 10043-52-4	SPECIES	PROTOCOL	RESULTS
(4.6.3)	Toxicity to Other Non- Mammalian Terrestrial Species (Including Birds)			No data available
	TOXICOLOGY			
5.1.1	Acute Oral Toxicity	Mouse Rat Rabbit	Other Other Equivalent to OECD TG 401	$\label{eq:LD50} \begin{split} LD_{50} &= 2045 \mbox{ mg/kg (male), 1940 \mbox{ mg/kg (female)} \\ LD_{50} &= 3798 \mbox{ mg/kg (male), 4179 \mbox{ mg/kg (female)} \\ LD_{50} &= 500\text{-}1000 \mbox{ mg/kg } \end{split}$
5.1.2	Acute Inhalation Toxicity			No reliable data available
5.1.3	Acute Dermal Toxicity	Rabbit	Other	LD ₅₀ > 5000 mg/kg
5.2.1	Skin Irritation	Rabbit Rabbit	OECD TG 404 Other	Not/slightly irritating Irritating
5.2.2	Eye Irritation	Rabbit Rabbit	OECD TG 405 Other	Irritating Irritating
5.3	Skin Sensitization			No reliable data available
5.4	Repeated Dose Toxicity			No reliable data available
5.5	Genetic Toxicity In Vitro			
А.	Bacterial Test (Gene mutation)	S. typhimurium	Other	Negative (With metabolic activation) Negative (Without metabolic activation)
В.	Non-Bacterial In Vitro Test (Chromosomal aberrations)	CHL cells	Other	Negative (Without metabolic activation)
5.6	Genetic Toxicity In Vivo			No data available
5.7	Carcinogenicity			No data available
5.8	Toxicity to Reproduction			No data available
5.9	Developmental Toxicity/ Teratogenicity	Mouse	Other	NOEL Maternal toxicity: > 189 mg/kg bw/day NOEL Teratogenicity: > 189 mg/kg bw/day
		Rat	Other	NOEL Maternal toxicity: > 176 mg/kg bw/day NOEL Teratogenicity: > 176 mg/kg bw/day

CAS NO: 10043-52-4		SPECIES	PROTOCOL	RESULTS
		Rabbit	Other	NOEL Maternal toxicity: > 169 mg/kg bw/day NOEL Teratogenicity: > 169 mg/kg bw/day
5.11	Experience with Human Exposure			Case reports available

SIDS Initial Assessment Report

1 IDENTITY

1.1 Identification of the Substance

CAS Number:	10043-52-4
IUPAC Name:	Calcium chloride
Molecular Formula:	CaCl ₂
Molecular Weight:	110.99
Synonyms:	Bovikalc
	Calcium dichloride
	Calcium (2+) chlorid
	Calol
	Calcosan
	Calplus
	Caltac
	Calzina oral
	Caso
	Daraccel
	Dowflake
	EXPRESS
	Liquidow
	Peladow
	Snomelt
	Stopit
	Superflake anhydrous
	Uramine MC

1.2 Purity/Impurities/Additives

Purity:	> 94%
Impurities:	Sodium chloride
	Calcium dihydroxide
	Sulfates
	Potassium chloride
	Magnesium chloride
Additives:	None

1.3 Physico-Chemical properties

Table 1-1. Relevant chemicals.

Name	CAS No.	Molecular Formula	Molecular Weight
Calcium chloride monohydrate	22691-02-7	CaCl ₂ .H ₂ O	129.00
Calcium chloride dihydrate	10035-04-8	CaCl ₂ .2H ₂ O	147.01
Calcium chloride tetrahydrate	25094-02-4	CaCl ₂ .4H ₂ O	183.04
Calcium chloride hexahydrate	7774-34-7	CaCl ₂ .6H ₂ O	219.08

Table 1-2. Physical and chemical properties of calciur	n chloride (Anhydro	ous)
--	---------------------	------

Items	Protocols	Results	Reference
Melting Point	Unknown	772°C	[1, 2, 3]
Boiling Point	Unknown	>1600°C	[1]
Density	Unknown	2.16 g/cm ³ (25°C)	[2]
Vapour pressure		Negligible	
Water Solubility	Unknown	745 g/L (20°C)	[4]

Calcium chloride is a white and odourless inorganic salt that forms hydrates as described in *Table 1-1*. Calcium chloride has hygroscopic and deliquescent properties and is readily dissociated into calcium and chloride ions in water. Calcium chloride's vapour pressure is negligible because the substance is an inorganic solid with a high melting point.

2 GENERAL INFORMATION ON EXPOSURE

2.1 **Production Volumes and Use Pattern**

Estimated national production

The production capacity of calcium chloride in North America was reported in March, 2002, to be approximately 1,687,000 tonnes per year [5]. In Japan, the production volume was estimated to be 245,000 tonnes in 2000 [6]. The total amount used in Western Europe including Scandinavia is around 300,000 tonnes per year [7].

Calcium chloride is produced in a closed system by refining natural brine, by the ammonia soda process as a by-product or by the neutralization reaction of limestone with hydrochloric acid. Commercial products are supplied as flakes, pebbles, pellets, powders and solutions with varying concentrations [8].

Use categories and/or functions

The main uses of calcium chloride are as follows [5,8].

- as deicing agents (deicers)
- for road stabilization and dust control
- for industrial processing
- (additive in plastics, for calcium salt production, drainage aid for wastewater treatment etc.)

- as accelerator in concrete
- for oil and gas well fluids
- Miscellaneous
- (Tire ballast, additive in fire extinguishers, admixture with starch paste, additive to control scaffolding in blast furnaces, desiccant, brine, food processing agent (e.g. coagulating agent), food additives, medication, additives in herbicide, pH regulating agent and laboratory chemicals)

Percentages of the uses are different among member countries and may vary from year to year. The percentages of the uses in North America are reported to be 22% for deicing, 20% for road stabilization and dust control, 20% for industrial processing, 17% for oil and gas well fluids, and 12% for concrete [6]. In Japan, about 50% of the total production is used for deicing and 25% for road stabilization.

Source of exposure

Calcium chloride and its dissociated form (calcium and chloride ions) are ubiquitous in the environment. Calcium and chloride ions can also be found as constituents in organisms.

As for the human exposure, oral intake is expected via foods that contain calcium chloride in the dissociated form as food additives or as residues of food processing agents. Skin contact and dust inhalation may also occur at working places or elsewhere via versatile uses such as road stabilizers.

The release of calcium chloride into the environment is mainly attributed to the use as deicing agents and road stabilizers, which occupies almost half volume of total calcium chloride consumed. Canadian Assessment of Road Salts under the Canadian Environment Protection Act (CEPA) reported that approximately 5 million tonnes of road salts including sodium chloride (95%), calcium chloride (2%), magnesium chloride, potassium chloride and ferrocyanide salts were consumed in the 1997-1998 winter season and that the wide use of chloride salts as road salts could cause the increase in chloride concentration in the environment [9]. It should be pointed out, however, that the major source of chloride released into the environment is sodium chloride although calcium chloride is one of the sources.

2.2 Environmental Exposure and Fate

Calcium chloride is soluble in water and its vapour pressure is negligible. This fact indicates that calcium chloride released into the environment is distributed into the water compartment in the form of calcium and chloride ions. Calcium chloride is not expected to be absorbed in soil due to its dissociation properties and high water solubility but may rather behave as free ions or may form stable inorganic or organic salts with other counter ions, leading to different fates between calcium and chloride ions in soil and water compartments in the environment. As for the behaviour of calcium in soil, the calcium ion may bind to soil particulate or may form stable inorganic salts with sulphate and carbonate ions. The chloride ion is mobile in soil and eventually drains into surface water because it is readily dissolved in water.

Calcium chloride is not expected to undergo photolysis or biodegradation. The Fugacity model is not applied to estimate the distribution of this substance in the environment because the programs are designed for organic chemicals and not for inorganic salts. Considering its dissociation properties, calcium chloride *per se* is not expected to accumulate in living organisms.

Monitoring data

Calcium is the most common cation found in surface water. At the global scale, the levels of natural calcium ion have been reported in the ranges of 0.06-210 mg/L in streams (<100 km²) and of 2-50 mg/L in major rivers (>100,000 km²) [10]. However, there are several other important factors that influence the calcium levels in surface water, for example, geological parameters, weathering and human activities. UNEP reported in 1995 that the global water quality monitoring was conducted in North America, South-America, Asia, Africa, Europe and Oceania. The mean, 10th-percentile and 90th-percentile of calcium concentrations in 76 rivers were 37.4, 5.1 and 86.5 mg/L, respectively [10].

As for the concentrations of chloride, they are tightly related to the geological parameters, weathering and human activities as well as calcium. The global monitoring in the same report revealed that the mean, 10th-percentile and 90th-percentile of concentrations of chloride in 77 rivers were 41.1, 1.1 and 64.8 mg/L, respectively [10].

Summary

Calcium chloride has a low vapour pressure and is readily dissociated into calcium and chloride ions in water. Calcium chloride released into the environment is thus likely to be distributed into the water compartment in the form of calcium and chloride ions. Otherwise, calcium ions may remain in the soil compartment by binding to soil particulate or by forming stable salts with other counter ions. On the other hand, the chloride ion is mobile and eventually drains into surface water. Almost half of the volume of calcium chloride is consumed as deicing agents and road stabilizers in the environment, where the substance is dissociated into calcium and chloride ions. Both ions originally exist in nature, and thus their concentrations in surface water will depend on various factors, such as geological parameters, weathering and human activities.

2.3 Human Exposure

2.3.1 Occupational Exposure

Workers are exposed to calcium chloride via dust inhalation and dermal routes at the various sites.

Dust can be formed from powdery products of calcium chloride or by smashing the flakes, pebbles and pellets of the substance. Occupational exposure limit (OEL) for calcium chloride of 5 mg/m³ has been established by the Ministry of Labour, Ontario, Canada [11]. Assuming 100% absorption of calcium chloride in the respiratory tracts, the maximum intake of calcium chloride via dust inhalation under the OEL concentration is 50 mg/day (breathing rate at 1.25 m³/h, 8-hour work/day).

There would be a potential of skin contact at packing, unpacking and use. Although the absorption of calcium chloride is not expected based on its physico-chemical properties, the use of personal protection equipments (mask, safety glasses and gloves) is recommended because calcium chloride could irritate skin and mucosa, and cause dermatitis or burns in human (see **3.1.3** and **3.1.9.1**).

2.3.2 Consumer Exposure

Consumers are orally exposed to calcium and chloride via foods and medications. Calcium chloride was evaluated to be a food substance of very low toxicity and thus the establishment of the acceptable daily intake (ADI) for calcium chloride has not been deemed necessary by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) [12, 13]. The substance has also been considered as generally recognized as safe (GRAS) substance by the U.S. Food and Drug

Administration (USFDA). The average intake of calcium chloride as food additives has been estimated to be 160-345 mg/day for individuals [14].

The substance is available to consumers for versatile uses as road stabilizers, deicing agents and condensation traps. Thus there is potential for consumer exposure via dust inhalation and skin contact.

2.3.3 Indirect Exposure via Environment

Calcium chloride or its dissociated forms (calcium and chloride ions) are commonly found in drinking water and foods. In addition, the substance is released into the environment as deicing agents, road salts, and so on. Thus, indirect exposure in man to the substance via the environment occurs through drinking surface water or food consumption.

3 HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

3.1.1 Toxicokinetics, Metabolism and Distribution

Calcium chloride is easily dissociated into calcium and chloride ions in water. The absorption, the distribution and the excretion of the ions in animals are regulated separately. Calcium chloride exerts its irritating property to tissues directly in contact with the compound. Once calcium chloride is taken up, the effect of the substance on animals should be attributed to the effect of calcium ions, the effect of chloride ions, or both.

The homeostasis and mechanisms of action of calcium and chloride ions are well reviewed in standard textbooks on pharmacology, physiology, biochemistry and nutritional science.

Metabolism, biotransformation and kinetics

Calcium is the most abundant inorganic constituent of all animal species and has an important role in the nutrition of animals. In adult humans, the total calcium in the body is approx. 830-1100 g. Ninety-nine percent of the calcium is retained in skeletons. Hormonal systems maintain a relatively constant calcium concentration of about 100 ug/mL in the plasma by controlling the intestinal absorption of dietary calcium, the release of calcium from bones, and renal absorption/excretion. Excess calcium is excreted in the urine via glomerulal filtration. The renal tubules are able to excrete as well as reabsorb calcium. Thus the tubules are able to produce efficiently a net excretion of calcium to achieve homeostasis when abnormally high levels of calcium are ingested. A significant increase in the calcium concentration in plasma will only occur after high calcium intake in conjunction with other disorders that alter calcium homeostasis, such as renal insufficiency and primary hyperthyroidism [15, 16, 17, 18].

Chloride is the most abundant anion in all animal species. In adult humans, the total chloride in the body is approx. 70-95 g. Eighty percent of the chloride is located extracellularly. The intracellular concentration of chloride is approx. 100-140 ug/mL. The chloride concentration in plasma is maintained around 3.55-3.90 mg/mL although chloride is absorbed efficiently from the intestine. Chloride is excreted from the renal tubular lumen by active transport systems, and also by passive diffusion [15, 16].

Mechanisms of action

Calcium is indispensable for the formation and maintenance of bones and teeth, and for the regulation of various physiological functions in all animal species. These include the regulation of neural transmission and muscle contraction, coagulation of the blood, cell membrane integrity, the activity of several enzymes, and the regulation of the acid-base balance [15, 16, 17].

Chloride is important in the regulation of osmotic and acid-base balances of the body fluids. Chloride maintains electrochemical neutrality by anion exchange with bicarbonate (the chloride shift) in the CO₂ transport in the blood red cells [15, 16].

Conclusion

Calcium chloride is easily dissociated into calcium and chloride ions in water. The absorption, the distribution and the excretion of the ions in animals are regulated separately. Calcium and chloride are essential constituents of the body of all animal species. Calcium is essential for the formation of skeletons and the regulation of neural transmission, muscle contraction and coagulation of the blood. Chloride is required for regulating intracellular osmotic pressure and buffering.

3.1.2 Acute Toxicity

There are several reliable studies on acute toxicity. The results of the studies are summarized in *Table 3-1*.

Species, strain	Route	Substance form	Vehicle	LD ₅₀ (mg/kg bw)	Reference
Mouse, ICR-SLC	Oral	Anhydride, powder	5% Arabic gum	2045 (male), 1940 (female)	[19]
Rat, Wistar	Oral	Anhydride, powder	5% Arabic gum	3798 (male), 4179 (female)	[19]
Rabbit, N. Z. white	Oral	Anhydride, powder	Gelatin capsule	500-1000 (male)	[20]
Rabbit, N. Z. white	Oral	33% solution	Water	1000 (male)	[21]
Rabbit, N. Z. white	Oral	Dihydrate, powder	Gelatin capsule	755 (male) ^{a)}	[22]
Rabbit, N. Z. white	Oral	Hexahydrate, powder	Gelatin capsule	$507 \text{ (male)}^{a)}$	[23]
Rabbit, N. Z. white	Dermal	Anhydride, powder	None	>5000 (male/female)	[24]
Mouse, ICR-SLC	s.c.	Anhydride, powder	5% Arabic gum	823 (male), 867 (female)	[19]
Rat, Wistar	s.c.	Anhydride, powder	5% Arabic gum	2630 (male), 3798 (female)	[19]
Mouse, ICR-SLC	i.p.	Anhydride, powder	5% Arabic gum	382 (male), 402 (female)	[19]
Rat, Wistar	i.p.	Anhydride, powder	5% Arabic gum	264 (male), 342 (female)	[19]

Table 3-1. Acute toxicity studies.

^{a)}Corrected to the content of anhydrous calcium chloride.

Oral

 LD_{50} values of calcium chloride for mice and rats were determined by administering the substance orally to groups of 15 animals [19]. The LD_{50} values were determined by the up and down method after 3-day observation period. Although necropsy was not described, the oral LD_{50} ranged from 3798 (male) and 4179 mg/kg bw (female) in rats to 2045 (male) and 1940 mg/kg bw (female) in mice.

The studies on acute oral toxicity in male rabbits were carried out by the method similar to OECD Test Guideline 401 under GLP. Several forms of calcium chloride were administered orally by gavage to groups of 1 to 5 rabbits at doses of 250 to 2000 mg/kg bw to determine LD₅₀ values [20-23]. Weight loss in the surviving animals was observed in the first two days after dosing, which was then recovered. Gross post-mortem examination revealed perforation and severe ulceration of the

stomach in the dead animals. Old ulcers were also detected in the stomach of some of the surviving animals.

Dermal

A study on acute dermal toxicity in male/female rabbits was conducted by a scientifically accepted method [24]. No animal death was observed at the dose of 5000 mg/kg bw, indicating that the dermal LD_{50} value for male/female rabbits is over 5000 mg/kg bw. No adverse effects were observed following treatment. No significant change was either found by gross necropsy examination except skin lesions at or near the site of administration.

Other Routes of Exposure

As previously noted for oral studies in rats and mice, LD_{50} values of calcium chloride for mice and rats were further determined. The substance was administered to groups of 15 animals via subcutaneous and intraperitoneal routes [19]. The LD_{50} values were determined by the up and down method after 3-day observation period. Necropsy results were not described. The LD_{50} values for subcutaneous administration ranged from 823 (male) and 867 mg/kg bw (female) in mice to 2630 (male) and 3798 mg/kg bw (female) in rats. The values for intraperitoneal administration ranged from 382 (male) and 402 mg/kg bw (female) in mice to 264 (male) and 342 (female) in rats. The values for subcutaneous administration were lower than those for oral gavage and the values for intraperitoneal administration probably because the toxicity was due to the irritating nature of the substance.

Inhalation

An acute inhalation toxicity study in rats has been reported [25]. The reliability of this study is insufficient, due to the lack of adequate information on the method used. In this study, the animals were exposed to 40 and 160 mg/m³ CaCl₂ for 4h. No animal death was caused by the exposure, while several signs of irritation of trachea were observed in the animals.

Conclusion

The toxicity data available are considered sufficient on this endpoint. The oral LD_{50} values were 2045 (male) and 1940 mg/kg bw (female) in mice, 3798 (male) and 4179 mg/kg bw (female) in rats and 500-1000 mg/kg bw in rabbits. The dermal LD_{50} value in rabbits was over 5000 mg/kg bw.

3.1.3 Irritation

There are several studies on irritation/corrosiveness of calcium chloride with sufficient reliability.

Skin Irritation

Irritation/corrosiveness of calcium chloride to skin of rabbits was tested under OECD Test Guideline 404 [26, 27, 28, 29] or under national guidelines [24, 30, 31]. No or slight irritation to skin of the animals was observed in the exposure for 4 h to either one of anhydride powder, 33% solution, dihydrate powder, or hexahydrate powder [27, 28, 29, 30]. On the other hand, exposure to anhydride powder, dihydrate powder and 38% solution for 24 h caused slight to moderate irritation on intact skin of rabbits [24, 30, 31]. In addition, application of these samples on abraded skin of the animals caused much severer irritation [30, 31].

Eye Irritation

Irritation of calcium chloride to eyes of rabbits was tested under OECD Test Guideline 405 [32, 33, 34, 35] or under a national guideline [30, 31]. Severe irritation to eyes of the animals was observed

in either form of calcium chloride (anhydride, dihydrate, tetrahydrate and hexahydrate powders, and 33% and 38% solutions).

According to the EU's list of dangerous substances (OJEC No L 355 30.12.98), calcium chloride requires a label, R36 (irritating to eyes), which is consistent to the data obtained.

Conclusion

The toxicity data available are considered sufficient on irritation/corrosiveness. Calcium chloride is not/slightly irritating to skin but severely irritating to eyes of rabbits under OECD test guidelines. Prolonged exposure and application of moistened material or concentrated solutions resulted in considerable skin irritation, however.

3.1.4 Sensitisation

There is no reliable data available for sensitization of calcium chloride.

3.1.5 Repeated Dose Toxicity

Studies in Animals

No study on repeated dose toxicity has been carried out according to national or international guideline under GLP. Several studies for oral repeated dose toxicity in rats and rabbits have been reported. One feed study in rats [36] was considered relevant to note for repeated dose toxicity although the results presented in the study were limited. The other studies, on the other hand, were considered irrelevant to note because of the inappropriate test conditions used (gavage at the doses near or over the oral LD₅₀ values) and/or the lack of autopsy examination.

A group of twenty 40-day-old rats were fed on 20 mg CaCl₂/g diet for 12 months [36]. No difference in mortality, weight gain, or daily food consumption was observed between the test and the control groups. In addition, no neoplastic lesions were observed in gastrointestinal tract, urinary tract, liver, heart, brain or spleen of the animals. From the food consumption (22 g diet/day), the daily intake of calcium chloride was estimated to be 440 mg. Considering that 1 mg/g diet is equivalent to 100 and 50 mg/kg bw/day for young and old rats, respectively [37], the dose used in this study (20 mg CaCl₂/g diet) corresponds to 1000 to 2000 mg/kg bw/day.

There is no reliable data available for the repeated dose toxicity of calcium chloride via inhalation or dermal route.

Studies in Humans

Calcium and chloride are both essential nutrients for humans as well as other animal species. As for healthy humans, the tolerable upper intake level for calcium is set at 2500 mg per day (equivalent to 6.9 g CaCl₂ per day) [18] and the reference nutrient intake for chloride at 2500 mg/day (equivalent to 3.9 g CaCl₂ per day) [38]. The estimated intake of calcium chloride as food additives (160-345 mg/day, see **Sect. 2.3.2**) is considerably smaller than these values. Consistent with this, the establishment of the ADI for calcium chloride has not been deemed necessary by JECFA [12, 13]. The substance has also been considered a GRAS substance by USFDA [14]. It is thus very unlikely that calcium chloride taken orally as food additives adversely affects human health.

Calcium chloride is a non-volatile and hydrophilic substance, indicating that potential for its absorption via inhalation and dermal routes is low. Even when the substance is absorbed, the plasma concentrations of calcium and chloride ions are efficiently regulated by the hormonal systems and excess ions are rapidly excreted in the urine via glomerulal filtration. Based on an estimated worst-

case scenario for occupational exposure, the maximum intake of calcium chloride from the working atmosphere is 50 mg/day (see Sect. 2.3.1). This value is considerably smaller than the tolerable upper intake level for calcium and the dietary reference value for chloride. It is not predicted that occupational exposure to this substance causes an adverse effect on human health.

Collectively, the information available is sufficient and no further study is considered necessary for this endpoint.

Conclusion

There is one study for repeated dose oral toxicity in rats although the data presented in the study is not sufficient. The study shows no adverse effect of calcium chloride on rats fed 20 mg $CaCl_2/g$ diet (comparable to 1000 mg/kg bw/day or more) for 12 months.

3.1.6 Mutagenicity

Data on genetic toxicity of calcium chloride has been obtained from *in vitro* studies, while no *in vivo* study has yet been available. The reliability of the *in vitro* studies reported and the results obtained from the studies are considered sufficient for this endpoint.

Bacterial mutation tests

Two studies were carried out by the method similar to OECD Test Guideline 471. In a *Salmonella* mutation test, using TA92, TA94, TA98, TA100, TA1535 and TA1537, doses of calcium chloride up to 5 mg/plate were examined with metabolic activation [39]. In another *Salmonella* mutation test, using TA97 and TA102, doses up to 10 mg/plate were examined with or without metabolic activation [40]. No significant increases in mutation frequencies were observed in either study.

Two genetic toxicity studies with bacteria have further been reported although the studies are not OECD guideline studies. In a *Bacillus subtilis* mutagenicity assay the potential of calcium chloride to damage cellular DNA was examined at concentrations up to 0.5 M [41]. The result of the test was negative. In an *Escherichia coli* test the potential to induce an SOS response was tested at doses up to 1 mM, also giving a negative result [42].

Chromosome aberration test

An *in vitro* chromosome aberration test in Chinese hamster lung cells (CHL) has been reported [39]. The test was scientifically acceptable. The CHL cells were exposed to calcium chloride at doses up to 4 mg/mL for 48 hr without metabolic activation. No significant increase in polyploid formation or structural chromosome aberration was observed. The highest dose in the study was determined by the dose needed for 50% cell-growth inhibition.

Conclusion

Genetic toxicity of calcium chloride was negative in the bacterial mutation tests and the mammalian chromosome aberration test.

3.1.7 Carcinogenicity

There is no data available for carcinogenicity of calcium chloride.

3.1.8 Toxicity for Reproduction and Developmental Toxicity

No study on toxicity to reproduction has yet been reported. Thus the potential of reproductive toxicity of calcium chloride has thereby not been addressed according to the OECD requirement.

However, calcium and chloride are both essential constituents for all animals and are ingested daily. As mentioned above (see **3.1.5**), any toxic effect of calcium chloride on mammalian reproduction is not predicted as far as ordinary consumer and occupational exposures are concerned. No further study is considered necessary for this endpoint.

There is one study on developmental toxicity with sufficient reliability. The method used in the study was equivalent to OECD Test Guideline 414 although the study was conducted before the establishment of the guideline. The developmental toxicity study examined the effect of calcium chloride on embryo lethality and teratogenicity in mice, rats and rabbits [43]. The test conditions used in the experiments are summarized in *Table 3-2*.

Species, strain	No. of animals per group	Vehicle	Doses (mg/kg/day)	Administration (days of gestation)	Caesarian section (day of gestation)
Mouse, CD-1	25	Water	1.89, 8.78, 40.8, 189	6-15	17
Rat, Wistar	25	Water	1.76, 8.18, 38.0, 176	6-15	20
Rabbit, Dutch	16-22	Water	1.69, 7.85, 35.6, 169	6-18	29

Table 3-2	. Test	conditions o	f devel	onmental	toxicity	tests in	mice	rats and	rabbits
Table 3-2	- ICSI	conditions o		opinentai	toricity	icsis m	mice,	Tats and	rabbits.

In each experiment, the number of animals, dose levels and exposure time conformed to the guideline requirement. In addition, positive and negative controls were both included in each experiment. All animals were observed daily for appearance, body weight and behaviour with particular attention to food consumption. The numbers of implantation sites, resorption sites, and live and dead fetuses were recorded when all dams were subjected to Caesarean section. All fetuses were examined grossly for the presence of external congenital abnormalities. One-third of the fetuses of each litter underwent detailed visceral examinations. The remaining two-thirds were examined for skeletal defects. The administration of calcium chloride had no clearly discernible effect on implantation or on maternal or fetal survival. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring spontaneously in the sham-treated controls. These facts reveal no toxic effects on dams or fetuses at doses up to 189 mg/kg bw/day (mouse), 176 mg/kg bw/day (rat) and 169 mg/kg bw/day (rabbit).

Conclusion

No study on reproductive toxicity has been reported. On the other hand, developmental toxicity data with sufficient reliability have been obtained, showing no toxic effects on dams or fetuses at doses up to 189 mg/kg bw/day (mouse), 176 mg/kg bw/day (rat) and 169 mg/kg bw/day (rabbit).

3.1.9 Experience with Human Exposure

There are several human data based on accidents caused by clinical uses of calcium chloride or by incidental exposures to the substance.

Oral route

There are three cases of gastrointestinal lesions due to calcium chloride administered by gavage to newborn babies for the treatment of tetany [44] although the substance is no longer being used for the treatment. In two of the cases, single doses of 3-4 g of the substance in water (16-17%) caused severe ulceration and necrosis of the mucosa and submucosa of gastrointestinal tracts, resulting in death. In the other case, a baby given twice 2 g of the substance in water also showed signs of gastrointestinal lesion but later recovered. Overall, the lesions observed in the cases are consistent to those noted for the acute oral toxicity in rabbits (see **3.1.2**).

Dermal route

There are a couple of reports on skin injuries as a result of incidental contact with calcium chloride: skin injuries of thighs of boys exposed to calcium chloride powder put into pockets of pants; and those of forearms of a man who carried bags of the substance [45, 46]. As occupational cases, there are reports on skin injuries of workers exposed to dripping water in a coal mine containing calcium chloride, skin injury of a worker exposed to 40% solution of the substance used for spraying the roadway of mines and skin injury of a worker of an oil plant spending a day loading the substance into containers [47, 48, 49]. In these cases, lesions such as necroses, ulceration and calcinosis of the contact area of the skin have been observed. It has been suggested that dehydration by high-concentration solutions of calcium chloride may be the mechanism of injury [49].

Other route

Calcium chloride has been used for medical treatment of hypocalcemic tetany, calcium deficit in citrated blood, serum sickness after injection of antitoxins and antisera, and allergic diseases such as hay fever, urticaria and asthma. As an electrolyte replenisher calcium chloride is a pharmaceutical necessity for Ringer's solutions [50]. There is a report that intravenous infusions of 1 g of CaCl₂ in 100mL of normal saline administered over 1 hr to a patient with hypoparathyroidism caused extravasation of calcium chloride into the surrounding tissue along the flexural aspect of the left forearm, resulting in edema, warmth, and tenderness [51].

Conclusion:

Severe irritating effect of calcium chloride on gastrointestinal tracts of human babies was observed at 3-4 g, which was administered by gavage for the treatment of tetany. Irritating effect of the substance was also observed in human skin injuries caused by the incidental contact with the substance or its high-concentration solutions.

3.2 Initial Assessment for Human Health

Calcium chloride is easily dissociated into calcium and chloride ions in water. The absorption, the distribution and the excretion of the ions in animals are regulated separately. Once calcium chloride is taken up, the effect of the substance on animals should be attributed to the effect of calcium, the effect of chloride, or both.

Calcium and chloride ions are essential constituents of all animals. Absorption, transport, distribution, excretion, and the homeostatic regulation of calcium and chloride ions in animals are well established, as are the mechanisms of action. Calcium is essential for the formation and maintenance of bones and teeth, and for the regulation of various physiological functions such as neural transmission and muscle contraction. Chloride is also essential for the regulation of acid-base balance of the body and intracellular osmotic pressure and acid-base buffering.

The toxicity data available are considered sufficient on acute toxicity. The oral LD_{50} values were 2045 (male) and 1940 mg/kg bw (female) in mice, 3798 (male) and 4179 mg/kg bw (female) in rats and 500-1000 mg/kg bw in male rabbits. Acute oral toxicity of the substance is attributed to the severe irritating property of the original compound or its high-concentration solutions to the gastrointestinal tract, causing perforation and ulceration of the contact area of the tract. Similar toxic effect of calcium chloride on human newborn babies was observed at 3-4 g administered by gavage for the treatment of tetany. In humans, however, acute oral toxicity is rare because large single doses induce nausea and vomiting. The dermal LD_{50} value in male/female rabbits was over 5000 mg/kg bw. No significant change was found by gross necropsy examination except skin lesions at or near the site of administration. Hypercalcemia may occur only when there exist other factors that alter calcium homeostasis, such as renal inefficiency and primary hyperthyroidism.

The toxicity data available are considered sufficient on irritation/corrosiveness. Calcium chloride is not/slightly irritating to skin but severely irritating to eyes of rabbits under OECD test guidelines. Prolonged exposure and application of moistened material or concentrated solutions resulted in considerable skin irritation, however. In addition, much severe effects were noticed on abraded skin. Irritating effect of the substance has also been observed in human skin injuries caused by the incidental contact with the substance or its high-concentration solutions.

The limited oral repeated dose study shows no adverse effect of calcium chloride on rats fed on 20 mg CaCl₂/g diet (comparable to 1000 to 2000 mg/kg bw/day) for 12 months. Calcium and chloride ions are both essential nutrients for humans and daily intake more than 1000 mg each of the ions is recommended. Considering the intake profile of calcium chloride as foods and food additives with no limitation for ADI established by JECFA and the well-established metabolism and mechanisms of action of the ions in the human body, no further study is considered necessary for this endpoint.

In vitro studies for genetic toxicity with sufficient reliability have been reported. Genetic toxicity of calcium chloride was negative in the bacterial mutation tests and the mammalian chromosome aberration test. Thus no further study is required for this endpoint.

No reproductive toxicity study has been reported. A developmental toxicity study equivalent to OECD guideline study, on the other hand, reveals no toxic effects on dams or fetuses at doses up to 189 mg/kg/day (mice), 176 mg/kg/day (rats) and 169 mg/kg/day (rabbits). In view of the nutritional aspects, the metabolism, the mechanisms of action of calcium and chloride, however, the information available is sufficient and no further study is considered necessary for these endpoints.

4 HAZARDS TO THE ENVIRONMENT

4.1 Aquatic Effects

The aquatic toxicity of calcium chloride is summarized in *Table 4-1*. Each toxicity value was shown as anhydrous calcium chloride concentration. For some of the tests, calcium chloride is included as part of the standard test media. The descriptions of the toxic concentrations refer to the effect of additional calcium chloride added to the system, not to the total concentration of calcium and chloride ions present.

4.1.1 Toxicity to Aquatic Plants / Algae

There is one study with fresh water algae, *Selenastrum capricornutum*, which was conducted according to OECD guideline 201. The 72-hour EC_{50} and EC_{20} obtained on the basis of biomass from the study were 2900 and 1000 mg/L, respectively [52].

4.1.2 Toxicity to Invertebrates

There are seven acute toxicity data available for Cladocera. Two of them were conducted according to international or national guidelines, giving the 48-hour EC_{50} of 2400 mg/L for *Daphnia magna* [53] and the 48-hour LC_{50} of 1830 mg/L for *Ceriodaphnia* sp. [54]. The lowest 48-hour EC_{50} was 1062 mg/L for *Daphnia magna* [56]

The acute toxicity studies with other invertebrates showed LC_{50} or EC_{50} values in the range of 780-44400 mg/L. These studies were not conducted according to standard guidelines, but the test conditions were fully described and these data are acceptable.

The chronic effect of 21-day exposure on reproduction of *Daphnia magna* has been investigated as a long-term study. The methods and test conditions used in the study are fully described, and appear to be scientifically acceptable, although the study was conducted prior to the acceptance of standard guidelines for this type of study.

The concentration required for 16% and 50% inhibition of reproduction (EC_{16} and EC_{50}) was 320 and 610 mg/L, respectively [56].

4.1.3 Toxicity to Fish

Several studies on acute toxicity to fish have been reported. Among them the study with fathead minnow (*Pimephales promelas*) conducted under EPA guideline showed the lowest 96-hour LC_{50} value of 4630 mg/L [54].

No chronic toxicity studies on fish conducted under standard guidelines have been reported.

4.1.4 Toxicity to Aquatic Microorganisms

No toxicity data on aquatic microorganisms are available.

OECD SIDS

Species	Age/Size	Stat/ Flow	Temp (°C)	Dissolved oxygen (mg/L)	Hardness (mg CaCO ₃ /L)	рН	Endpoint	Concentration (mg/L)	Test method	Reference
Algae /plants										
Selenastrum capricornutum*	1x10 ⁴ cells/mL	Static	22.2- 22.4			7.5-8.5	$\begin{array}{c} 72h \ EC_{50} \\ 72h \ EC_{20} \\ biomass \end{array}$	2900 1000	OECD 201 GLP	[52]
							72h EC_{50} 72h EC_{20} growth rate	>4000 2700		
Invertebrates										
Daphnia magna	0-24 h old	Static	19.8- 20.0	8.4-8.7		7.6-8.3	48h EC ₅₀ , immobilization	2400	OECD 202 GLP	[53]
	< 24 h old	Static	20	>40% of saturation		7.5-9.0	48h LC ₅₀	2770	EPA/600/4- 90/027, EPA/600/6- 91/003	[54]
		Static	11.5- 14.5	5.2-6.5	235-260	7.2-7.8	48h EC ₅₀ , immobilization	1062		[55]
	< 24 h old	Static	18±1		44.0-53.0	7.4-8.2	48h LC ₅₀	1285		[56]
	< 24 h old	Semi- static	18±1		44.0-53.0	7.4-8.2	$\begin{array}{c} 21d \ LC_{50} \\ 21d \ EC_{50} \\ 21d \ EC_{16}, \\ reproduction \end{array}$	920 610 320		
Daphnia hyalina	Adult, 1.27mm	Static	9.5- 10.5				48h LC ₅₀	8300		[57]
<i>Ceriodaphnia</i> sp.	< 24 h old	Static	20	>40% of saturation		7.5-9.0	48h LC ₅₀	1830	EPA/600/4- 90/027, EPA/600/6- 91/003	[54]

Table 4-1. Summary of toxicity test results to aquatic organisms.

*now Pseudokircheneriella subcapitata

OECD SIDS

Species	Age/Size	Stat/ Flow	Temp (°C)	Dissolved oxygen (mg/L)	Hardness (mg CaCO ₃ /L)	рН	Endpoint	Concentration (mg/L)	Test method	Reference
Other invertebra	ates									
Cyclops abyssorum prealiinus	Adult, 0.62mm	Static	9.5- 10.5				48h LC ₅₀	19400		[57]
Eudiaptomus padanus padanus	Adult, 0.43mm	Static	9.5- 10.5				48h LC ₅₀	11100		[57]
Nitocra spinipes	Adult 0.7-0.8 mm	Static	20±0.5		Salinity (‰); 7		96h LC ₅₀	1600		[58]
Tubifex tubifex		Semi- static	29.5- 31	5.2-6.0	230-250	7.5-7.7	96h EC ₅₀ Immobilization	780		[59]
Caenorhabditis elegans	Wild type (N2)	Static	20				24h LC ₅₀	44400		[60]
Fish					-		-			
Pimephales promelas Fathead minnow	1-7 d old	Static	25	>40% of saturation		7.5-9.0	96 hr LC ₅₀	4630	EPA/600/4- 90/027, EPA/600/6- 91/003	[54]
Lepomis macrochirus Bruegill	Small (3.88 cm, 0.96g), Medium (6.09 cm, 2.80g), Large (14.24 cm, 54.26g) 5-9cm, 1-9g	Static	20±1 19-21	5-9ppm	6314-11900	7.19-7.80	96 hr LC ₅₀ 96 hr LC ₅₀	9500 (small) 9500 (medium) 11300 (large) 10650		[61]
<i>Gambusia</i> <i>affinis</i> Mosquitofish	Adult female	Static	20-23	7		6.8-7.6	96 hr LC ₅₀	13400		[63]

Table 4-1. Summary of toxicity test results to aquatic organisms (continued).

4.2 Terrestrial Effects

The data on effects to terrestrial plants and animals seem to be the useful information to assess the impact of calcium chloride to the environment as well as the biological functions or roles of calcium and chloride.

4.2.1 Toxicity to Soil Dwelling Organism and Terrestrial Plants

The results of toxicity to soil dwelling organism and terrestrial plants are summarized in Table 4-2.

Species	Test methods	Results	Reference				
Earthworm							
Eisenia foetida	Laboratory soil test, Application of 5 g/m ² CaCl ₂ every week for 6 weeks	Cumulative mortality; 20%	[64]				
Plants							
Rice, Wheat, Beer wheat, Rapeseed, Japanese radish, Welsh onion	Seed germination and growth test, Temp; 28-30°C Exposure conc.; 1-5 g/L Test period; 3-5 days	Tolerance limit for germination and growth; 2-3 g/L	[65]				
White birch, Acacia, Poplar, Todo fir	Four tree seedlings were treated in CaCl ₂ solutions (0.250-25 g/L) for 60-100 days.	Tolerance conc; 1 g/L for white birch 5 g/L for acacia 2.5 g/L for poplar 0.5 g/L for todo firs	[66]				
Trifolium repens L.	Test in flowerpot; application for 35 days	Survival rate; 28.6% at total dose of 750 g/ m ² 85.7% at 187.5 g/m ²	[67]				
<i>Taxus cuspidata</i> Pinus mugo <i>Trifolium repens</i> L.	Spraying $CaCl_2(5-100 \text{ g/m}^2)$ on seedlings at weekly intervals for 15 weeks in the winter season.	EC ₅₀ on damage to leaves; 5-25 g/m ² for <i>T.cuspidata</i> and <i>P. mugo</i> 50-100 g/m ² for <i>T. repens</i> L.	[64]				
Salix sachalinensis	Scions were treated in $CaCl_2$ solutions (5-100 g/m ²) for 11 days.	EC_{100} on damage to leaves and root; $< 5 \text{ g/m}^2$	[64]				
Taxus cuspidata Trifolium repens L.	Spraying $CaCl_2$ (0.25-25.0 g/m ²) on seedlings at weekly intervals for 15 weeks in the winter season.	EC ₅₀ as accumulated application; 18.75-37.5 g/m ² with <i>T.</i> <i>cuspidata</i> 37.5-375 g/m ² with <i>T. respens L.</i>	[68]				

Table 4-2. Summary of toxicity to soil dwelling organism and terrestrial plants.

There are some studies that examined effects of deicing agents to plants and earthworm using calcium chloride, sodium chloride, CMA (calcium/magnesium acetate), urea and so on. Although these studies were not conducted under the standard methods and were not necessarily providing

reliable outcomes, they revealed a tendency to less damage to plants and earthworm from exposure to calcium chloride than to other deicing agents [64, 67, 68].

Damage to roadside vegetation has been reported and is attributed largely to the absorption of salt splashed foliage. Sugar maples (*Acer saccharum*) were exposed to runoff of sodium chloride and calcium chloride for 6 winters (total treatment of 112 tones /ha per treatment and 15 treatments per winter at weekly intervals). Leaves of these maple trees contained 3 to 6 times the chloride concentration compared to a control stand. Damage to the maples varied but could be correlated with the chloride concentration in the leaf [69]. From two filed experiments with spruce tree carried out for ten weeks during a winter season, and a total dose of 1.5 kg/m^2 NaCl, CaCl₂ or a 75/25 NaCl/CaCl₂ mixture, it was found that in the presence of calcium chloride the uptake of Cl⁻ in the root was inhibited [70].

4.2.2 Biology of Terrestrial Plants [63, 70, 71, 72]

Calcium is well known as an essential nutrient for higher plants and has important roles for cell wall formation, cell division and cell elongation. The substance is also known as one of the basic inorganic elements of algae.

Chloride is an essential micronutrient for plants and has an important role in regulating osmotic pressure of cells.

Demands for calcium and chloride in plants/crops

The calcium content of plants varies between 0.1 and > 0.5% of the dry weight depending on the growing conditions, plant species, and plant organ. In well-balanced growing nutrient solutions with controlled pH, maximal growth rates were obtained at calcium supply levels of 2.5-100 uM. Also, calcium can be supplied at higher concentrations and might reach more than 10% of the dry weight without symptoms of serious inhibition of plant growth, at least in calcicole plant species.

A typical symptom of calcium deficiency is the disintegration of cell walls and the collapse of the affected tissues, such as the petioles and upper parts of the stems. Lower calcium contents in fleshy fruits also increase the losses caused by enhanced senescence of the tissue and by fungal infections.

In plant species with relatively low chloride requirement (<1 mg Cl/g leaf dry wt) the demand for chloride can be covered by a concentration of 100 uM Cl⁻ in the nutrient solution. At the supply of 10 uM Cl⁻ the shoot dry weight drops to 50%, indicating that chloride uptake is not so efficient as phosphorus uptake, because the demand for phosphorus in the leaf, which is much higher than that for chloride, can be fulfilled by the supply at a phosphorus concentration lower than 10 uM. In most plant species the Cl⁻ requirement for optimal growth is in the range of 0.2-0.4 mg/g dry matter. The principal effect of chloride deficiency is a reduction in leaf surface area and thereby plant dry weight. With severe deficiency, curling of the young leaves followed by shrivelling and necrosis might occur.

Biological effects monitoring

High proportion of the total calcium in plant tissues is often found in the cell walls. This unique distribution is mainly due to an abundance of binding sites for calcium in the cell walls and the restricted transport of calcium into the cytoplasm.

The proportion of calcium pectate in the cell walls is of importance for the susceptibility of the tissue to fungal and bacterial infections and for the ripening of fruits. Calcium has a significant effect on reducing the toxicity of soluble organic acids in the protoplasm of many plants. A soluble organic acid such as oxalic acid combines with Ca to form the very insoluble salt, calcium oxalate,

which is not toxic to plants. Calcium has the role in counterbalancing the harmful effects of high concentrations of other cations at the plasma membrane. In the absence of an exogenous calcium supply, root extension quickly ceases. On the other hand, the reduction in plant growth under heavy salinisation is also suppressed by the supply of calcium.

Calcium competes with Na^+ for binding to the exchangeable sites in soil. Since soil clay has a higher affinity for Ca^{2+} than Na^+ , more Na^+ is likely to be leached out to lower soil layers where it will become less available for plants roots.

Chloride is essential for the photosynthetic O_2 evolution and the proton-pumping ATPases. Chloride has important functions in osmoregulation at different levels. At the high plant contents it is a main osmoticum in the vacuoles of the bulk tissue (50-150 mM Cl⁻), together with potassium. At low contents that are in the range of micronutrient (~1 mM Cl⁻ or below), these osmoregulatory functions of chloride are presumably confined to specialized tissues or cells, such as the extension zones of roots and shoots. Chloride also plays an essential role in stomatal regulations through mediating opening and closure of the stomata.

Biotransformation and kinetics

Calcium is always present in the external solution in order to fulfil its functions at the plasma membrane, where it regulates the selectivity of ion uptake and prevents solute leakage from the cytoplasm. In the apoplasm, a part of calcium ions are firmly bound to its structures. Another part of the ions are exchangeable at the cell walls and at the exterior surface of the plasma membrane. A high proportion of intracellular calcium might be sequestered in vacuoles whereas the concentration in the cytosol is extremely low. The same is true for the mobility of calcium in the symplasm from cell to cell and in the phloem. Most of the functions of calcium as a structural component of macromolecules are related to its capacity for coordination, by which it provides stable but reversible intermolecular linkages, predominantly in the cell walls and at the plasma membrane.

Chloride is readily taken up by plants and its mobility in short- and long-distance transport is high. In plants chloride occurs mainly as a free anion or is loosely bound to exchange sites.

4.3 Initial Assessment for the Environment

Acute toxicity studies with algae, invertebrates including *Daphnia*, and fishes have been reported. The lowest results obtained from these studies are the 72-hour EC_{50} of 2900 mg/L for *Selenastrum capricornutum*, the 48-hour EC_{50} of 1062 mg/L for *Daphnia magna*, and the 96-hour LC_{50} of 4630 mg/L for *Pimephales promelas*.

A chronic toxicity test has been performed on *Daphnia magna*. In this test a 16% impairment of reproduction (EC₁₆) was observed at the concentration of 320 mg/L. The 72-hour EC₂₀ (biomass) for *Selenastrum capricornutum* was 1000 mg/L. All the data compiled on the short-term and long-term aquatic toxicity were greater than 100 mg/L, although no chronic toxicity study with fish has been reported.

Calcium is known as an essential nutrient for higher plants and one of the basic inorganic elements of algae. Calcium plays crucial roles in strengthening cell walls and plant tissues, reducing the toxicity of soluble organic acids, elongating roots, and so on. Chloride is also an essential micronutrient for plants and has important roles in the photosynthesis and osmoregulation.

The information on the effect of calcium chloride on terrestrial plants and soil dwelling organisms would be very helpful to assess the environmental effects of this substance because the substance is widely used as deicing agents on motorways during winter season, and is released into the terrestrial environment.

Deicing agents used as road salts are usually chloride salts, mainly sodium chloride or calcium chloride with minor amounts of magnesium chloride and potassium chloride. Deicing salts have been observed to accumulate in roadside vegetation and induce visible symptoms such as tipburn, browning and chlorosis of foliage. Application of road salts may also cause deleterious effects on physico-chemical properties of soil such as soil dispersion, soil permeability, soil swelling and crusting and soil osmotic potential.

The Canadian assessment report, evaluating the impact of road salts to the environment for 5 years (1995-2000) under Canadian Environment Protection Act (CEPA), has concluded that excess amount of road salts consisting of inorganic chloride salts may be harmful to the environment in Canada, and the government has decided to control the use of inorganic chloride salts for road salts and minimize the risks road salts pose to the environment while maintaining the level of roadway safety [9].

The primary cause of the damage to roadside plants is considered to be the accumulation of chloride in plant tissues to a toxic level by excess loading of inorganic chloride salts. Calcium chloride constituted 2% of the total composition (approx. 5 million tons) used in Canada as deicing agents in the 1997-1998 winter season, while sodium chloride constituted 95% of the total. Although there are several areas where calcium chloride was used at higher percentage, most of the deicing agents used in the urban areas (Ontario and Quebec) with the highest loadings in Canada are occupied by sodium chloride. The terrestrial toxicity data for calcium chloride reveal that the substance is less toxic than other road salts. In addition, there is a report that shows the uptake of chloride by plants is considerably inhibited in the presence of calcium chloride. The impact of calcium chloride on plants is expected to be minimal compared to other chloride containing agents, given the factors discussed above as well as the difference of usage of calcium chloride as compared to sodium chloride.

5 RECOMMENDATIONS

The chemical is currently of low priority for further work on the human health hazard.

The chemical is currently of low priority for further work on the hazard to the environment. However, because of the effects of calcium chloride on soil dwelling organisms and plants and the exposure associated with the use of calcium chloride as a deicing agent in some countries, these countries may decide to assess the environmental risk related to this exposure scenario.

6 REFERENCES

- 1 O'neil, M.J., Smith, A. and Heckelman, P.E. (eds.) (2001) The Merck Index, 13th ed., Merck & Co., Inc., Whitehouse Station, NJ.
- 2 Shearer, W.L. (1978) Calcium chloride. *In* Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., John Wiley & Sons, New York, Vol. 4, pp. 432-436.
- 3 Kemp, R. and Keegan, S.E. (1985) Calcium chloride. *In* Ullmann's Encyclopedia of Industrial Chemistry, 5th completely revised ed. (Gerhartz, W., exec. ed.), VCH Publishers, Vol. A4, pp. 547-553.
- 4 Lide, D.R. (ed. in chief) (1995) CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Cleveland, OH.
- 5 Chemical Market Reporter (2002) Chemical Profile 'Calcium Chloride', March 4, 2002. (http://63.236.84.14/news/profile020304.cfm)
- 6 Tokuyama Corporation., unpublished data.
- 7 Solvey S.A., unpublished data.
- 8 National Library of Medicine, U.S.A. (2001) Hazardous Substances Data Bank (HSDB).
- 9 Environment Canada and Health Canada (2001) Priority substances list assessment report: road salts.
- 10 United Nations Environment Programme (UNEP) (1995) Water quality of world river basins, UNEP Environment Library No. 14.
- 11 Ministry of Labour, Ontario, Canada (2002) Updated and New OELs in Part 4 of Regulation 833, effective September 30, 2000. (http://www.gov.on.ca/LAB/ohs/00-oelte.pdf)
- 12 Joint FAO/WHO Expert Committee on Food Additives (1974) Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. WHO Food Additives Series, 5, 415-416.
- 13 Joint FAO/WHO Expert Committee on Food Additives (2001) Summary of evaluations performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA 1956-2001) (First through fifty-seventh meetings) (http://jecfa.ilsi.org/)
- 14 Selected Committee on GRAS Substances (1975) Evaluation of the health aspects of certain calcium salts as food ingredients (SCOGS-45). Report No. FDA/HFF-76/66. Life Sciences Research Office, Federation of American Societies for Experimental Biology, Bethesda, MD.
- 15 Ganong, W.F. (2001) Review of Medical Physiology, 20th ed., McGraw-Hill Medical Publishing Division, New York.
- 16 Gomei, T. (chief ed.) (1998) Eiyougaku Handobukku (Handbook of Nutritional Science), 3rd ed., Gihoudou Publishing Co., Tokyo. (in Japanese)
- 17 Marcus, R. (2001) Agents affecting calcification and bone turnover: calcium, phosphate, parathyroid hormon, vitamin D, calcitonin, and other compounds. *In* Goodman & Gilman's The Pharmacological Basis of Therapeutics, 10th ed. (Hardman, J.G. and Limbird, L.E., eds.), McGraw-Hill Medical Publishing Division, New York, pp. 1715-1743.

- 18 Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (1999) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academy Press, Washington, D.C.
- 19 Akatsuka, K., Hashimoto, T. and Takeuchi, K. (1977) Pharmacological studies on Ca mesotartrate I. Acute and subacute toxicity tests. Ouyou-Yakuri, 14, 963-975. (in Japanese)
- 20 Koopman, T.S.M. and Pot, T.E. (1986) Acute oral toxicity study with anhydrous calcium chloride in male rabbits. Duphar Report No. 56645/52/86.
- 21 Koopman, T.S.M. and Pot, T.E. (1986) Acute oral toxicity study with calcium chloride 33% in male rabbits. Duphar Report No. 56645/50/86.
- 22 Koopman, T.S.M. and Pot, T.E. (1986) Acute oral toxicity study with calcium chloride dihydrate in male rabbits. Duphar Report No. 56645/51/86.
- 23 Koopman, T.S.M. and Pot, T.E. (1986) Acute oral toxicity study with calcium chloride hexahydrate in male rabbits. Duphar Report No. 56645/49/86.
- 24 Carreon, R.E., Yano, B.L. and New, M.A. (1981) Peladow calcium chloride (94-97%): acute toxicological properties and industrial handling hazards. Unpublished Dow Chemical Company report.
- 25 Sukhanov, V.V., Petul'ko, S.N., Bolonova, L.N. and Yulish, N.R. (1990) Toxicological assessment of calcium chloride and calcium chloride-containing products. Gigiena Truda I Professional'nye Zabolevaniya (Labor Hygiene and Occupational Diseases), 34(5), 51-52.
- 26 Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of anhydrous calcium chloride to the skin of the male rabbit. Duphar Report No. 56645/30/86.
- 27 Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride 33% to the skin of the male rabbit. Duphar Report No. 56645/31/86.
- 28 Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride dihydrate to the skin of the male rabbit. Duphar Report No. 56645/29/86.
- 29 Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride hexahydrate to the skin of the male rabbit. Duphar Report No. 56645/32/86.
- 30 Norris, J.M. (1971) Eye and skin irritation properties of DOWFLAKE calcium chloride. Unpublished Dow Chemical Company report.
- 31 Norris, J.M. (1971) Eye and skin irritation properties of LIQUIDOW liquid calcium chloride. Unpublished Dow Chemical Company report.
- 32 Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of anhydrous calcium chloride to the eye of the male rabbit. Duphar Report No. 56645/42/86.
- 33 Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride 33% to the eye of the male rabbit. Duphar Report No. 56645/45/86.
- 34 Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride dihydrate to the eye of the male rabbit. Duphar Report No. 56645/43/86.
- 35 Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride hexahydrate to the eye of the male rabbit. Duphar Report No. 56645/44/86.

- 36 Pamukcu, A.M., Yalciner, S. and Bryan, G.T. (1977) Inhibition of carcinogenic effect of bracken fern (*Pteridium aquilinum*) by various chemicals. Cancer, 40, 2450-2454.
- 37 World Health Organization (WHO) (1990). Environmental Health Criteria 104: Principles for the toxicological assessment of pesticide residues in food.
- 38 Department of Health, U.K. (1991) Dietary reference values for food energy and nutrients for the United Kingdom. *In* Report on Health and Social Subjects, Her Majesty's Stationary Office, London.
- 39 Ishidate, M., Jr., Sofumi, T., Yoshikawa, K., Hayashi, M., Nohmi, T., Sawada, M. and Matsuoka, A. (1984) Primary mutagenicity screening of food additives currently used in Japan. Fd Chem. Toxic., 22, 623-636.
- 40 Fujita, H. and Sasaki, M. (1987) Mutagenicity test of food additives with *Salmonella typhimurium* TA97 and TA102 (II). Ann. Rep. Tokyo Metr. Res. Lab. P.H., 38, 423-430. (in Japanese)
- 41 Kanematsu, N., Hara, M. and Kada, T. (1980) Rec assay and mutagenicity studies on metal compounds. Mutation Res., 77, 109-116.
- 42 Olivier, Ph. and Marzin, D. (1987) Study of the genotoxic potential of 48 inorganic derivatives with the SOS chromotest. Mutation Res., 189, 263-269.
- 43 Food and Drug Research Laboratoires, Inc. (1974) Teratologic evaluation of FDA 71-87 (calcium chloride) in mice, rats and rabbits. Report No. FDABF-GRAS-251. NTIS PB-234 879.
- 44 Durlacher, S.H., Harrison, W., Jr. and Darrow, D.C. (1946) The effects of calcium chloride and of calcium lactate administered by gavage. Yale J. Biol. Med., 18, 135-143.
- 45 Botvinick, I., Smith, R.G. and Stein, S.C. (1961) Calcium chloride necrosis of the skin. J. Mich. Med. Soc., 60, 743-744.
- 46 Zackheim, H.S. and Pinkus, H. (1957) Calcium chloride necrosis of the skin. Am. Med. Assoc. Arch. Dermatol., 76, 244-246.
- 47 Heppleston, A.G. (1946) Calcium necrosis of the skin. Br. J. Ind. Med., 3(4), 253-254.
- 48 Sneddon, I.B. and Archibald, R.McL. (1958) Traumatic calcinosis of the skin. Br. J. Dermatol., 70, 211-214.
- 49 Saeed, W.R., Distante, S., Holmes, J.D. and Kolhe, P.S. (1997) Skin injuries afflicting three oil workers following contact with calcium bromide and/or calcium chloride. Burns, 23(7/8), 634-637.
- 50 Osol, A. (ed.) (1980) Calcium chloride. *In* Remington's Pharmaceutical Sciences, 16th ed., Mack Publishing Company, Easton, PA, p. 772.
- 51 Goldminz, D., Barnhill, R., McGuire, J. and Stenn, K.S. (1988) Calcinosis cutis following extravasation of calcium chloride. Arch. Dermatol., 124, 922-925.
- 52 de Groot, W.A. (1998) The toxicity of sodium chloride and calcium chloride to algae (*Selenastrum capricornutum*). Solvay Pharmaceuticals Study No. C.SOL.51.113/Int.Doc. No. 56834/56/98.

- 53 de Groot, W.A. and Groeneveld, A.H.C. (1998) The acute toxicity of sodium chloride and calcium chloride to *Daphnia magna*. Solvay Pharmaceuticals Study No. C.SOL.51.112/Int. Doc. No. 56834/45/98.
- 54 Mount, D.R., Gulley, D.D., Hockett, J.R., Garrison, T.D. and Evans, J.M. (1997) Statistical models to predict the toxicity of major ions to *Ceriodaphnia dubia*, *Daphnia magna* and *Pimephales promelas* (fathead minnows). Env. Toxicol. Chem., 16(10), 2009-2019.
- 55 Khangarot, B.S. and Ray, P.K. (1989) Investigation of correlation between physicochemical properties of metals and their toxicity to the water flea *Daphnia magna* Straus. Ecotoxicol. Env. Safety, 18(2), 109-120.
- 56 Biesinger, K.E. and Christensen, G.M. (1972) Effects of various metals on survival, growth, reproduction, and metabolism of *Daphnia magna*. J. Fish. Res. Bd. Canada, 29(12), 1691-1700.
- 57 Baudouin, M.F. and Scoppa, P. (1974) Acute toxicity of various metals to freshwater zooplankton. Bull. Env. Contam. Toxicol., 12(6), 745-751.
- 58 Bengtsson, B.-E. (1978) Use of a harpacticoid copepod in toxicity tests. Mar. Pollut. Bull., 9, 238-241.
- 59 Khangarot, B.S. (1991) Toxicity of metals to a freshwater tubificid worm, *Tubifex tubifex* (Muller). Bull. Env. Contam. Toxicol., 46, 906-912.
- 60 Tatara, C.P., Newman, M.C., McCloskey, J.T. and Williams, P.L. (1997) Predicting relative metal toxicity with ion characteristics: *Caenorhabditis elegans* LC₅₀. Aqua. Toxicol., 39, 279-290.
- 61 Cairns, J., Jr. and Scheier, A. (1959) The relationship of bluegill sunfish body size to tolerance for some common chemicals. Proc. 13th Ind. Waste Conf., Purdue Univ. Eng. Bull., 96, 243-252.
- 62 Trama, F.B. (1954) The acute toxicity of some common salts of sodium, potassium and calcium to the common bluegill (*Lepomis macrochirus* Rafinesque). Proc. Acad. Natur. Sci. Philadelphia, 106, 185-205.
- 63 Wallen, I.E., Greer, W.C. and Lasater, R. (1957) Toxicity to *Gambusia affinis* of certain pure chemicals in turbid waters. Sewage Ind. Wastes, 29(6), 695-711.
- 64 Haruki, M. (1999) Effects of deicing materials on plants and soil animals in north Japan. Cold Region Technol. Conf. 1999, 824-830. (in Japanese)
- 65 Koga, Y. (1962) The effect of calcium chloride on vegetation. Unpublished Tokuyama Corporation report. (in Japanese)
- 66 Itakura, C. (1975) Experimental investigations on effects of chemical spreading to prevent roadway accidents caused by formation of ice on paved road surface in winter and influence of the chemicals to growing of several trees. Proc. Hokkaido Inst. Technol., 3(7), 1-25. (in Japanese)
- 67 Haruki, M., Tokura, S. and Ueno, Y. (1997) Environmental effects of deicers in Hokkaido, Japan. Proc. Cold Region Technol. Conf. 1997, 725-730. (in Japanese)
- 68 Haruki, M. (2000) Effects of deicing materials on evergreen plants in north Japan. Proc. Cold Region Technol. Conf. 2000, 601-605. (in Japanese)

- 69 Environmental Protection Service Ottawa (1984) Calcium chloride; environmental and technical information for problem spills.
- 70 Bogemans, J., Neirinckx, L. and Stassart, J.M. (1989) Effect of deicing NaCl and CaCl₂ on spruce (*Picea abies* (L.) sp.). Plant and Soil, 120, 203-211.
- 71 Marschner, H. (1995) Calcium. *In* Mineral Nutrition of Higher Plants, 2nd ed., Academic Press, London, Chapter 12, pp. 341-361.
- 72 Rahimian, H. (1972) The effect of calcium chloride on growth and morphogenesis of *Chlorella, Golenkinia,* and *Scenedesmus.* Ph.D. Thesis, Washington State Univ.

IUCLID

Data Set

Existing Chemical CAS No. EINECS Name EINECS No. TSCA Name Molecular Formula	 ID: 10043-52-4 10043-52-4 calcium chloride 233-140-8 Calcium chloride (CaCl₂) CaCl₂
Producer Related Part Company Creation date	: Tokuyama Corporation : 28.11.2000
Substance Related Part Company Creation date	: Tokuyama Corporation : 28.11.2000
Memo	:
Printing date Revision date Date of last Update	: 15.11.2002 : : 15.11.2002
Number of Pages	: 2
Chapter (profile) Reliability (profile) Flags (profile)	 Chapter: 1, 2, 3, 4, 5, 7 Reliability: without reliability, 1, 2, 3, 4 Flags: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS

1. GENERAL INFORMATION

1.0.1 OECD AND COMPANY INFORMATION

Type : Name : Partner : Date :	cooperating company Asahi Glass Co., Ltd.
Street : Town : Country : Phone : Telefax : Telex : Cedex : 14.12.2001	1-12-1 Yurakucho, Chiyoda-ku 100-8405 Tokyo Japan +81-3-3218-5471 +81-3-3218-7847
Type:Name:Partner:Date:Street:Town:Country:Phone:Telefax:Telex:Cedex:13.12.2001	cooperating company Brunner Mond (UK) Ltd. Po Box 4, Mond Mouse, Winnington CW8 4DT Northwich United Kingdom +44-1606-724392 +44-1606-784764
Type:Name:Partner:Date:Street:Town:Country:Phone:Telefax:Telex:Cedex:13.12.2001	cooperating company Central Glass Co.,Ltd. 7-1,Kanda-Nishikicho 3-chome, Chiyoda-ku 101-0054 Tokyo Japan +81-3-3259-7374 +81-3-3293-2145
Type:Name:Partner:Date:Street:Town:Country:Phone:Telefax:Telex:Cedex:13.12.2001	cooperating company General Chemical Industrial Products Inc. 201 City Center Drive, Suite 1100, Mississauga L5B 3A3 Ontario Canada +1-905-566-3883 +1-905-276-6594
Type : Name : Partner : Date :	cooperating company Sanuki Kasei Co., Ltd.

OECD SIDS	<u> </u>	ALCIUM CHLORIDE
1. GENERAL INFO	DRMATION	ID: 10043-52-4
		DATE: 15.11.2002
Street	: 2-4 Hama Ichiban-cho, Udazu-Cho, Ayauta-Gun	
Town	: 769-0201 Kagawa	
Country		
Phone	: +81-877-49-3332	
Telefax	+81-877-49-2213	
l elex Codox		
13 12 2001	·	
13.12.2001		
Туре	: cooperating company	
Name	: Solvay S.A.	
Partner	:	
Date	:	
Street	: Rue du Prince Albert 33	
Town	: 1050 Bruxelles	
Country	: Belgium	
Phone	: +32 2 2643398	
Teletax	: +32 2 2642990	
13.12.2001	:	
_		
Type	: cooperating company	
Name		
Partner		
Date	: 25025 15 North The Weedlands	
Jown	• 77380 Texas	
Country	· United States	
Bhono	$+ \pm 1.281.367.1083$	
Tolofay	· +1-201-307-1903	
Τείειαλ Τείεχ	. 1-201-307-0471	
Cedex		
13.12.2001		
Type	: cooperating company	
Name	: The Dow Chemical Company	
Partner	:	
Date	:	
Street	: 2020 Dow Center, Midland	
Town	: 48674 Michigan	
Country	: United States	
Phone	: +1-517-636-6978	
Telefax	: +1-517-638-9615	
Telex	:	
Cedex 17 12 2001	:	
11.12.2001		
Туре	: lead organisation	
Name	: Tokuyama Corporation	
Partner		
Street		
	: 100-0000 10KYO	
Country		
Filone		
Toloy	- TOI-J-J499-090/	
Codey	:	
17 12 2001	•	
17.12.2001		
OECD SIDSCALCIUM CHLORIDE1. GENERAL INFORMATIONID: 10043-52-4DATE: 15.11.2002

u
]

1.0.2 LOCATION OF PRODUCTION SITE

1.0.3 IDENTITY OF RECIPIENTS

1.1 GENERAL SUBSTANCE INFORMATION

Substance type Physical status Purity Remark	 inorganic solid > 94 % w/w There are five forms crystal water: CaCl₂* 	inorganic solid > 94 % w/w There are five forms of calcium chloride by the different numbers(n) of the crystal water: CaCl ₂ •nH ₂ O.			
	n	RN	Physical Status		
	0 (anhydrous)	[10043-52-4]	solid		
	1 (monohydrate)	[22691-02-7]	solid		
	2 (dihydrate)	[10035-04-8]	solid		
	4 (tetrahydrate)	[25094-02-4]	solid		
	6 (hexahydrate)	[7774-34-7]	solid		
Source 06.08.2002	crystal water is not r : Tokuyama Corporati	egarded as impurit	y.		

1.1.0 DETAILS ON TEMPLATE

1.1.1 SPECTRA

1.2 SYNONYMS

BOVIKALC 08.03.2002

CALCIUM (2+) CHLORIDE 08.03.2002

CALCIUM DICHLORIDE 13.12.2001

OECD SIDS	CALCIUM CHLORIDE
1. GENERAL INFORMATION	ID: 10043-52-4
	DATE: 15.11.2002
CALCOSAN	
13.12.2001	
CALOL	
08.03.2002	
CALPLUS	
13.12.2001	
12 12 2001	
13.12.2001	
08 03 2002	
00.00.2002	
Caso	
25.04.2002	
DARACCEL	
08.03.2002	
DOWFLAKE	
13.12.2001	
EXPRESS	
25.04.2002	
13 12 2001	
13.12.2001	
PELADOW	
13.12.2001	
SNOMELT	
28.02.2002	
STOPIT	
28.02.2002	
13.12.2001	
10.12.2001	

1.3 IMPURITIES

CAS-No EINECS-No EINECS-Name	:	7647-14-5 231-598-3 sodium chloride
Contents Remark Source 25.04.2002	:	% w/w According to the Japanese Pharmacopeia Tokuyama Corporation
CAS-No EINECS-No EINECS-Name Contents	:	1305-62-0 215-137-3 calcium dihydroxide % w/w

UECD SIDS	TION	CALCIUM CHLORIDE
I. GENERAL INFORMA	ATION	ID: 10043-52-4
		DATE: 15.11.2002
Remark	: According to the Japanese Pharmacopeia	
25 04 2002	: Tokuyama Corporation	
23.04.2002		
CAS-No	: 7786-30-3	
EINECS-No	: 232-094-6	
EINECS-Name	: magnesium chloride	
Contents	: _ % w/w	
Source	: Tokuyama Corporation	(75)
10.06.2002		(75)
CAS-No	: 7447-40-7	
EINECS-No	: 231-211-8	
EINECS-Name	: potassium chloride	
Contents	: % w/w	
Source	: Tokuyama Corporation	
25.04.2002		
FINECS-No	:	
EINECS-Name	sulphates	
Contents	: % w/w	
10.05.2002		
1.4 ADDITIVES		
1.5 QUANTITY		
Production during the	:	
last 12 months	_	
12 months	:	
Quantity	• more than 1 000 000 tonnes in 2000	
Remark	: The production capacity of calcium chloride in N	Jorth America was reported
	in March, 2002 to be approximately 1,687,000 t	onnes per year.
	In Japan, the production volume was estimated	to be 245,000 tonnes in
	2000.	
	The total amount used in Western Europe inclu-	ding Scandinavia is around
0.00000	300,000 tonnes per year.	
15 07 2002	: Tokuyama Corporation	(18)
13.07.2002		(18)
1.6.1 LABELLING		
Labelling	as in Directive 67/548/EEC	
Symbols	: Xi	
Nota	: E	
Specific limits	: no	
R-Phrases	: (36) Irritating to eyes	
S-Phrases	: (2) Keep out of reach of children	
	(22) Do not breathe dust	
Source	(24) AVOID CONTACT WITH SKIN	
08 03 2002		
00.00.2002		

1. GENERAL INFORMATION

1.6.2 CLASSIFICATION

Classification Class of danger R-Phrases Source 17.12.2001	 as in Directive 67/548/EEC irritating (36) Irritating to eyes Tokuyama Corporation
1.7 USE PATTERN	
Type Category 14.12.2001	: type : Non dispersive use
Туре	· type
Category 10.02.2000	: Wide dispersive use
Туре	: industrial
Category 17.12.2001	: Agricultural industry
Туре	· industrial
Category 17.12.2001	: Basic industry: basic chemicals
Type	: industrial
Category 10.02.2000	: Chemical industry: used in synthesis
Туре	· industrial
Category 10.02.2000	: Fuel industry
Туре	: industrial
Category 10.02.2000	: Paper, pulp and board industry
Туре	: industrial
Category 10.02.2000	: Personal and domestic use
Туре	: industrial
Category 17.12.2001	: other
Туре	: use
Category 17.12.2001	: Absorbents and adsorbents
Туре	: use
Category 10.02.2000	: Anti-freezing agents
Туре	: use
Category 10.02.2000	: Construction materials additives

_

1. GENERAL INFORMATION

Type Category 17.12.2001	: use : Dustbinding agents
Type Category 14.12.2001	: use : Fertilizers
Type Category 24.08.2001	: use : Fillers
Type Category 10.02.2000	: use : Food/foodstuff additives
Type Category 17.12.2001	: use : Heat transferring agents
Type Category 10.02.2000	: use : Intermediates
Type Category 10.02.2000	: use : Laboratory chemicals
Type Category 14.12.2001	: use : pH-regulating agents
Type Category 17.12.2001	: use : Pharmaceuticals
Type Category 17.12.2001	: use : Viscosity adjustors
Type Category 14.12.2001	: use : other

1.7.1 TECHNOLOGY PRODUCTION/USE

1.8 OCCUPATIONAL EXPOSURE LIMIT VALUES

Limit value : 5 mg/m ⁻
Source : Tokuyama Corporation
15.07.2002 (72

1.9 SOURCE OF EXPOSURE

: Production process

OECD SIDS		CALCIUM CHLORIDE
1. GENERAL INFOR	RMATION	ID: 10043-52-4
		DATE: 15.11.2002
Remark	 There are three major production production by the ammonia soda p the neutralization process. All of them are operated in the clo 	processes for calcium chloride as follows: process, the natural brine process and sed production system.
	 Production by the ammonia soc Calcium chloride is made from the ammonia soda process as the by- soda process is removed from soc chloridesands and concentrated u production. 	da process: e concentrated brine produced in the product. The crude brine in the ammonia dium chloride, separated from the alkali p to ca.45% for the calcium chloride
	 Production by the natural brine Calcium chloride is made from the occurring formation known as the calcium, magnesium, sodium, and removed from bromine and magne alkali chloridesands and concentra chloride production. 	process: brine removed from the naturally "Filer Formation, which consists of potassium chlorides. The brine is esium hydroxide, separated from the ated up to ca. 45% for the calcium
0	 Production by the neutralization Calcium chloride is made by neutr hydrochloric acid. 	n process: ralizing the limestone with the
Source 25.04.2002	: Tokuyama Corporation	
Memo Remark	 Source of environmental exposure Natural background Use as a deicing agent Use as a dust control and roadway Wastewater from production and Use as an additive in herbicide 	e ay base stabilization user sites
Source 09.06.2002	: Tokuyama Corporation	
Memo Remark	 Source of human exposure Inhalation of dust by handling of Skin contact by handling of calcin Intake as a food additive Indirect exposure via food and summer the summer that are summer to be addited and sum	calcium chloride um chloride as dust or solution urface water
Source 01.03.2002	: Tokuyama Corporation	

1.10.1 RECOMMENDATIONS/PRECAUTIONARY MEASURES

1.10.2 EMERGENCY MEASURES

1.11 PACKAGING

- 1.12 POSSIB. OF RENDERING SUBST. HARMLESS
- 1.13 STATEMENTS CONCERNING WASTE

Classified by	: KBwS (DE)	
Labelled by	:	
Class of danger	: 0 (generally not water polluting)	
Source	: Tokuyama Corporation	
10.06.2002		(14)

1.14.2 MAJOR ACCIDENT HAZARDS

Legislation Substance listed No. in directive	:	Stoerfallverordnung (DE) no	
Source 11.06.2002	:	Tokuyama Corporation	(94)

1.14.3 AIR POLLUTION

1.15 ADDITIONAL REMARKS

Memo Remark	:	deicing agents About half volume of the produced calcium chloride goes into the environment by the use of deicing agents (also called as the anti-freezing agents) and the dust control agents both in Japan and North America. The calcium chloride for these uses will eventually dissolve with water to go into the soil and surface water, spreading around the environment.
		The Canadian government assessed the impact of "Road Salts" to the environment for 5 years under CEPA (Canadian Environment Protection Act). Road Salts, a category name of the deicing agents, includes (1) sodium chloride, (2) calcium chloride, (3) magnesium chloride, (4) potassium chloride and (5) ferrocyanide salts.
Source	:	According to the Canadian Assessment Report, approximately five million tonnes of road salts were used in the 1997-98 winter season in Canada. Ninety-five percent (4.75 million tonnes) of the road salts used was sodium chloride and only 2 percent (0.11 million tonnes) of the salt was calcium chloride. Tokuyama Corporation
15.11.2002	-	(13) (27)
Memo Remark	: .	Use categories Calcium chloride is used for deicing, road stabilization, dust control, accelerator in concrete, industrial processing, oil and gas well fluids, and for others such as food additives and medication. Percentages of the uses are different among member countries and may vary from year to year. The percentages of the uses in North America are reported to be 22% for deicing, 20% for road stabilization and dust control, 20% for industrial processing, 17% for oil and gas well fluids, 12% for concrete. In Japan, about 50% of the total production is used for deicing and 25% for road stabilization. Tokuwama Comparation
50urce 15.11.2002	:	1 okuyama Corporation (18)

1. GENERAL INFORMATION

1.16 LAST LITERATURE SEARCH

1.17 REVIEWS

1.18 LISTINGS E.G. CHEMICAL INVENTORIES

Remark Source 15.11.2002	:	Calcium chloride is regarded as the substance which added directly to human food affirmed as generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA). The average intake of calcium chloride based on the quantity of calcium chloride used annually in foods in 1970 was 160 mg/day for individuals in U.S. The average intake of calcium chloride based on the mean frequency of eating foods by food category was 345 mg/day for individuals over 2 years. Tokuyama Corporation (87)
Remark Source	:	Calcium chloride was evaluated to be a food substance of very low toxicity and thus the establishment of the ADI for calcium chloride has not been deemed necessary by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Tokuyama Corporation
18.07.2002		(45) (46)

2. PHYSICO-CHEMICAL DATA

2.1 MELTING POINT

			UNEP PUBLIC	CATIONS	 45
		0	[10043-52-4]	1935	
		n	RN	m.p. (°C)	
Value Remark	:	1935 Boiling	° C Point of CaCl ₂ •nH ₂ O	:	
Value Source Reliability Flag 11.06.2002	:	> 1600 Tokuya (2) vali Critical	° C ama Corporation d with restrictions study for SIDS endp	oint	(78)
2.2 BOILING POINT					
Value Source Reliability 11.06.2002	:	782 ° Tokuya (2) vali	° C ama Corporation d with restrictions		(68)
Source Reliability 06.08.2002	:	Tokuya (2) vali	ama Corporation d with restrictions		(50)
		0 1 2 4 6	[10043-52-4] [22691-02-7] [10035-04-8] [25094-02-4] [7774-34-7]	772 260 176 45 30	
Remark	:	Melting 	Point of CaCl ₂ •nH ₂ C RN): m.p. (°C)	
Source Reliability 06.08.2002 Value	:	Tokuya (2) vali 772	ama Corporation d with restrictions		(89)
		0 1 2 4 6	[10043-52-4] [22691-02-7] [10035-04-8] [25094-02-4] [7774-34-7]	772 187 176 45.3 29.9	
Value Remark	:	772 ° Melting 	°C Point of CaCl₂•nH₂C RN): m.p. (°C)	
Value Source Reliability Flag 10.06.2002	:	772 ° Tokuya (2) vali Critical	° C ama Corporation d with restrictions l study for SIDS endp	oint	(78)

OECD SIDS					CALCIUM CHLORIDE
2. PHYSICO-CHEMI	CAL DA	ΛTA			ID: 10043-52-4
					DATE: 15.11.2002
		1	[22691-02-7]	181*	
		2	[10035-04-8]	175*	
		4 6	[25094-02-4] [7774-34-7]	-	
•		*; 10	1.3 kPa		
Source Poliability	:		iyama Corporation	1	
11.06.2002	•	(2) V		15	(89)
					()
Value	:	167	°C "		
Source Poliability		1 OKU	iyama Corporation		
11.06.2002	•	(2) V		15	(50)
					, , , , , , , , , , , , , , , , , , ,
Value	:	> 16	00 °C at 1013 h	Pa	
Source Reliability	-	10KU	lyama Corporation		
11.06.2002	•	(2) V		15	(68)
					, , , , , , , , , , , , , , , , , , ,
2.3 DENSITY					
Turne			14		
i ype Value	:	2 12	aity 25 a/cm ³ at 15° C		
Source	:	Toku	ivama Corporation	, 1	
Reliability	:	(2) va	alid with restrictior	าร	
10.06.2002					(78)
Туре		dens	ity		
Value	:	2.16	$s_{g/cm^{3}}$ at 25° C		
Remark	:	Dens	sity of CaCl ₂ •nH ₂ C):	
				donaity (g/om ³)	
		0	[10043-52-4]	2.16	
		1	[22691-02-7]	2.24	
		2	[10035-04-8]	1.85	
		4 6	[25094-02-4] [7774-34-7]	1.03	
		at 25	5°C		
Source Baliability	:	Toku	iyama Corporation	1	
Flag		(2) Va	allo with restriction	endpoint	
06.08.2002	•	onne		onapoint	(89)
_					
l ype Value	:	dens	lity 2 a/cm ³ at 25° C		
Remark	:	Dens	sity of CaCl ₂ •nH ₂ C):	
		n	RN	density (g/cm ³))
		0	[10043-52-4]	 2	
		1	[22691-02-7]	2.24	
		2	[10035-04-8]	1.85	
		4	[25094-02-4]	1.83	
		o 	[///4-34-/]	1.72	
		at 25	5 °C		

OECD SIDS		CALCIUM CHLORIDE
2. PHYSICO-CHEN	MICAL DATA	ID: 10043-52-4
		DATE: 15.11.2002
Source	: Tokuyama Corporation	
Reliability	: (2) valid with restrictions	
06.08.2002		(50)
Туре	: density	
Value	: = 2.15 g/cm ³ at 25° C	
Source	: Tokuyama Corporation	
Reliability	: (2) valid with restrictions	
11.06.2002		(68)

2.3.1 GRANULOMETRY

2.4 VAPOUR PRESSURE

Remark Source 15.11.2002	:	Calcium chloride is inorganic solid compound and has a high melting po (> 700°C). So vapor pressure is negligible. Tokuyama Corporation	oint
Value Decomposition Method Year GLP Test substance Source Test substance Reliability 10.06.2002		 11 hPa at 20° C 1974 other TS Tokuyama Corporation 35 % solution (2) valid with restrictions 	(28)
Value Decomposition Method Year GLP Test substance Source Test substance Reliability 10.06.2002		 3.7 hPa at 40° C 1974 other TS Tokuyama Corporation CaCl₂-2H₂O (Dihydrate) (2) valid with restrictions 	(28)

2.5 PARTITION COEFFICIENT

Remark	:	Log Pow is not applicable to calcium chloride due to its dissociation property in water.
Source 15.11.2002	:	Tokuyama Corporation

2.6.1 WATER SOLUBILITY

745 g/l at 20 ° C
-
at 25 ° C
at and °C

OECD SIDS		CALCIUM CHLORIDE
2. PHYSICO-CHEMIC	CAL DATA	ID: 10043-52-4 DATE: 15.11.2002
Method Year GLP Test substance Source Reliability Flag 11.06.2002	: as prescribed by 1.1 - 1.4 Tokuyama Corporation (2) valid with restrictions Critical study for SIDS endpoint	(68)
Value Qualitative Pka PH Method Year GLP Test substance Source	 1590 g/l at 100 ° C at 25 ° C at and ° C as prescribed by 1.1 - 1.4 Tokuyama Corporation 	
Reliability 11.06.2002	: (2) valid with restrictions	(68)
2.6.2 SURFACE TENS	SION	
2.7 FLASH POINT		
Remark Source 18.12.2001	Calcium chloride has no flash point.Tokuyama Corporation	
2.8 AUTO FLAMMA	BILITY	
Remark Source 18.12.2001	This product is non flammable.Tokuyama Corporation	
2.9 FLAMMABILITY		
Result Source 18.12.2001	non flammableTokuyama Corporation	
2.10 EXPLOSIVE PR	OPERTIES	
Result Source 18.12.2001	not explosiveTokuyama Corporation	
2.11 OXIDIZING PRO	PERTIES	
Result Source	no oxidizing propertiesTokuyama Corporation	

2. PHYSICO-CHEMICAL DATA

18.12.2001

2.12 ADDITIONAL REMARKS

Remark	:	 Calcium chloride (flakes) have a whit-greyish colour and are odour free. The solution is mildly corrosive to many metals including stainless steel; it is to be kept in a plastic bin. Materials to avoid: Boiling water, boric and calcium oxide may react violently, generating heat; Reactive metal (e.g. zinc): prolonged reaction with calcium chloride solution on galvanised iron caused slow evolution of flammable and explosive hydrogen gas; Methyl vinyl ether: may react to initiate self-polymerization generating heat and pressure.
Source 15.07.2002	:	Tokuyama Corporation

3. ENVIRONMENTAL FATE AND PATHWAYS

3.1.1 PHOTODEGRADATION

Remark	:	not applicable
02.03.2002		

3.1.2 STABILITY IN WATER

Remark	:	not applicable
		Calcium chloride readily dissociates into calcium and chloride ions in water.

02.03.2002

3.1.3 STABILITY IN SOIL

Remark	:	not applicable
02.03.2002		

3.2 MONITORING DATA

Type of measurement Medium Method		background concentration surface water
Remark		[Calcium statistics]
		In North America Rivers (N=12) Mean: 70.8 mg/l Min.: 4.5 mg/l, Max.: 335.6 mg/l 10th percentile: 14.3 mg/l, 90th percentile: 204.5 mg/l
		In South America Rivers (N=6) Mean: 7.23 mg/l Min.: 2.6 mg/l, Max.: 15.0 mg/l 10th percentile: 0.9 mg/l, 90th percentile: 11.5 mg/l
		In Asian Rivers (N=25) Mean: 29.1 mg/l Min.: 5.5 mg/l, Max.: 93.5 mg/l 10th percentile: 10.2 mg/l, 90th percentile: 50.0 mg/l
		In African Rivers (N=7) Mean: 9.9 mg/l Min.: 2.7 mg/l, Max.: 2.0 mg/l 10th percentile: 3.4 mg/l, 90th percentile: 19.7 mg/l
		In European Rivers (N=20) Mean: 52.3 mg/l Min.: 3.8 mg/l, Max.: 108.0 mg/l 10th percentile: 4.7 mg/l, 90th percentile: 105.2 mg/l
		In Oceania Rivers (N=6) Mean: 16.9 mg/l Min.: 7.0 mg/l, Max.: 23.0 mg/l 10th percentile: 10.5 mg/l, 90th percentile: 22.2mg/l

3. ENVIRONMENTAL FATE AND PATHWAYS

ID: 10043-52-4 DATE: 15.11.2002

		Total (N=76)	<u> </u>
		Mean: 37.4 mg/L	
		Min.: 2.6 mg/L, Max.: 335.6 mg/L	
		10th percentile: 5.1 mg/L, 90th percentile: 86.5 mg/L	
		The continental differences are not caused by human activities but by geological influences.	,
Source	:	Tokuyama Corporation	
15.11.2002			(104)
Type of measurement Medium Method	:	background concentration surface water	
Concentration Remark	:	[Chloride statistics]	
		In North America Rivers (N=12) Mean: 17.5 mg/l	
		$Min \cdot 0.1 mg/l Max \cdot 82.0 mg/l$	
		10th percentile: 1.1 mg/l, 90th percentile: 29.7 mg/l	
		In South America Rivers (N=6) Mean: 6.1 mg/l	
		Min $\cdot 0.9 \text{ mg/l}$ Max $\cdot 14.3 \text{ mg/l}$	
		10th percentile: 1.6 ma/l. 90th percentile: 13.9 ma/l	
		In Asian Rivers (N=25)	
		Mean: 19.7 mg/l	
		Min.: U.3 mg/l, Max.: 59.7 mg/l	
		Toth percentile. 1.2 mg/l, 90th percentile. 48.2 mg/l	
		In African Rivers (N=7)	
		Mean: 4.3 mg/l	
		Min.: 0.9 mg/l, Max.: 10.6 mg/l	
		10th percentile: 1.0 mg/l, 90th percentile: 8.1 mg/l	
		In European Rivers (N=21)	
		Mean: 102.7 mg/l	
		Min.: 1.1 mg/l, Max.: 1233 mg/l	
		Toth percentile: 2.1 mg/l, 90th percentile: 173 mg/l	
		In Oceania Rivers (N=6)	
		Mean: 39.2 mg/l	
		Min.: 0.1 mg/l, Max.: 171 mg/l	
		10th percentile: 0.3 mg/l, 90th percentile: 102.5 mg/l	
		Total (N=77)	
		Mean: 41.1 mg/L	
		10th percentile: 1.1 mg/L, 90th percentile: 64.8 mg/L	
		The WHO drinking water guideling for chloride ion is 200 mg/	
Source	:	Tokuvama Corporation	
15.11.2002	•		(104)
			()
Type of measurement	:	background concentration	
Medium	:	surface water	
Method	:		
Concentration	:	CALCILIM and CHLORIDE concentrations (mean value)	
Nesul			

3. ENVIRONMENTAL FATE AND PATHWAYS

		Location	Calcium	Chloride	
			concentration	(mg/l)	
		Jambes	65 7	20.3	
		Nameche	75.3	64 6	
		Liege	74 1	59.1	
		Grobbendonk	71.6	63.1	
		Lier	70.6	62 7	
		Broechem	69.6	62.6	
Source Test condition 10.06.2002	:	Tokuyama Corporat Belgium, Meuse, Ca	ion anal Albert, Kempi	sche kanalen, various cities, 1993 (10)5)
Type of measurement Medium Method Concentration	:	background concen surface water	tration		
Result	:	Measured CALCIUN rock type being drai	A concentrations in ned by the freshw	n natural waters (information of the ater system is given):	
		Aqueous System (type of rock drained	(t	Calcium Concentration (mg/l)	
		- Seawater		/12	
		- Groundwater (lime	stone)	80	
		- Stream (granite)	5(0)(0)	4	
		- River/unpolluted		13.4	
		- River/including cor	ntribution	14 7	
		of human activities		14.7	
		- Public water Suppl	ly/100 U.S.	26 (median) 0-145 (range)	
Source 11.06.2002	:	Tokuyama Corporat	ion)1)
Type of measurement Medium Method Concentration	:	background concen surface water	tration		
Result	:	Chloride concentrati	ion:		
		Location		Chloride concentration (mg/l) mean value (min max.)	
		Baden-Wuerttenber Baden-Wuerttenber Baden-Wuerttenber Rheinland-Pfalz, Ma Rheinhald-Pfalz, Ko Nordrhein-Westfaler Nordrhein-Westfaler	g, Oehningen g, Weisweil g, Mannheim ainz blenz n, Bad-Honnef n, Kleve-Bimmen	6 (5-8) 127 (18-251) 123 (28-204) 103 (55-191) 104 (56-186) 113 (27-160) 165 (93-302)	
Source Test condition 10.06.2002	:	Tokuyama Corporat Germany, Rhine, 19	ion)89	(10)3)

3. ENVIRONMENTAL FATE AND PATHWAYS

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Remark	:	Fugacity model is not applied to estimate the distribution in the environment for inorganic substance such as calcium chloride because the programs are designed for organic chemicals and not for inorganic salts. Calcium chloride is readily dissociated into calcium and chloride ions in water and is not expected to evaporate because its vapour pressure is negligible. Calcium chloride released into the environment is thus likely to be distributed into the water compartment in the form of calcium and chloride ions. Otherwise, calcium ion may remain in the soil compartment by binding to soil particulate or by forming stable salts with other counter ions. On the other hand, chloride ion is mobile and eventually drains into surface water.
Source	:	Tokuyama Corporation

15.11.2002

3.3.2 DISTRIBUTION

3.4 MODE OF DEGRADATION IN ACTUAL USE

3.5 **BIODEGRADATION**

Remark	: not applicable for an inorganic compound
Source	: Tokuyama Corporation
02.03.2002	

3.6 BOD5, COD OR BOD5/COD RATIO

Remark	:	not applicable for an inorganic compound
Source	:	Tokuyama Corporation
02.03.2002		

3.7 BIOACCUMULATION

Remark	:	not bioaccumulative Log Po/w is not applicable for an inorganic compound which dissociates.
Source	:	Tokuyama Corporation

3.8 ADDITIONAL REMARKS

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static Pimephales promelas (96 hour(s) mg/l yes 4630 other: EPA/600/4-90/02 1997 no data as prescribed by 1.1 - - Test Organisms: a) Size: Not describer b) Age: 1-7 days old c) Pretreatment: no d d) Supplier/Source: E - Test Conditions: a) Dilution Water Sou b) Exposure Vessel T c) Nominal Concentration mg/l d) Stock Solutions Pri in MHRW e) Number of Replica f) Individuals per Rep g) Renewal Rate of T h) Water Temperature i) Light Condition: 16: j) Feeding: concentration exposure. - Method of Analytical 1200.7 - Statistical Method: a) Data Analysis: Sp	(Fish, fresh wate 27, EPA/600/6-9 1.4 d ata NSR, Fort Collin rce: moderately ype: 30ml plastic ations: 10,000, 5 eparations and S tes: 2-5 licates: 5 est Water: not re e: 25 °C 8h(light:dark) ted brine shrimp Monitoring: using earman-Karber r	r) 1/003 hard reconstitut c beaker ,000, 2,500, 1,25 Stability: 10,000r enewed nauplii was add g ICP according nethod	ted water (MHF 50 ng/I ed after 48h of to USEPA me	₹W) f
Remark Result	:	LC_{50} expressed as an Table: Mean LC_{50} valu	nydrous CaCl ₂ . es			
		Exposure period Number of test LC ₅₀ (mg/l)* Range (mg/l)** * Values are arithmetii ** Range of three I Cer	24h 3 >6660 4700->10000 c mean of 3 tests	48h 3 >6560 4390->10000	96h 3 4630 3930-5360	
Source Reliability	:	Tokuyama Corporation (2) valid with restriction	I IS			
Flag 15.07.2002	:	Guideline study Critical study for SIDS	endpoint			(74)
Type Species Exposure period Unit Analytical monitoring LC₅₀ Method	: : : : : : : : : : : : : : : : : : : :	static Lepomis macrochirus (96 hour(s) mg/l yes 9500 - 11300 other: Doudroff et al., (Fish, fresh wate 1951)	r)		

OECD SIDS		CALCIUM CHLORIDI
4. ECOTOXICITY		ID: 10043-52-4
		DATE: 15 11 200
Veer		1050
	•	1959 ne data
		no data
lest substance	•	as prescribed by 1.1 - 1.4
Method	:	
		a) Average Size: small(3.88cm 0.96g), medium(6.09cm 2.80g),
		large(14.24cm 54.26g)
		b) Age: Not described
		c) Pretreatment: acclimated for 7 days with dilution water before use
		d) Supplier/Source: a fish hatchery in Pennsylvania or Pennsylvania Fish
		Commission, USA
		- Test Conditions:
		 a) Dilution Water Source: prepared from distilled water and analytical
		grade or reagent chemicals
		b) Dilution Water Chemistry:
		KCI 0.02 g/l
		Na_2SiO_3 0.02
		NaHCO ₃ 0.04
		$MgSO_4_7H_2O$ 0.04
		$Ca(NO_3)_2$ 0.03
		CaCO ₃ 0.01
		K ₂ HPO ₄ 0.002
		Fe+++ 0.004
		c) Exposure Vessel Type: 5 gallon glass jar with cork stopper
		 d) Nominal Concentrations: not described
		e) Number of Replicates: 1 or 2
		f) Individuals per Replicates: 10
		 g) Renewal Rate of Test Water: not renewed, maintained the dissolved
		oxygen content at 5-9 ppm by bubbling compressed air
		h) Water Temperature: 20±1 °C
		i) Light Condition: not described
		 Method of Analytical Monitoring: not described
		- Statistical Method:
		a) Data Analysis: Doudoroff method
Remark	:	LC ₅₀ expressed as anhydrous CaCl ₂ .
Result	:	- 96 hours LC ₅₀ for three size ranges of fish
		size (length, weight) LC ₅₀
		small (3.88cm 0.96g) 9500 mg/l
		medium(6.09cm 2.80g) 9500 mg/l
		large $(14.24 \text{ cm} 54.26 \text{ g})$ 11300 mg/l
Source		Tokuyama Corporation
Reliability	:	(2) valid with restrictions
Ronabinty	•	Comparable to guideline study with acceptable restrictions
15.07.2002		(15
Туре	:	static
Species		Lepomis macrochirus (Fish. fresh water)
Exposure period		96 hour(s)
Unit	:	ma/l
Analytical monitoring	:	no
LC ₅₀		10650
Method		other
Year		1954
GLP	:	no data
Test substance	:	as prescribed by 11-14
Mothod	:	- Test Arganisms:
MELIUU	•	a) Size: $5-9 \text{ cm}$ $1-9 \text{ cm}$
		h) Δαe: not described
		a) Protroatmont: applimated for 7 days with dilution water before use
		of the real ment. acclimated for r days with dilution water before USE

OECD SIDS					CALCIUM CHLOR	IDE		
4. ECOTOXICITY					ID: 10043-	52-4		
		d) Supplier/S	Courses: e	, fich ho	DATE: 13.11.2	2002		
		- Test Condition	ons:	a lish ha	chery in Maryland, USA			
		a) Dilution Water Source: prepared from distilled water and analytical or						
		reagent chem	icals					
		b) Dilution W	ater Che	emistry:	0.02 a/l			
		Na ₂ Si	03		0.02			
		NaHC	Õ₃		0.04			
		MgSO	4_7H_2O		0.04			
		Ca(NC CaCO	J ₃) ₂		0.03			
		K ₂ HPC	\mathbf{D}_{4}		0.002			
		Fe+++	-		0.004			
		 c) Exposure d) Nominal C 12500 	Vessel ⁻ Concentr	Type: 5-g ations (a	gallon Pyrex jar with rubber stopper as mg/l): 6500, 8700, 10500, 10800, 1200)0,		
		e) Number o f) Individuals	f Replica per Rep	ates: 2 olicates:	10			
		g) Dosing Ra	ate, Flow	/-through	Rate: not renewed, maintained the			
		h) Renewal I	Rate of 1	Fest Wat	er: not renewed. aeration			
		i) Water Tem	nperature	e: 20±1 °	°C			
		j) Light Cond	lition: no	t describ	ed			
		- Method of Al	nalytical od (disso	lvionitor	ing: using Beckman pH meter (pH) and (gen)			
		- Statistical M	ethod:		(gon)			
. .		a) Data Anal	lysis: Do	udoroff r	nethod			
Remark	:	- Table: Resul	ed as an Its at 96	hours	CaCl ₂ .			
		 CaCl ₂ (mg/l)	 pH	Surv.(%)			
				·····	·			
		6500 6500	7.28	100				
		8700	7.30	80				
		8700	7.39	80				
		10500	7.46	60 60				
		10800	7.42	60 40				
		10800	7.33	40				
		12000	7.59	20				
		12000	7.60	10				
		- Water Chem	nistry in T	Test				
		Hardn	ess (mg/	/I CaCO	₃): 6314 - 11900			
		Alkalın	nity (mg/l): 32.6 - 49.6			
		pH		iiig/i)	: 7.19 - 7.80			
-		Water	Hardnes	ss Code	: 4 Very hard (>300 mg/l CaCO ₃)			
Source Reliability	:	I okuyama Co	orporatio	n ne				
Renability	•	Comparable to	o quideli	ne study	with acceptable restrictions			
15.07.2002			0			(102)		
Туре	:	static		, .				
Species Exposure period	:	Gambusia affi	<i>inis</i> (Fisł	n, fresh v	vater)			
Unit	:	mg/l						
Analytical monitoring	:	no data						
	:	10000						
	•	10-100						

OECD SIDS				CALCIUM CHLORID	Е
4. ECOTOXICITY				ID: 10043-52-	-4
				DATE: 15.11.200	12
Method	:	other: not me	ntioned		
Year	:	1957			
GLP	:	no data			
Test substance	:	no data			
Method	:	- Test Organi	sms:		
		a) Size: not	describe		
		 D) Age. adult a) Protroating 	it, iemaie	; limated for 2.2 weaks before use	
		d) Supplier/	Source: 9	Stillwater Creek in Payne Country	
		Oklahoma II	SA	Sumwater Greek in rayne Oodnity;	
		- Test Conditi	ions:		
		a) Dilution V	Vater Sou	urce: pond water (two farm ponds)	
		b) Exposure	Vessel	Type: cylindrical Pyrex jar 12 inch high and 12 inch i	n
		diameter, Ea	ch jar cor	ntained 15 I	
		c) Nominal (Concentr	ations: 10000, 18000, 24000 mg/l	
		d) Stock So	lutions P	reparations and Stability: not described	
		e) Number o	of Replica	ates: 1	
		f) Individuals	s per Rep	plicates: 10	
		g) Renewal	Rate of I	lest water: not renewed, aeration	
		n) Light Con Mothod of A	nalution. no	DL described	
		- Method OF A	Indiyiicai	Monitoring. Not descretved	
		a) Data Ana	livsis [.] Do	udoroff method	
Remark	:	I C ₅₀ express	ed as an	hydrous CaCla	
Result	:	Table: Toxicit	ty to Gan	nbusia	
			·		
		Temp.(°C)		20-23	
		Turb.(ppm)			
			Init.	320	
			Final	<25	
				0.8-7.0	
			24h	13400	
			48h	13400	
			96h	13400	
Source	:	Tokuyama Co	orporatio	n	
Reliability	:	(2) valid with	restrictio		
15 07 2002		Comparable	to guideli	Ine study with acceptable restrictions (10)	7)
13.07.2002				(10	')
Туре	:	static			
Species	:	other: Luciop	erca lucio	operca L.	
Exposure period	:	18 hour(s)			
Unit	:	mg/l			
Analytical monitoring	÷	no data			
LC ₀ Mothod	÷	4160 other: not me	ntioned		
Voar		1075	nuoneu		
GLP	:	no data			
Test substance	÷	no data			
Remark	:	No mortality a	at tested	concentration	
Source	:	Tokuyama Co	orporatio	n	
Test condition	:	Age/life stage	e: 11.5 - 1	16 mm	
Deliebility	_	Dilution water	r source:	pond water	
Reliability	:	(3) Invalid	on incuffi	cient for assessment	
10.06.2002		Documentatio			3)
10.00.2002				(5.	5)
Туре	:	static			
Species	:	Lepomis mac	rochirus	(Fish, fresh water)	

OECD SIDS					CALCIUM CHLORI	DE
4. ECOTOXICITY					ID: 10043-52	2-4
					DATE: 15.11.20)02
Exposure period	:	96 hour(s)				
Unit	:	mg/l				
Analytical monitoring	:	no				
	:	10650				
Method	:	other: Cairns, Scheie	er, Hess (´	1964)		
Year	:	1968				
GLP Toot out of an op	:	no ath an TO				
Test substance		Uller 15 Tokuyama Corporati	on			
Test condition	:	a) Dilution Water Sc	OUICE: SVI	othetic dilution wat	or	
rest condition	•	b) Dilution Water Cl	hemistry			
		KCI		0.02 a/l		
		Na ₂ SiO ₃		0.02		
		NaHCO ₃		0.04		
		MgSO ₄ _7H ₂ C)	0.04		
		Ca(NO ₃) ₂		0.03		
		CaCO ₃		0.01		
		K ₂ HPO₄		0.002		
				0.004		
Baliability		 c) water remperati (2) involid 	ure: 18±2			
Reliability	•	(3) Invaliu	ficient for	assassment		
11 06 2002		Documentation insur		assessment	(84)
11.00.2002					(0+)
Туре	:	static				
Species	:	Lepomis macrochirus	s (Fish, fre	esh water)		
Exposure period	:	24 hour(s)		·		
Unit	:	mg/l				
Analytical monitoring	:	no				
	:	8350				
Method	:	other: Freeman (195	3)			
Year	÷	1965				
GLP Tost substance		no data				
Source	:	Tokuvama Corporati	on			
Test condition		Dilution water source	e: Standar	d Reference Wate	r	
Reliability	÷	(3) invalid	. otanaa			
		Documentation insuf	ficient for	assessment		
10.06.2002					(22)
Туре	:	static				
Species	:	<i>Carassius auratus</i> (F	ish, fresh	water)		
Exposure period	:	96 hour(s)				
Unit Analytical monitoring	:	mg/l				
	:	3				
Method		other: not mentioned				
Year	÷	1937				
GLP	:	no data				
Test substance	:	no data				
Remark	:					
		Exposure period	LC ₀ (m	ng/l)		
			·			
		80 h	4			
		96 N	3			
		All fishes survived at	test cono		nnarent injuny	
Source		Tokuyama Corporati	. ເອຈເ ບບານ ດກ	entration without a	pparent injuly.	
Test condition		Age/life stage:	60 - 90) mm. 3 - 5 a		
	-	Temperature:	18 - 23	3°C		
		Dissolved oxygen:	6 - 7	mg/l		

OECD SIDS			CALCIUM CHLORIDE
4. ECOTOXICITY			ID: 10043-52-4
			DATE: 15.11.2002
Deliability	pH:	6.7	
Reliability	: (3) Doc	sumentation insufficient for a	issessment
11.06.2002	200		(26)
4.2 ACUTE TOXICITY	TO AQUA	ATIC INVERTEBRATES	
Tumo	. Sta	tio	
Type Species	: Sla • Dar	lic hnia magna (Crustacea)	
Exposure period	: 481	nour(s)	
Unit	: mg/	1	
Analytical monitoring	: No		
NUEC EC	: 20	00	
Method	: OE	CD Guide-line 202. part 1 "E	Daphnia sp., Acute Immobilisation Test"
Year	: 199	8	
GLP	: Yes	;	
Test substance	: as p	prescribed by 1.1 - 1.4	rne Cruetecce
Method	Te a)	Age: 0-24 hours	gna, Crustacea
	b)	Pretreatment: not described	1
	c)	Supplier/Source: Daphtoxkit	t F. magna from Bio International, The
	Net	herlands	
	- Te	St Conditions: Dilution Water Source: Eler	ndt M4 medium
	b)	Dilution Water Chemistry:	
	Tab	ele:Composition of Elendt M4	4 medium (prepared in ultrapure water)
		Compound	Concentration (mg/l)
		CaCl ₂ _2H ₂ O	290
		MgSO ₄ _7H ₂ O	120
			5.8
		Nanc O_3 NasSiOs 9HsO	10
		NaNO ₃	0.27
		KH₂PO₄	0.14
		K₂HPO₄	0.18
			2.8
		LiCl	0.30
		RbCl	0.072
		SrCl ₂ _6H ₂ O	0.020
		Na ₂ MoO ₄ _2H ₂ O	0.064
		CuCl ₂ _2H ₂ O	0.017
		200_2	0.013
		KI	0.0033
		Na ₂ SeO ₃	0.0023
		NH ₄ VO ₃	0.00060
		Na ₂ EDTA_2H ₂ O	2.5
		FeSU ₄ /H ₂ U	1.U 0.075
		Cvanocobalamine(B12)	0.001
		Biotine	0.00075

c) Exposure Vessel Type: 250ml grass beaker
d) Nominal Concentrations (as mg/l): 0, 1000, 1400, 2000, 2800, 4000
e) Stock Solutions Preparations and Stability: dissolving 8.20g calcium

OECD SIDS							CALCIUM CHLORIDE
4. ECOTOXICITY							ID: 10043-52-4
Remark Result	:	chloride in 2050 f) Number of F g) Individuals h) Light Condi - Statistical Me a) Data Analy analysis for EC EC ₅₀ and NOE shown as adde calcium chlorid - Table: Immob	0 ml E Replica per Re ition: 1 thod: sis: Fis 50 C expr cd calci e is ind ility of	lendt M4 ates: 3 eplicates 6 hours sher's E ressed a ium chlo cluded a water flo	4 medium s: 10 (from 6 a.) xact Test as anhydro oride conce as part of t eas during	m. to 10 p for NOEC ous CaCl ₂ . entraion to he test me g the test	.m.) light and 8 hours dark , Probit The toxic values are o the system, although edia.
		Nominal calcium chloride	Nur mol flea	mber of bile wate	er s)	Mean immobilit at test	 ty
		concentration (mg/l)	0	24	48	terminati (%)	on
		0	10 10 10	10 10 10	10 10 10	0	
		1000	10 10 10	10 10 10	10 10 10	0	
		1400	10 10 10	10 10 10	10 10 10	0	
		2000	10 10 10	10 10 9	10 10 9	3.3	
		2800	10 10 10	0 2 0	0 2 0	93	
		4000	10 9 10	0 0 0	0 0 0	100	
		- Table: Water	param	eters of	test soluti	ons	_
		Nominal calcium chloride concentration (mg/l)	Tem (°(perature C) conte	e Oxyger ent (mg/l)	ן ר	
		0 1000 1400 2000 2800 4000	20 19 19 19 19 19	.0 .9 .9 .9 .8 .9	8.4 8.7 8.5 8.5 8.5 8.6	{ { 	3.2 3.3 3.2 7.9 7.8 7.6
Source Reliability	:	Tokuyama Cor (1) valid withou OECD Guidelir	poratic it restri ne stud	on Iction Iy			

OECD SIDS					CAL	CIUM CHLORIDE
4. ECOTOXICITY						ID: 10043-52-4
						DATE: 15 11 2002
Flag		Critical study for SIDS	Conduciat			DIIIE. 10.11.2002
гау 15.11.2002	•	Childai study for SIDS	senapoint			(20)
15.11.2002						(20)
Type		Statio				
Type Species	:	Static Denhnia magna (Cruz	teese)			
Species		Daprinia magna (Crus	stacea)			
Exposure period	:	48 nour(s)				
Unit	:	mg/l				
Analytical monitoring	:	Yes				
LC ₅₀	:	2770				
Method	:	other: EPA/600/4-90/0	027, EPA/60	0/6-91/003		
Year	:	1997				
GLP	:	no data				
Test substance	:	as prescribed by 1.1 -	1.4			
Method	:	- Test Organisms:				
		a) Age: less than 24	hours old			
		b) Pretreatment: not	described			
		c) Supplier/Source: I	ENSR, Fort	Collins, CO	, USA	
		- Test Conditions:	,	,	,	
		a) Dilution Water So	urce: moder	atelv hard r	reconstitu	ted water (MHRW)
		b) Dilution Water Ch	emistry: not	described		()
		c) Exposure Vessel	Type: 30ml	plastic beak	er	
		d) Nominal Concent	rations (as n	na/l) 10000	5000 2	500 1250
		e) Stock Solutions P	renarations	and Stabilit	v 10 000)ma/Lin MHRW
		f) Number of Replica	tes: 2		.y. 10,000	
		a) Individuals per Re	nlicates: 5			
		h) Water Temperatu	re Range: 2	n °C		
		i) Light Condition: 16	Nange. 20			
		i) Eggli Condition. 10	or and the second s	K)		anaian waa addad at
		j) recuirig. yeasi/cer	opnyi/trout c		iyae susp	bension was added at
		Lest miliation.				
		- Method of Analytical	wonitoring:	using ICP	accordinę	g to USEPA method
		200.7				
		- Statistical Method:				
		a) Data Analysis: Sp	earman-Kar	ber method	1	
Remark	:	LC ₅₀ expressed as an	nydrous Ca	Cl_2 .		
Result	:				·	-
		Exposure periode	LC ₅₀ * (mg	Range*	'* (mg/l)	
						-
		24h	3250	2680-401	0	
		48h	2770	2330-323	0	
						-
		* Values are arithmeti	c means of	4 tests.		
		** Range of four LC ₅₀	S			
Source	:	Tokuyama Corporatio	n			
Reliability	:	(2) valid with restriction	ons			
		Guideline study				
15.07.2002						(74)
Туре	:	static				
Species	:	Ceriodaphnia sp. (Cru	ustacea)			
Exposure period	:	48 hour(s)	,			
Unit	:	Mg/I				
Analytical monitoring	:	Yes				
	:	1830				
Method		other: EPA/600/4-90/(027. FPA/60	0/6-91/003		
Year	:	1997	,, , , , , , , , , , , , , , , , ,	0.001/000		
GLP	:	no data				
Test substance	:	as prescribed by 1.1	14			
Mothod	:	- Test Organisme:	1.7			
METION	•	- Test Organisms.	hours old			
		h) Diretrootmont: not	described			
		c) Supplier/Source: I	LINGR, FUIL	Comis, CO	, USA	

OECD SIDS					CALC	CIUM CHLO	RIDE
4. ECOTOXICITY						ID: 10043	3-52-4
]	DATE: 15.11	.2002
Remark	:	 Test Conditions: a) Dilution Water Sc b) Dilution Water Cf c) Exposure Vessel d) Nominal Concent e) Stock Solutions F f) Number of Replica g) Individuals per Ref h) Water Temperatu i) Light Condition: 11 j) Feeding: yeast/ce test initiation. Method of Analytica 200.7 Statistical Method: a) Data Analysis: S LC₅₀ expressed as an 	purce: moden nemistry: not Type: 30ml p trations (as m Preparations ates: 2 eplicates: 5 ure Range: 20 6:8h(light:dar rophyl/trout o al Monitoring: spearman-Kan hydrous Ca0	rately hard re described blastic beake ng/I): 10000, and Stability 0 °C k) chow and alg using ICP a rber method Cl ₂ .	econstitut er 5000, 25 : 10,000n ae suspe ccording	ed water (MHI 00, 1250 ng/l in MHRW ension was add to USEPA me	RW) Jed at thod
Result	:	Exposure periode	L C* (ma	//)) Pange	(mg/l)		
					(mg/l)		
		24h	2260	1770-2680			
		48n	1830	1770-2030			
Source Reliability 11.06.2002	:	* Values are arithmet Tokuyama Corporatio (2) valid with restrictio Guideline study	ic means of 4 on ons	4 or 3 tests.			(74)
_							
Type Species Exposure period Unit Analytical monitoring EC₅₀ Method Year GLP Test substance Method		static Daphnia magna (Cru 48 hour(s) Mg/I no data 1062 other 1989 no data other TS: Dihydrate - Test Organisms: a) Age: Not describe b) Pretreatment: noi c) Supplier/Source: Toxicology Research - Test Conditions: a) Dilution Water So b) Dilution Water Ch Initial Physico	ed t described a natural por Centre, Lucl purce: filtered nemistry: ochemical Pro	nd at Gheru (know l aerated tub	Campus o ewell har	of the Industria d water Vater	al
		Parameter	Unit		Mean	Range	
		Temperature pH Dissolved oxygen Total hardness Total alkalinity Calcium Magnesium	°C mg/l mg/l as Ca mg/l as Ca mg/l mg/l	aCO₃ aCO₃	13 7.6 5.6 240 400 152 92	11.5-14.5 7.2-7.8 5.2-6.5 235-260 390-415 145-165 85-96	
		Chloride	mg/l		7	5-10	

c) Exposure Vessel Type: 200ml beaker

OECD SIDS				CALC	CIUM CHLORIDE
4. ECOTOXICITY					ID: 10043-52-4
]	DATE: 15.11.2002
Remark Result	:::	d) Nominal Concent e) Stock Solutions F f) Number of Replic g) Individuals per R h) Water Temperatu i) Light Condition: n - Method of Analytica - Statistical Method: a) Data Analysis: m EC ₅₀ expressed as a - Table: EC ₅₀ and 95 EC ₅₀ and 95% confid 	trations (as mg/l): not de Preparations and Stabilit ates: 3 eplicates: 10 ure Range: 11.5-14.5 °C ot described al Monitoring: not describ oving average-angle me nhydrous CaCl ₂ . % confidence limit 	escribed y: made in bed ethod	distilled water
Source	:	Tokuyama Corporatio	on		
Reliability	:	(2) valid with restriction	ONS line study with accortab	lo rostricti	
11.06.2002					(52)
Type Species Exposure period Unit Analytical monitoring EC ₅₀ Method Year GLP Test substance Method		semistatic other aquatic worm: 96 hour(s) mg/l yes 780 other 1991 No data As prescribed by 1.1 - Test Organisms: a) Age: not describe b) Pretreatment: ac c) Supplier/Source: Centre, Lucknow - Test Conditions: a) Dilution Water So b) Dilution Water Ch Initial Physico	Tubifex tubifex - 1.4 ed climated to laboratory co Gheru Campus of the Ir purce: Tubewell water nemistry: pochemical Properties of	onditions fo ndustrial To Tubewell V	or 7days before use. oxicology Research Vater
		Parameter	Unit	Mean	Range
		Temperature pH Dissolved oxygen Total hardness Total alkalinity Calcium Magnesium Chloride 	°C mg/l mg/l as CaCO ₃ mg/l as CaCO ₃ mg/l mg/l Type: 200ml beaker trations: not described Preparations and Stabilit ates: 3 eplicates: 10 Test Water: every 24 hr	30 7.6 5.8 245 400 160 90 10 	29.5-31 7.5-7.7 5.2-6.0 230-250 390-410 151-167 80-98 7-12

<u>OECD SIDS</u>				CA	<u>lcium</u> chlor	IDE
4. ECOTOXICITY					ID: 10043-	52-4
Remark Result	:	j) Light Cor k) Feeding - Method of - Statistical I a) Data An Endpoint: im EC ₅₀ expres 	ndition: not de : no Analytical Mor Method: alysis: Moving mobilization sed as anhyd EC ₅₀ (mg/l)	scribed nitoring: not described a average-angle method rous CaCl ₂ . 95% confidence limits (mg/l)		
		24h 48h 96h 	2260 1830 780	2080-2530 910-1240 690- 910		
Source Reliability 15.07.2002	:	Tokuyama ((2) valid with Comparable	Corporation n restrictions to guideline s	tudy with acceptable restri	ctions	(51)
Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquati 48 hour(s) Mg/l No data 19400 other: not m 1974 No data No data - Test Orgar a) Age: Ad b) Average c) Supplier - Test Condi a) Dilution b) Dilution 0.58meq/l, C 0.18meq/l, C 0.18meq/l, C 0.18meq/l, C c) Exposur d) Nominal e) Stock Se f) Number g) Individua h) Water T i) Light Cor j) Feeding: - Method of - Statistical I	c crustacea: C entioned hisms: ult size: 0.62 mr /Source: Lake tions: Water Source Water Chemis Ca 0.46 meq/I, Cl 0.06meq/I e Vessel Type Concentration blutions Prepa of Replicates: als per Replicates: als per Replicates of Replicates: als per Replicates of Replicates als per Re	n Monate : Lake Monate water stry: pH 7.2, conductivity 75 Mg 0.20meq/l, Na+K 0.16 e: 20ml Carrel flask ns (as mg/l): not described rations and Stability: prepa not described ates: 5-20 ange: 9.5-10.5 °C 12 hr/day hitoring: not described	5µs, alkalinity meq/l, sulphate ared in lake water	
Remark Result	:	LC_{50} expres 48h-LC ₅₀ : 19 95% Confide	sed as anhydr 9400 mg/l ence limits: 25	ous CaCl ₂ . 600-14700 mg/l	Japer	
Source Reliability 11.06.2002	:	I okuyama ((2) valid with Comparable	Corporation restrictions to guideline s	tudy with acceptable restri	ctions	(4)
Type Species Exposure period	:	static other aquati 48 hour(s)	c crustacea: <i>E</i>	ūdiaptomus padanus pada	anus	

OECD SIDS 4. ECOTOXICITY

Unit	:	Mg/I	
Analytical monitoring	:	No data	
	:	11100	
Method	:	other: not mentioned	
Year	:	1974	
GLP	:	No data	
Test substance	:	No data	
Method	:	- Test Organisms:	
		a) Age: Adult	
		b) Average size: 0.43mm	
		c) Supplier/Source: Lake Monate	
		- Test Conditions:	
		a) Dilution Water Source: Lake Monate water	
		 b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 	
		0.58meq/l, Ca 0.46 meq/l, Mg 0.20meq/l, Na+K 0.16meq/l, sulphate	
		0.18meq/l, Cl 0.06meq/l	
		 c) Exposure Vessel Type: 20ml Carrel flask 	
		d) Nominal Concentrations (as mg/l): not described	
		e) Stock Solutions Preparations and Stability: prepared in lake water	
		f) Number of Replicates: not described	
		g) Individuals per Replicates: 5-20	
		h) Water Temperature Range: 9.5-10.5 °C	
		I) Light Condition: 70 lux, 12 hr/day	
		j) Feeding: no	
		- Method of Analytical Monitoring: not described	
		- Statistical Method.	
Bomark		a) Data Analysis. Graphic method using log-probit paper	
Reult	:	20_{50} expressed as annyulous $CaCl_2$.	
Result	•	95% Confidence limits: 15100-8100 mg/l	
Source		Tokuyama Corporation	
Reliability	:	(2) valid with restrictions	
Ronability	•	Comparable to quideline study with acceptable restrictions	
		יייייייייייייייייייייייייייייייייייייי	
11.06.2002			(4)
11.06.2002			(4)
11.06.2002 Type	:	static	(4)
11.06.2002 Type Species	:	static other aquatic crustacea: Daphnia hyalina	(4)
11.06.2002 Type Species Exposure period	:	static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s)	(4)
11.06.2002 Type Species Exposure period Unit	:	static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring	:	static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀	: : : : : : : : : : : : : : : : : : : :	static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data No data	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data No data - Test Organisms:	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC₅0 Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC₅0 Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75us, alkalinity	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 0.58meg/L Ca 0.46 meg/L Ma 0.20meg/L Na+K 0.16meg/L subbate	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 0.58meq/I, Ca 0.46 meq/I, Mg 0.20meq/I, Na+K 0.16meq/I, sulphate 0.18meq/I, Cl 0.06meq/I	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 0.58meq/I, Ca 0.46 meq/I, Mg 0.20meq/I, Na+K 0.16meq/I, sulphate 0.18meq/I, Cl 0.06meq/I c) Exposure Vessel Type: 300ml cylindrical class tube	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 0.58meq/I, Ca 0.46 meq/I, Mg 0.20meq/I, Na+K 0.16meq/I, sulphate 0.18meq/I, Cl 0.06meq/I c) Exposure Vessel Type: 300ml cylindrical glass tube d) Nominal Concentrations (as mg/I): not described	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/l No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 0.58meq/l, Ca 0.46 meq/l, Mg 0.20meq/l, Na+K 0.16meq/l, sulphate 0.18meq/l, Cl 0.06meq/l c) Exposure Vessel Type: 300ml cylindrical glass tube d) Nominal Concentrations (as mg/l): not described e) Stock Solutions Preparations and Stability: prepared in lake water	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/l No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 0.58meq/l, Cl 0.06meq/l c) Exposure Vessel Type: 300ml cylindrical glass tube d) Nominal Concentrations (as mg/l): not described e) Stock Solutions Preparations and Stability: prepared in lake water f) Number of Replicates: not described	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/l No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 0.58meq/l, Ca 0.46 meq/l, Mg 0.20meq/l, Na+K 0.16meq/l, sulphate 0.18meq/l, Cl 0.06meq/l c) Exposure Vessel Type: 300ml cylindrical glass tube d) Nominal Concentrations (as mg/l): not described e) Stock Solutions Preparations and Stability: prepared in lake water f) Number of Replicates: not described g) Individuals per Replicates: 15-20	(4)
11.06.2002 Type Species Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method		static other aquatic crustacea: <i>Daphnia hyalina</i> 48 hour(s) Mg/I No data 8300 other: not mentioned 1974 No data - Test Organisms: a) Age: Adult b) Average size: 1.27 mm c) Supplier/Source: Lake Monate - Test Conditions: a) Dilution Water Source: Lake Monate water b) Dilution Water Source: Lake Monate water b) Dilution Water Chemistry: pH 7.2, conductivity 75µs, alkalinity 0.58meq/I, Ca 0.46 meq/I, Mg 0.20meq/I, Na+K 0.16meq/I, sulphate 0.18meq/I, Cl 0.06meq/I c) Exposure Vessel Type: 300ml cylindrical glass tube d) Nominal Concentrations (as mg/I): not described e) Stock Solutions Preparations and Stability: prepared in lake water f) Number of Replicates: not described g) Individuals per Replicates: 15-20 h) Water Temperature Range: 9.5-10.5 °C	(4)

OECD SIDS	CALCIUM	<u>CHLORIDE</u>
4. ECOTOXICITY	ID:	10043-52-4
	DATE	: 15.11.2002
	i) Ecoding: no	. 10.11.2002
	J) Feeding. No	
	Statistical Method:	
	- Statistical Method.	
Dement	a) Data Analysis. Graphic method using log-probit paper	
Remark	LC_{50} expressed as annydrous CaCl ₂ .	
Result	48n-LC ₅₀ : 8300 mg/l	
	95% Confidence limits: 11000-6300 mg/l	
Source	Tokuyama Corporation	
Reliability	(2) valid with restrictions	
	Comparable to guideline study with acceptable restrictions	
11.06.2002		(4)
_		
Туре	static	
Species	other aquatic worm: Caenorhabditis elegans	
Exposure period	24 hour(s)	
Unit	Mg/I	
Analytical monitoring	yes	
	44400	
Method	other	
Year	1997	
GLP	No data	
Test substance	No data	
Method	- Test Organisms:	
	a) Strain: Wild type (N2)	
	b) Average size: not described	
	- Test Conditions:	
	a) Dilution Water Source: K-medium	
	b) Dilution Water Chemistry: 2.36g KCl+3.0g NaCl /l of deion	ized water
	c) Exposure Vessel Type: 12-well tissue culture plate	
	d) Nominal Concentrations (as mg/l): 6 conc. and control	
	e) Stock Solutions Preparations and Stability: prepared with t	heCaCl ₂
	using K-medium as the diluent	· · · · · -
	f) Number of Replicates: 6	
	g) Individuals per Replicates: 9-11	
	h) Water Temperature Range: 20 °C	
	i) Light Condition: 70 lux 12 hr/day	
	- Method of Analytical Monitoring: atomic absorption spectroph	notometer
	- Statistical Method:	
	a) Data Analysis: Prohit procedure	
Romark	This experiment was repeated three times	
Kemark	I C expressed as anbydrous CaCl.	
Posult	$24b_{-1}C_{-1}$ (mean+SD): $4/400+1000$ mg/l (n=3)	
Source	Tokuyama Corporation	
Poliability	(2) valid with restrictions	
Reliability	(2) value with restrictions	
15.07.2002		(00)
15.07.2002		(99)
Туре	static	
Spacies	other aquatic crustaces: Niteers chinings	
Species Exposure period	Oner aqualic crusiacea. Micora spirilpes	
Exposure period	ao nour(a) Ma/l	
Unit Apolytical manifestry	iviy/i No doto	
	IDUU athan nat mantianad	
wietnoa		
rear		
GLP	NO data	
Test substance	No data	
Method	- Test Organisms:	
	a) Age: adult	
	b) Average size: 0.7-0.8 mm	
	- Test Conditions:	

OECD SIDS				CALCI	UM CHLORIDE
4. ECOTOXICITY					ID: 10043-52-4
4. ECOTOXICITY	a b c d e f) g h i) j) - N - S a LC : 96) Dilution Water So) Dilution Water Ch) Exposure Vessel) Nominal Concentr) Stock Solutions P Number of Replica) Individuals per Re) Water Temperatur Light Condition: no Feeding: no Method of Analytical statistical Method:) Data Analysis: Litte 50 expressed as an h-l Cso: 1600 mg/l	urce: brakish emistry: salin Type: Test tu rations (as m reparations a ates: 1 eplicates: 10 re Range: 20 of described Monitoring: chfield & Will hydrous Ca0	D n water nity; 0.7%, pH; 8.0, alka ube ng/l): 10 conc. and contr and Stability: not descri D±0.5 °C atomic absorption spec coxon (1949) Cl ₂ .	ID: 10043-52-4 ATE: 15.11.2002 Ilinity; 1.5 meqv/l ol bed
Rooun	. 00	% Confidence limits	s: 1490-2140) mg/l	
Source Test condition	: To : Ag Te All DH Ur	kuyama Corporatio e/life stage: adult mperature: 20 °C kalinity: 75 mg/l Ca(l: 8.0Salinity: 7 ppt measured concent	CO_3	· · · · g · ·	
Reliability	: (2)	valid with restrictio	ons		
/	Co	mparable to guideli	ine study wit	h acceptable restriction	S
15.07.2002					(5)
Type Species Exposure period Unit Analytical monitoring LC₅₀ Method Year GLP Test substance Method	: sta : Da : 48 : mg : ye : 1 : ott : 19 : No : 0tt : - T a b c : - T a b Ta	atic phnia magna (Crus hour(s) g/l s 285 her: not mentioned 72 o data her TS: Dihydrate est Organisms:) Age: 12±12 hr) Pretreatment: not) Supplier/Source: I rest Conditions:) Dilution Water So) Dilution Water Ch ble (mg/l except for	discribed University of urce: Lake S emistry: • pH)	Michigan, USA Superior water	
	lte	m	Mean	Range	
	pH Dis To All CI Na Ca Mg Sr Ba Fe Mr Cr	ssolved O ₂ tal hardness kalinity	7.74 9 45.3 42.3 1.217 1.13 13.695 3.123 0.534 0.016 0.014 0.023	7.4-8.2 - 44-53 41-50 1.17-1.34 1.09-1.19 13-14.7 2.94-3.59 0.48-0.59 0.012-0.027 0.008-0.022 0.002-0.083 0.0002-0.0115 0.002-0.02	

OECD SIDS				CALCIUM CHLORIDI	Ξ
4. ECOTOXICITY				ID: 10043-52-4	4
				DATE: 15.11.2002	2
		Al	-	0.001-0.026	-
		Zn	0.00078	0.001-0.0027	
		Ni	<0.0005	-	
		Pb	-	0.007-0.02	
			<0.00151	-	
		Ha	<0.00001	-	
		Cd	< 0.0001	-	
Remark Result Source Reliability 15.07.2002		c) Exposure Vessel T d) Nominal Concentra 831, 1110, 1380 e) Individuals per Rep f) Water Temperature g) Feeding: suspensio granules - Method of Analytical American Public Healtl - Statistical Method: a) Data Analysis: Litc LC ₅₀ expressed as anh 48h-LC ₅₀ : 1285 mg/l Tokuyama Corporation (2) valid with restrictior Comparable to guidelin	Type: 40ml con ations (as mg/l blicates: 10 e Range: 18 °C on of powdere Monitoring: ac h Association of hifield and Wil hydrous CaCl ₂ .	ical centrifuge tube): 0, 86.4, 173, 277, 385, 554, 692, d dried grass and enriched trout-fry cording to procedures outlined by the et al.(1960) coxon	
15.07.2002				8)	')
Type Species Exposure period Unit Analytical monitoring LC₅₀ Method Year GLP Test substance		static Daphnia magna (Crust 48 hour(s) mg/l no data 3005 other: Anderson et al, (1965 no data no data	acea) (1948)		
Result	:	Exposure periode	LC ₅₀ (mg/l)		
		24h 48h	3526 3005		
Source Test condition Reliability 11.06.2002	:	Tokuyama Corporation Dilution water source: 3 (3) invalid Documentation insuffic	n Standard Refe cient for assess	erence Water sment (22	2)
Type		static			
Species	:	Daphnia magna (Crust	acea)		
Exposure period	:	96 hour(s)			
Unit	:	mg/l			
Analytical monitoring	:	no data			
LC ₅₀ Mothod	÷	049 other: Anderson at al. 4	(1048)		
wethod Year	:	ouner: Anderson et al, ((1948)		
GIP	:	no data			
Test substance	•	no data			
Result	÷				
	•	Exposure periode	LC ₅₀ (mg/l)		

		24h 1838 48h 759 72h 759 96h 649	
Source	:	Tokuyama Corporation	
Reliability	:	(3) invalid	
11.06.2002		Documentation insufficient for assessment	(22)
Туре	:	static	
Species	:	other aquatic mollusc: <i>Lymnaea</i> sp.	
Exposure period	÷	96 NOUR(S) ma/l	
Analytical monitoring	÷	no data	
	:	2573	
Method	÷	other: Anderson et al, (1948) 1965	
GLP	÷	no data	
Test substance	:	no data	
Result	:	Exposure period LC ₅₀ (mg/l)	
		 24h 4485	
		48h 3094	
		72h 3308 96h 2573	
Source	:	Tokuvama Corporation	
Test condition	:	Age/life stage: eggs	
	_	Dilution water source: grass-wool filtered University Lake water	
Reliability	:	(3) Invalid Documentation insufficient for assessment	
15.07.2002			(22)
Туре	:		
Species	:	Daphnia magna (Crustacea)	
Unit	÷	ma/l	
Analytical monitoring	:	no	
Toxicity threshold	:	920 other: Anderson (1944 and 1946)	
Year	:	000 000 000 (1944 and 1940) 1948	
GLP	:	no	
Test substance	:	other TS: calculated as anhydrous $CaCl_2$	
kemark Source	:	This endpoint can be considered at EG_{50} (immobilisation).	
Test condition	:	Dilution water source: Lake Erie water	
Reliability	:	(3) invalid	
10.06.2002		Documentation insufficient for assessment	(3)
Туре	•	static	
Species	:	Daphnia magna (Crustacea)	
Exposure period	:	15 minute(s)	
Unit Analytical monitoring	÷	mg/l no data	
LOEC	:	1332	
Method	:	other: not mentioned	

4. ECOTOXICITY

ECD SIDS		CALCIUM CHLORIDE
		DATE: 15.11.2002
Year	: 1944	
GLP	: no data	
Test substance	: no data	
Test condition	· Age/life stage: 8 hour your	
	Temperature: 25 °C	'9
	Effect endpoint: threshold v	alue for immobilization
Reliability	: (3) invalid	
40.00.0000	Documentation insufficient	for assessment
10.06.2002		(2
Туре	:	
Species	: other: <i>Polycelis nigra</i>	
Exposure period	: 48 hour(s)	
Analytical monitoring	- mg/i	
LC ₅₀	. 7200	
Method	: other	
Year	: 1940	
GLP	: no data	
Test substance	: no data	
Source Poliability	: I okuyama Corporation : (3) invalid	
Reliability	Documentation insufficient	for assessment
12.06.2002		(47
Endpoint Exposure period	: biomass : 72 hour(s)	
Exposure period	: /2 nour(s) : mg/l	
Analytical monitoring	: no	
EC ₅₀	: 2900	
EC ₂₀	: 1000	
Method Year	OECD Guide-line 201 Alga 1998	ae, Growth Inhibition Test
GLP	: ves	
Test substance	: as prescribed by 1.1 - 1.4	
Method	: - Lest Organisms:	Number): ATCC 22662
	- Test Conditions	Number). ATOG 22002
	a) Preculture: was transfe	rred into fresh algal medium 4 days prior to the
	start of the test	
	b) Test Medium: OECD m	
	l able:Composition of alga	ai medium (prepared in ultrapure water)
	Compound	Concentration (mg/I)
	NH₄CI	15
	MgCl ₂ _6H ₂ O	12
	CaCl ₂ _2H ₂ O	18
		15
		ι.υ 0.048
		0.0-0
	Na ₂ EDTA 2H ₂ O	0.10
	Na ₂ EDTA_2H ₂ O H ₃ BO ₃	0.10 0.19
	Na ₂ EDTA_2H ₂ O H ₃ BO ₃ MnCl ₂ _4H ₂ O	0.10 0.19 0.42

					DATE: 15.11.2002
	Cou Cuu Na Nal	Cl2_6H2O Cl2_2H2O 2M0O4_2H HCO3	I₂O	0.0015 0.00001 0.007 50	
	c) Expose d) Nomina e) Stock S chloride in f) Numbe g) Initial C h) Light C - Statistica a) Data A the formula	are Vessel al Concen Solutions I 1 litre alga r of Replic Cell Densit condition: I Method: nalysis: co a;	I Type: Er trations (a Preparatic al medium cates: 3 (6 ty: 1.0 x 1 wavelengt ell density	lenmeyer flask as g/l): 0, 1.0, ons and Stabili for control) 0 ⁴ cells/ml th 400-700 nm measuremen	ty: dissolving 4.01g calcium ty: dissolving 4.01g calcium , Intensity 80.2 μ E.m ⁻² .s ⁻¹ t and calculation according to
	An	N1-N0 r = 2 n=:	n=n N(n-1 +[SUM] 2 2) + Nn - 2N0	
	where An = bio Nn = cel	mass inte I density c	gral on da	ay n (area und cells/ml)	er the growth curve)
Remark	: EC ₅₀ and E as added c	C ₂₀ expre	essed as a loride con	anhydrous Ca centration to t	Cl ₂ . The toxic values are shown he system, although calcium
Result	: - Table: Me	easured al	lgal cell de	ensities	
	Nominal te concentrat (mg/l)	st Cell ion Day 1	density x Day 2	10 ⁴ (cells/ml) Day 3	
	0	2.494	15.24	77.62	
	0	2.324	13.05	61.49	
	0	2.282	14.10	68.88	
	0	2.409	15.44	74.73 81 01	
	0 0	2.367	13.62	63.51	
	1000	1.859	9.106	39.74	
	1000	2.240	13.43	70.85	
	1000	2.071	12.02	60.09	
	1400	1.902	10.99	48.54	
	1400	1.859	10.19	46.84	
	1400	1.817	10.86	48.29	
	2000	1.859	17.49	33.98	
	2000	2.113	15.82	43.79	
	2000	1.902	12.52	32.03	
	2800	1.986	12.52	44.04	
	2800 2800	2.155 1.732	8.389 9.645	30.73 26.78	
	4000	1.775	8.299	19.88	
	4000 4000	1.563 1.732	6.336 11.93	19.26 18.35	

4. ECOTOXICITY

- Table: Percent biomass inhibition per concentration

- ·

	Nominal	test	Percent	growth in	hibition			
	concentr (mg/l)	ation Are	ea under	the growth	n curve	_		
	0		0			-		
	1000		21.2					
	1400		33.6					
	2000		35.6					
	2800		47.1					
	4000		64.9 			-		
	- Table:	Water para	ameters c	f test solu	itions			
	concent CaCl ₂ (ration Te mg/l)	emperatu (°C)	re pH				
		0	22.2		8.5			
	1	000	22.2		7.5			
	1	400	22.4		7.8			
	2	000	22.2		7.9			
	2	800	22.3		7.9			
	4	000	22.3		7.8			
	- Table:	EC ₅₀ and E	EC ₂₀					
	Hours o	f E	C ₅₀	EC ₂₀				
	exposu	re (ı	mg/l) 	(mg/l)				
	72	29	900	1000				
Source Reliability	: Tokuyan : (1) valid OECD G	Tokuyama Corporation (1) valid without restriction OECD Guideline study						
Flag 15.11.2002	: Critical s	tudy for Sl	IDS endp	oint		(19)		
Species Endpoint	: Selenas : growth ra	trum caprio ate	cornutum	(Algae)				
Exposure period	: 72 hour(s)						
	: mg/l							
	: 110							
	· 24000							
LO ₂₀ Method		uide_line (a Growth	Inhibition Tea	t "		
Voar	· 1008	1998						
GIP	· 1990							
Test substance	: as preso	ribed by 1	1 - 1 4					
Method	: - Test O	roanisms:						
litetiteta	a) Supr	a) Supplier/Source (Strain Number): ATCC 22662						
	- Test C	- Test Conditions:						
	a) Prec	a) Preculture: was transferred into fresh algal medium 4 days prior to the						
	start of t	start of the test						
	b) Test	Medium: (OECD me	edium				
	c) Expo	sure Vess	el Type:	Erlenmeve	er flask			
	d) Nom	inal Conce	entrations	(as a/l): (), 1.0, 1.4, 2.0	2.8.4.0		
	e) Stoc	k Solution	s Prepara	tions and	Stability: disso	olving 4.01g calcium		
	chloride	in 1 litre al	gal medi	im				
	f) Num	or of Don	liestes: 2	(6 for con	trol)			
					CALCIUM CHLORII			
--------------	---	------------------	----------------	-----------------	--			
LECOTOXICITY					ID: 10043-52			
					DATE: 15.11.20			
		h) Light Cond	dition: wa	velength 4	400-700 nm, Intensity 80.2 μE.m ⁻² .s ⁻¹			
		- Statistical Me	ethod:					
		a) Data Anal	ysis: cell	density me	easurement and calculation according to			
		the formula;	L. (110					
		Tho or	In(N3	5/NU)				
		The gr	owin raie ว	;				
Remark	:	FC₅₀ and FC₂₀	express	sed as anh	vdrous CaCl ₂ . The toxic values are show			
	-	as added calc	ium chlor	ride concei	ntration to the system, although calcium			
		chloride is incl	uded as	part of the	test media.			
Result	:	- Table: Meas	ured alga	al cell dens	ities			
			 Coll do	10 ⁻	4 (aplla/ml)			
		Nominal test	Cell de	ensity x 10				
		(mg/l)	Day 1	Day 2	Day 3			
		0	2.494	15.24	77.62			
		0	2.324	13.05	61.49			
		0	2.282	14.10	68.88			
		0	2.409	15.44	74.73			
		0	2.536	16.15	81.91			
		0	2.367	13.62	63.51			
		1000	1.859	9.106	39.74			
		1000	2.240	13.43	70.85			
		1000	2.071	12.02	60.09			
		1400	1.902	10.99	48.54			
		1400	1.859	10.19	46.84			
		1400	1.817	10.86	48.29			
		2000	1.859	17.49	33.98			
		2000	2.113	15.82	43.79			
		2000	1.902	12.52	32.03			
		2800	1.986	12.52	44.04			
		2800	2.155	8.389	30.73			
		2800	1.732	9.645	26.78			
		4000	1.775	8.299	19.88			
		4000	1.563	6.336	19.26			
			4 = 0 0	44.00	10.05			

(mg/l) Growth rate 0 0 1400 9.9 2000 15.5 2800 17.6	Nominal test	Percent growth inhibition
0 0 1000 4.9 1400 9.9 2000 15.5 2800 17.6	(mg/l)	Growth rate
4000 31.0	0 1000 1400 2000 2800 4000	0 4.9 9.9 15.5 17.6 31.0

- Table: Water parameters of test solutions

concentration Temperature pH

OECD SIDS 4. ECOTOXICITY

		CaCl ₂ (mg/l) (°C)	
		0 22.2 8.5 1000 22.2 7.5 1400 22.4 7.8 2000 22.2 7.9 2800 22.3 7.9 4000 22.3 7.8	
		- Table: EC_{50} and EC_{20}	
		Hours of EC_{50} EC_{20} exposure (mg/l) (mg/l)	
		72 > 4000 2700	
Source Reliability Flag 15.11.2002	:	Tokuyama Corporation (1) valid without restriction OECD Guideline study Critical study for SIDS endpoint	(19)
Species Endpoint Exposure period Unit Analytical monitoring EC Method Year GLP		Anabaena sp. (Algae) other: Increase glycogen and sporulation 20 day mg/l no data 110 other: not mentioned 1980 no data	
Test substance Source Test condition	:	as prescribed by 1.1 - 1.4 Tokuyama Corporation Static test Temperature: 30 °C 24 hour photoperiod	
	•	(3) Invalid Documentation insufficient for assessment	(40)
10.06.2002 Species Endpoint Exposure period Unit Analytical monitoring LC₅₀ Method Year GLP		other algae: <i>Nitzschia linearis</i> growth rate 120 hour(s) mg/l no 3130 other: Cairns, Scheier, Hess (1964) 1968 no	(49)
Test substance Source Test condition Reliability 10.06.2002		no data Tokuyama Corporation Test Medium: synthetic dilution water for diatom (3) invalid Documentation insufficient for assessment	(84)
Species Endpoint Exposure period Unit	:	<i>Chlorella vulgaris</i> (Algae) biomass 120 day mg/l	

OECD SIDS							CALC	CIUM C	HLOR	IDE
4. ECOTOXICITY								ID:	10043-5	52-4
]	DATE:	15.11.2	002
Analytical monitoring	:	no data								
LOEC	:	>= 140								
Method	:	other: not m	entioned							
Year	:	1965								
GLP Tantaskatas	:	no data								
lest substance	:	other IS: H	exanyorate) Jaho Jaho J						
Remark			Corporation	nnyarou	IS CaCI2					
Source Tost condition	:	Static test	Jorporation	1						
Test condition	•	Boom temp	oraturo							
		nH < 7	crature							
		Effect endo	oint: lowes	t inhibitc	orv conce	entration				
Reliability	:	(3) invalid				onnation				
		Documenta	tion insuffic	cient for	assessr	nent				
10.06.2002										(21)
Species	:	other aquati	ic plant: Le	emna mil	nor L.					
Endpoint	:	other: frond	number							
Exposure period	:	14 day								
Unit	:	mg/l								
Analytical monitoring	÷	7000								
		7200								
LOEC		other								
Year	:	1008								
GLP		no data								
Test substance		no data								
Result	:	Frond numb	er of duck	weeds e	exposed	to differe	ent conce	entration	of teste	d
		solution dur	ing 14 day	s.						
		Conc.	no.	Relat	tive frond	d numbe	r* by gro	wth period	ods	
		(mg/l)	at Odav	 3dav	5dav	8dav	10dav	12dav	14dav	
		2400	2.0	0.44	1.69	3.31	7.13	11.56	18.19	
		Control	2.0	0.50	1.88	3.00	6.38	10.13	14.00	
									7.04	
		4800 Countral	3.25	0.78	1.18	2.34	4.19	6.26	7.24	
		Control	3.03	0.75	1.40	2.30	3.90	4.75	5.63	
		7200	3 0	0 4 2	1 33	1 54	3 17	4 46	6 33	
		Control	3.0	1 17	1.00	1.04	3 23	3.90	4 29	
		9600	2.38	0.52	1.10	2.06	3.231	5.10	6.73	
		Control	2.38	0.69	1.88	3.06	5.96	8.27	11.33	
		* Relative fr	ond numbe	er = ([no	. at day	n] - [no.	at day 0]]) / [no. a	at day 0]	
0		n=3,5,8,12	2,14	_						
Source Boliability		1 OKUyama (Jorporation	n						
Reliability	•	Documentat	tion insuffi	cient for	access	nent				
11.06.2002		Documenta			2336331	nont			(100)
									(,
		DCANIEME								
	NUU		L.G. DAU							
Туре		aquatic								

туре		aquatic
Species	:	activated sludge, industrial
Exposure period	:	
Unit	:	mg/l

OECD SIDS 4. ECOTOXICITY

Analytical monitoring	:	no data
NOAEL	:	= 20000
Method	:	other
Year	:	1985
GLP	:	no data
Test substance	:	no data
Source	:	Tokuyama Corporation
Reliability	:	(4) not assignable
-		Only secondary literature
11.06.2002		

(98)

4.5.1 CHRONIC TOXICITY TO FISH

4.5.2 CHRONIC TOXICITY TO AQUATIC INVERTEBRATES

Species Endpoint Exposure period Unit Analytical monitoring LC ₅₀ Method Year GLP Test substance Method	Daphnia magna (Cru mortality 21 day mg/l no data 920 other: not mentioned 1972 no data no data - Test Organisms: a) Age: 12±12 hr b) Pretreatment: no c) Supplier/Source: - Test Conditions: a) Dilution Water Si b) Dilution Water C Table (mg/l except for	ustacea) ot discribed University of ource: Lake S hemistry: or pH)	^f Michigan, USA Superior water
	Item	Mean	Range

Item	Mean	Range
 рН	7.74	7.4-8.2
Dissolved O ₂	9	-
Total hardness	45.3	44-53
Alkalinity	42.3	41-50
CI	1.217	1.17-1.34
Na	1.13	1.09-1.19
Са	13.695	13-14.7
Mg	3.123	2.94-3.59
K	0.534	0.48-0.59
Sr	0.016	0.012-0.027
Ва	0.014	0.008-0.022
Fe	0.023	0.002-0.083
Mn	-	0.0002-0.0115
Cr	-	0.002-0.02
Al	-	0.001-0.026
Zn	0.00078	0.001-0.0027
Ni	<0.0005	-
Pb	-	0.007-0.02
Cu	0.00151	0.0003-0.0032
Со	<0.0005	-
Hg	<0.00001	-
Cd	<0.0001	-

		<u>CALCIUM</u> CHLOKIDE	5
		ID: 10043-52-4	ŧ
		DATE: 15.11.2002	2
c) Exposure V d) Nominal Co 831, 1110, 138 e) Number of f) Individuals p g) Water Tem h) Light Condi i) Feeding: sus granules - Method of Ana American Publi al.(1960) - Statistical Met a) Data Analys	Vessel Type: 250 ml l oncentrations (as mg 0 Replicates: 4 ber Replicates: 5 perature Range: 18 ition: 16:8h(light:dark spension of powdere alytical Monitoring: a c Health Association thod:	DATE: 15.11.2002	
 CC₅₀ expressed Other observation enzyme activitie Tokuvama Com 	ions: reproductive im es. poration	^{2;} ipairments, body weight, protein and	
: (2) valid with re	strictions		
Comparable to	guideline study with	acceptable restrictions (8))
 Daphnia magna reproduction ra 21 day mg/l no data 610 320 other: not ment 1972 no data no data - Test Organism a) Age: 12±12 b) Pretreatme c) Supplier/Soc - Test Condition a) Dilution Wa b) Dilution Wa 	a (Crustacea) te ioned ns: hr nt: not discribed purce: University of M ns: iter Source: Lake Su iter Chemistry: eept for pH)	lichigan, USA perior water	
Item	Mean	Range	
pH Dissolved O ₂ Total hardness Alkalinity Cl Na Ca Mg K Sr Ba Fe Mn Cr Al	7.74 9 45.3 42.3 1.217 1.13 13.695 3.123 0.534 0.016 0.014 0.023	7.4-8.2 - 44-53 41-50 1.17-1.34 1.09-1.19 13-14.7 2.94-3.59 0.48-0.59 0.012-0.027 0.008-0.022 0.002-0.083 0.0002-0.0115 0.002-0.02 0.001-0.026 0.001-0.026	
	 c) Exposure V d) Nominal Co 831, 1110, 138 e) Number of f) Individuals g g) Water Tem h) Light Condi i) Feeding: su granules Method of An American Publia al.(1960) Statistical Met a) Data Analy c) LC₅₀ expressed Other observate enzyme activitie Tokuyama Corp (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re Comparable to <i>Daphnia magna</i> reproduction ra (2) valid with re <i>Comparable Daphnia magna Comparable Daphnia magna Comparable Daphnia magna Comparable Comparable Daphnia magna Comparable Comparable Daphnia magna Comparable Comparable Comparable Comparable Daphnia Comparable Comparable Comparable Comparable Comparable Comparable Com</i>	c) Exposure Vessel Type: 250 ml d) Nominal Concentrations (as mg 831, 1110, 1380 e) Number of Replicates: 4 f) Individuals per Replicates: 5 g) Water Temperature Range: 18 h) Light Condition: 16:8h(light:dark i) Feeding: suspension of powdere granules - Method of Analytical Monitoring: a American Public Health Association al.(1960) - Statistical Method: a) Data Analysis: Litchifield and W : LC ₅₀ expressed as anhydrous CaCl Other observations: reproductive in enzyme activities. : Tokuyama Corporation : (2) valid with restrictions Comparable to guideline study with : Daphnia magna (Crustacea) : reproduction rate : 21 day : mg/l : no data : 610 : 320 : other: not mentioned : 1972 : no data : no data : - Test Organisms: a) Age: 12±12 hr b) Pretreatment: not discribed c) Supplier/Source: University of M - Test Conditions: a) Dilution Water Source: Lake Su b) Dilution Water Chemistry: Table (mg/l except for pH) 	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

OECD SIDS				CA	LCIUM CHLORIDE
4. ECOTOXICITY					ID: 10043-52-4
					DATE: 15.11.2002
		Ni	<0.0005	-	
		Pb	-	0.007-0.02	
		Cu	0.00151	0.0003-0.003	32
		Со	<0.0005	-	
		Ha	<0.00001	-	
		Cď	<0.0001	-	
		c) Exposure Vess	sel Type: 250 ml b	eaker	
		d) Nominal Conce 831, 1110, 1380	entrations (as mg/l	l): 0, 86.4, 173, 2	277, 385, 554, 692,
		e) Number of Rep	olicates: 4		
		f) Individuals per	Replicates: 5	•	
		g) Water Temper	ature Range: 18 °	C	
		h) Light Condition	1: 16:8h(light:dark)		
		i) Feeding: suspe	ension of powdered	d dried grass and	d enriched trout-fry
		granules			
		- Method of Analyt	ical Monitoring: ac	cording to proce	dures outlined by the
		American Public H	ealth Association	et al.(1960)	
		- Statistical Method	U. Litabifiald and M/il	a a v a m (10.10)	
Demort		a) Data Analysis:		COXON(1949)	
Remark	•			uctive impairmer	ΙΙ,
		EC ₅₀ expressed as	5 UdUl2,	tain and annum	
Sauraa			s. body weight, pro	dein and enzyme	e activities.
Source	:	Tokuyama Corpora	ation		
Reliability	:	(2) valid with restri	ctions	acontable reatri	ationa
15 07 2002		Comparable to gui	define study with a		(8)
13.07.2002					(0)
Species	:	other aquatic arthr	opod: Tropisternus	s lateralis	
Endpoint	:	other: histological	effect		
Exposure period	:	14 day			
Unit	:	mg/l			
Analytical monitoring	:	no data			
EC	:	110			
Method	:	other: not mention	ed		
Year	:	1969			
GLP	:	no data			
Test substance	:	no data			
Remark	:	Effect endpoint: da	amage to gut;		
		No visible damage	to gut at tested co	oncentration;	
		EC ₅₀ expressed as	anhydrous CaCl ₂	•	
Source	:	Tokuyama Corpora	ation		
Test condition	:	Age/life stage: adu	ılt		
		Flow-through test			
		pH: 7			
		Deionized water			
Reliability	:	(3) invalid			
		Documentation ins	sufficient for asses	sment	
10.06.2002					(108)

4.6.1 TOXICITY TO SOIL DWELLING ORGANISMS

Type :	other
Species :	<i>Eisenia fetida</i> (Worm (Annelida), soil dwelling)
Endpoint :	
Exposure period :	42 day
Unit :	other: g/m ²
LC ₂₀ :	30
Method :	other

OECD SIDS					CALCIUM	1 CHLORIDE	
4. ECOTOXICITY					II	D: 10043-52-4	
					DAT	E: 15.11.2002	
Year GLP Test substance Method	: 1 : n : n : - : v	1999 no data Test organisi a) Size(Leng veight b) Age: pot d	ms: th and Weight): escribed	: 5.4-6.9 cm in le	ength, 0.16-0.38	g in body	
Result	e e : T	 -Test conditions: a) Exposure vessel type: b) Test concentrations (as g/m²): 0 and 5 (at the starat) c) Vehicle/Solvent and concentrations: Not used d Method of application: Five g per m² of the test substance w every week for 6 weeks. e) Number of replicates: five vessels per treatment f) Individuals per replicates: five earthworms per replicate g) Temperature range: 25°C -Analytical monitoring: not described : Table. Cumulative mortality after application of CaCl₂ 					
	Т	reatment		Cumulative mortality (%)			
	-		1 week	3 weeks	5 weeks	6weeks	
	C 5	Control 5 g/m ² X 6	0 0	0 0	0 0	5 20	
Reliability	E C * : ((Extent of the CaCl ₂ < CMA Calcium/Ma 3) invalid Documentatic	damage * < NaCl < Ure gnecium aceta on insufficient fo	a te or assessment			
10.06.2002						(35)	
4.6.2 TOXICITY TO TER	REST	ΝΔΙ ΡΙΔΝΤ	S				
Method Year GLP	: : 1 :	984	-				
Remark	: pp p c t t v v f ((v v c c t v v v v c c c t v v v c c c c	High conce blant growth. opm. A number of chloride and s Damage to ro o the absorpt vere exposed 12 tonnes/ha ntervals). Lea CI ⁻) concentra- varied but cou 0.5 to 6 mg/g -10 mg/g - se spray than oth Although they active; salt sp Grasses are l	entrations of cal The chloride io of studies have sodium chloride adside vegetat tion of salt spla to runoff of Na a per treatment aves of these m ation compared uld be correlate dry weight - litt evere damage. her vegetation. do not grow du lashed onto the ess susceptible	lcium chloride in n threshold limit been conducted as a result of th ion has been rep shed on foliage. aCl and CaCl ₂ fo and 15 treatmen aple trees contra d to a control sta d with the chlori- le damage; 4 to Conifers are pro uring winter, the e needles would e than conifers to	irrigation water for chronic plan d on the effects of peir use as road ported and is att In one study, su r 6 winters (total nts per winter at ained 3 to 6 time nd. Damage to the de concentration 10 mg/g – slight bably more susc y remain photos thus have damage o damage proba	will reduce t toxicity is 100 of calcium de-icers. ributed largely ugar maples I treatment of weekly is the chloride the maples in the leaf: t damage; and ceptible to salt ynthetically aging effects. bly because of	

OECD SIDS 4. ECOTOXICITY		<u>CALCIUM CHLORIDE</u> ID: 10043-52-4 DATE: 15 11 2002
	ti tu s a t t c c C	heir inactivity in winter. In a series of tests, Kentucky 31 Fescue was found o be the most resistant of grasses and could tolerate up to 5 g NaCl/kg of soil. Several studies have shown foliage damage where salt was employed and have correlated this to the high level of chloride (Cl ⁻) in foliage and wigs. Some studies have noted a higher occurrence of damage on the downwind portion of roads, thus indicating that sprayed salt has a higher potential for damage than that transmitted through the soil. A generally accepted index of crop response to salt (applicable to CaCl ₂) is as follows:
	ç	g/l of soil Effect on Yield
	- 0 1 2 5 5	>-1.3 Salinity effects negligible 1.3-2.6 Yields of sensitive crops affected 2.6-5.1 Yields of many crops restricted 5.1-10.2 Only tolerant crops yield satisfactorily >10.2 Only a few very tolerant crops yield satisfactorily
Source Poliability	: 1	Fokuyama Corporation
	. (Documentation sufficient for assessment
11.06.2002		(28)
Method Year GLP	: : 1 :	1989
Test substance Remark Reliability	: r : N sc c c r r t t t t t	No data NaCl and CaCl ₂ are frequently used as deicing agents during the winter season. This study compares the effect of these deicing salts on salt injury on spruce trees. From two field experiments carried out for ten weeks during winter period, and a total dose of 1.5 kg/m ² NaCl, CaCl ₂ or a 72/25 NaCl/CaCl ₂ mixture, it was found that the presence of calcium clearly reduced the salt injury as was indicated by salt tolerance rating. These rating corresponded well to the Cl ⁻ concentrations found in needles and wigs. Though an equal dose of Cl ⁻ was given, in the presence of CaCl ₂ the uptake of Cl ⁻ was inhibited. Surely the role of calcium on ion permeability n salinaized soil should have its effect, together with the regulatory role hat calcium has on ion accumulation and transport. Furthermore it was found that the climatic conditions and the calcium status of the soil only have an effect on the time of appearance of the injury. (2) valid with restrictions
11.06.2002	- (Documentation sufficient for assessment (9)
Species Endpoint Exposure period Unit	: c : c : 6	other terrestrial plant: several trees other: damage to leaves 50 - 100 day
Method Year	: c : 1	other 1975
GLF Test substance Result	: r : r : 1 - -	io io data Folerance for trees as antifreezing agent White birch 1 g/I Acacia 5 g/I Poplar 2.5 g/I Todo fir 0.5 g/I
Source Reliability	: 1 : (Fokuyama Corporation 3) invalid
11.06.2002	L	(44)

OECD SIDS					CALCIUM CHLO	ORIDE
4. ECOTOXICITY					ID: 1004 DATE: 15.1	3-52-4 1.2002
Species Endpoint Exposure period Unit LOAEL Method Year GLP Test substance Result		other terrestrial plan other: germination a 3 - 6 day g/l 2 - 3 other 1962 no no data Table: LOAEL (g/l)	t: Crops nd growth			
		 Crops	Budding	Growth		
		Paddy-field rice Wheat Beer wheat Rapeseed Japanese radish Welsh onion	2 3 3 2 2 2 2	2 2 2		
Source Reliability	:	Tokuyama Corporati (3) invalid Documentation insut	ion fficient for asses	sment		
11.06.2002						(55)
Species Endpoint Exposure period Unit EC ₀ Method Year GLP Test substance Method		other terrestrial plan other: leaves surface 35 day g/m ² < 93.9 other 1997 no no data -Test conditions: Test treatments (as Number of replicate -Analytical monitorin Table. Survival rate	t: <i>Trifolium respe</i> e destroyed total dose g/m ² ; es: Seven seedlir g: atomic absorp of <i>Trifolium resp</i>): < 93.9, 18 ngs per trea ption spectro pens L.	7.5 and 750 tment ophotometer	
		Application concentration (ppm)	Total dose a for experime (g/m²)	pplied nt.	Survival rate(%)	
		< 5000 100000 400000 Extent of the damag	< 93.9 187.5 750		100 85.7 28.6	
		* Calcium/Magneciu	n acetate			
Reliability 11.06.2002	:	(3) invalid Documentation insu	fficient for asses	sment		(37)
Species Endpoint Exposure period Unit	:	other terrestrial plan other: leaves surface 105 day	t e destroyed			

OECD SIDS			CA	ALCIUM CHLORIDE
4. ECOTOXICITY				ID: 10043-52-4
Method		other		DATE: 15.11.2002
Year	:	1999		
GLP	:	no		
Test substance	:	no data		
Method	:	-Test organisms:		
		 a) Size(Length and We b) Age: Taxus cuspida 1 year -Test conditions: a) Exposure vessel typ b) Test treatments: 0 	eight): <i>Taxus cuspidata</i> ;15.9 <i>ta</i> ; 3 year, <i>Pinus mugo</i> ; 7 ye be: plastic pot for <i>Trifolium re</i>	ern, <i>Pinus mugo</i> ;45 cm ar, <i>Trifolium respens</i> L.; Aspens L.
Result	:	 b) Test iteratments: 0, c) Method of application substance was neblized d) Number of replicate seedlings per treatment Analytical monitoring: Table. EC₅₀ of CaCl₂ to 	on: The desired amount of th d with a spray pump every w s: five seedlings per treatme t for <i>Taxus cuspidata</i> and <i>Tr</i> not described o three plants	e aqueous test reek for 15 weeks. Int for <i>Pinus mugo</i> , 7 <i>ifolium respens</i> L.
		Species	EC ₅₀ (g/m ²)	
		Taxus cusnidata	5-25	
		Pinus muao	5-25	
		Trifolium respens l	50-100	
		Extent of the damage		
		$CaCl_{a} < CMA40^{*} < Na($	Cl < Urea	
		* Calcium/Magnecium	acetate: 40% NaCI: 60%	
Reliability		(3) invalid		
Renability	•	Documentation insuffic	ient for assessment	
10.06.2002				(35)
Omeniae	_			
Species		other terrestrial plant		
Endpoint		other: leaves surface d	estroyed	
Exposure period		11 day		
		g/m		
EC ₁₀₀		5 othor		
Method		1000		
fear		1999		
GLP Tost substance		no data		
Method		-Test organisms:		
Wethod	•	a)Size(Length and We	ight): Salix sachalinensis: 30) cm(scion)
		b) Age: 2-3 year		
		-Test conditions:		
		a) Exposure vessel tvr	e: not described	
		b) Test treatments: 0,	5, 25, 50 and 100 g/m ²	
		c) Method of application	on: The desired amount of th	e aqueous test solution
		was added into each tr	eatment.	
		d) Number of replicate	s: seven scions per treatmer	nt
		e) Temperture range: 2	25°C	
		-Analytical monitoring:	not described	
Result	:	Table. EC ₅₀ of CaCl ₂ to	Salix sachalinensis	
		A .	EC ₅₀	
		Species	(g/m²)	
		Salix sachalinensis(sci	on) =< 5	

OECD SIDS				CAI	LCIUM CHLC	NRIDE
4. ECOTOXICITY					ID: 1004. DATE: 15.11	3-52-4
Reliability	:	Extent of the damage CaCl ₂ < NaCl < urea, * Calcium/Magnecium (3) invalid Documentation insuff	CMA40* acetate: 40	%, NaCl: 60%		
10.06.2002						(35)
Species Endpoint Exposure period Unit Method Year GLP Test substance Method		other terrestrial plant other: leaves surface 105 day other 2000 no no data -Test organisms: a) Size(Length and V b) Age: <i>Taxus cuspio</i> -Test conditions: a) Exposure vessel ty b) Test treatments: 0 <i>Taxus cuspidata</i> , 0, 0 c) Method of applicat substance was nebliz d) Number of replicat L, 7 seedlings per treat -Analytical monitoring	destroyed Veight): not of data; 3 year, ype: Plastic , 0.25, 1.25, .25, 2.5 and tion: The des ed with a sp tes: five seed atment for Ta ; not describ	described <i>Trifolium respens</i> L pot for <i>Trifolium resp</i> 2.5, 12.5 and 25 g/ 25 g/m ² per week for sired amount of the a ray pump every wee dlings per treatment axus cuspidata red	.; 1 year bens L. m ² per week for or <i>Trifolium resp</i> aqueous test ek for 5-15 week for <i>Trifolium re</i> s	bens L. (S. spens
Result	:	Table. EC ₅₀ of CaCl ₂	to <i>Taxus cus</i> EC ₅₀ as	spidata and Trifoliun s total dose applied	n respens L. (g/m ²)	-
		Species	5	Application times 10	15	
		Taxus cuspidata Trifolium respens L	>125 >125	>250 >250	8.75-37.5 37.5-375	-
Reliability	:	Extent of the damage CaCl ₂ , CMA* < NaCl, * Calcium/Magnecium (3) invalid	Urea, MgCl acetate	2		
11.06.2002		Documentation insum	icient for ass	sessment		(36)
4.6.3 TOXICITY TO O	THER	NON-MAMM. TERRES	TRIAL SPE	CIES		
	FFOT					
4.7 BIOLOGICAL ER	FEGI	5 MONITORING				
Memo Remark	::	Mineral Nutrition The effect of calcium because of its dissoci chloride are one of the - Calcium - The calcium content of depending on the gro well-balanced growing	chloride is a lation proper e nutrient ele of plants vari wing condition g nutrient sol	ttributed by calcium ty in water phase. B ements for plant. es between 0.1 and ons, plant species, a lutions with controlle	and chloride ion oth calcium and > 0.5% of dry w and plant organ. ed pH, maximal	ns 1 weight In

growth rates were obtained at calcium supply levels of 2.5 - 100 μ M. Also, calcium can be supplied at high concentration and might reach more than 10% of the dry weight without symptoms of toxicity of serious inhibition of plant growth, at least in calcicole plant species.

Typical symptom of calcium deficiency is the disintegration of cell walls and the collapse of the affected tissues, such as the petioles and upper parts of the stems. Low tissue contents of calcium in fleshy fruits also increase the losses caused by enhanced senescence of the tissue and by fungal infections.

The proportion of calcium pectate in the cell walls is also of importance for the susceptibility of the tissue to fungal and bacterial infections and for the ripening of fruits.

Calcium has the role in counterbalancing the harmful effects of high concentrations of other cations at the plasma membrane. In the absence of an exogenous calcium supply, root extension quickly ceases. Transient increase in cytosolic free Ca²⁺ concentration which is activated by auxin stimulates the synthesis of cell wall precursors in the cytosol and its secretion into the apoplasm. Also, calcium is required for the formation of secretory vesicles and their fusion with the plasma membrane leading to exocytosis. The secretion is triggered by a rise in cytosolic free Ca²⁺ concentration from about 0.1 to1.0 μ M or even higher.

In plant species which preferentially synthesize oxalate in response to nitrate reduction, the formation of calcium oxalate in the vacuoles is important for maintenance of a low cytosolic free Ca²⁺ concentration. The formation of sparingly soluble calcium oxalate is also important for the osmoregulation of cells and provides a means of salt accumulation in vacuoles of nitrate-fed plants without increasing the osmotic pressure in the vacuoles.

- Chloride -

In plant species with relatively low chloride requirement (<1 mg Cl/g) the demand can be covered by a concentration of 100 μ M Cl⁻ in the nutrient solution; at 10 μ M Cl⁻ supply the shoot dry weight drops to 50%, indicating that the selectivity of chlorine uptake is not very high as compared, for example, with phosphorus, where the much higher requirement in the leaf dry weight can be covered by supply of even less 10 μ M. In most plant species the Cl⁻ requirement for optimal growth is in the range of 0.2-0.4 mg/g dry matter.

Chloride has a role on photosynthetic O_2 evolution. Chloride has also important functions in osmoregulation at different levels. At the usually high plant contents it is a main osmoticum in the vacuoles of the bulk tissue (50-150 mM Cl⁻), together with potassium. At low contents which are in the range of micronutrient (~1 mM Cl⁻ or below), these osmoregulatory. Opening and closure of stomata is mediated by fluxes of potassium and

Opening and closure of stomata is mediated by fluxes of potassium and accompanying anions such as malate and chloride. Thus, chlorine can play an essential role in stomatal regulation. Chloride can stimulate the proton-pumping ATPase.

(70)

 Reliability
 : (2) valid with restrictions

 Documentation sufficient for assessment

 10.06.2002

Memo
 The Effects of Calcium on Growth and Morphogenesis
 Calcium is an essential element which regulates both the development and growth of a alga. The literature offers many strong suggestions that this element is necessary for processes such as activation of several enzymes, cell devision, cell wall formation, colony formation, nitrogen fixation in

OECD SIDS	CALCIUM CHLORIDE
4. ECOTOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
Reliability 11.06.2002	 bacteria, reduction of the toxicity of other element, and reproduction. Some reports show that Calcium deficiency cuses a general degeneration of cytoplasmic organelles which are important for vital processes such as cell wall formation, photosynthesis, protein synthesis and respiration. (2) valid with restrictions Documentation sufficient for assessment (85)
4.8 BIOTRANSFOR	MATION AND KINETICS
Type Remark	 plant Calcium - In the apoplasm, part of the calcium is firmly bound in structures, another part is exchangeable ate the cell walls and at the exterior surface of the plasma membrane. A high proportion of calcium might be sequestered in vacuoles whereas its concentration in the cytosol is extremely low. The same is true for the mobility of calcium in the symplasm from cell to cell and in the phloem. Most of the functions of calcium as a structural component of macromolecules are related to its capacity for coordination, by which it provides stable but reversible intermolecular linkages, predominantly in the cell walls and at the plasma membrane.
Reliability 10.06.2002	 Chlorine - Chloride is readily taken up by plants and its mobility in short- and long- distance trans port is high. In plants chlorine occurs mainly as a free anion of is loosely bound to exchange sites. (2) valid with restrictions Documentation sufficient for assessment
4.9 ADDITIONAL RE	MARKS

5.1.1 ACUTE ORAL TOXICITY

Type:Species:Strain:Sex:Number of animals:Vehicle:Value:Method:Year:GLP:Test substance:Remark:	LD ₅₀ rabbit New Ze male 8 other: g 500 - 1 other 1986 yes other T [Test su Anhydr calcium FLAKE analysi [Methou The me that on! [Test co Single of fasted n and 100 During 16 hour libitum. after do The ration each Any sig was reo animals ear vein	ealand white gelatin capsule [000 mg/kg bw S ubstance] ous calcium ch o chloride dihyd S). The test ma s sample conta d] ethod was in pri by 2 doses were ondition] doses of anhyd male rabbits. Th 00 mg/kg, resp the experiment rs prior to dosin The animals w osing. obits were obse h day till the en- in of intoxication corded. Gross p s. The surviving n and autopsied	loride (CaCl ₂), a white powder, prepared from rate flakes (Batch No. Solvay Couillet 8/OCT/1985 aterial was solid at the application time. Upon ined: 97.0% CaCl ₂ , 2.2% NaCl and 0.11% Ca(OH) ₂ . nciple equivalent to OECD Guideline 401, except e employed in this study. rous calcium chloride were given by a dosing-gun to hree and five rabbits were used for the doses of 500 ectively. s the animals had free access to food, except from ig until 6 hours after dosing. Water was available ad rere weighed one day before and at 2, 7 and 14 days erved frequently the first day of dosing and, thereafter d of the experiment. n of the animals during 14-day observation period post-mortem examination was made on all dead g animals were killed by Nembutal [®] injection in the d.
	- Table with an	1: Summary of hydrous calciur	f the observed signs in the acute oral toxicity study n chloride in rabbits.
	Dose levels (mg/kg	no.dead/ no.treated) M	Signs
		5/5	One rabbit died immediately after dosing by choking. One rabbit died about 45 minutes after dosing. The following signs were observed: respiratory difficulties, cyanosis and convulsions. One rabbit died within two hours after dosing. Two other rabbits were killed in moribund state,
	0.10		about 30 minutes after dosing and one 6 days after dosing. This latter animal did not eat and drink after dosing.
	500	1/3	One rabbit died immediately after dosing in

convulsion. The rabbit is probably choked. At autopsy capsules were found in the trachea. In the surviving animals, no signs were observed, but one rabbit did not eat and drink the first two days after dosing.

The surviving rabbits of the 500 mg/kg group lost weight in the first two days after dosing, thereafter the rabbits recovered.

- Table 2: Individual boo	ly weight of the rabbits	(kg)
---------------------------	--------------------------	------

Dose (mg/kg)	Anima No.	al Pre- Dosing	2 days after dosing	7 day after dosing	s 14days after g dosing
1000	1	2.30	-(a)	-(a)	-(a)
	2	2.55	-(b)	-(b)	-(b)
	3	2.86	-(a)	-(a)	-(a)
	4	2.46	2.14	2.07(c)	-(b)
	5	2.70	-(a)	-(a)	-(a)
500	6	2.95	-(a)	-(a)	-(a)
	7	2.66	2.41	2.68	2.75
	8	2.93	2.90	3.11	3.07

(a) rabbit died

(b) rabbit killed in moribund state

(c) weight 6 days after dosing.

Rabbit was killed on that day in moribund state.

- Table 3: Mean body weight-gain of the rabbits (kg)

Dose (mg/kg)	0-2 days after dosing	2-7 days after dosing	7-14 days after dosing	
1000 500	-0.32(a) -0.14(c)	- (b) 0.24(c)	- (b) 0.01(c)	
(a) n=5				

(a) 11-5 (b) as b b b a

(b) rabbits died or killed

(c) n=2

Autopsy of the rabbits that died as a result of treatment or the rabbits that were killed in moribund state, mainly revealed severe ulcers in the fundus of the stomach, haemorrhagic trachea and stomach, red areas on lungs, an irritated throat, and an oedematous oesophagus. In the two surviving rabbits of the 500 mg/kg group, no abnormalities were detected.

- Table 4: The autopsy findings of interim deaths

Autopsy findings		1000 mg/kg	500 mg/kg
Muzzle: wet blood staining,	slight	1 3	1
Oesophagus, upper: Throat: irritated by cap	capsules sticking on the wall oedematous sules, white	2 2 2	1

5. TOXICITY DD: 10043-5 DATE: 15.11.2 Trachea: haemorrhagic wall mucoid/foam 3 Lungs: red areas 1 not collapsed 4 1 Stomach: fundus with severe ulcers 4 haemorragic areas/spots 2 Interim deaths 5 1 Source : Tokuyama Corporation Reliability : (1) valid without restriction Comparable to OECD guideline study Flag : Critical study for SIDS endpoint 10.06.2002 Type : LD ₃₀ Species : rabbit Strain : New Zealand white Sex : male Number of animals 9 Vehicle : Other: gelatin capsule Value : 1000 mg/kg bw Method : other Test substance FLAKES). The test sample was solid at the application time. Upon analy sample contained: 76.7% CaCl ₂ , 1.8% NaCl and 0.08% Ca(OH) ₂ . [Method] The method was in principle equivalent to OECD Guideline 401, except that only 2 or 3 animals were used for each dose group, except for 6 animals. [Test codition] Single doses of calcium chloride dihydrate were given with a dosing-gur fasted male rabbits. Two rabbits were used for each dose group, except that only 2 or 3 animals were used for each dose group, except that only 2 or 3 animals were used for each dose group, except there for the 2000 mg/kg group. During the experiments the animals had free access to food, except for 16 hours prior to dosing until 6 hours after dosing. Water was available a libitum. The animals were weighed one day before and at 2, 7 and 14 da after dosing. The rabbits were observed frequently the first day of dosing and, therear on each day till the end of the experiment. Any sign of intoxication of the animals were weighed one day before and at 2, 7 and 14 da after dosing. The rabbits were observed frequently the first day of dosing and, therear on each day till the end of the experiment. Any sign of intoxication of the animals had free acces to food, except for 16 hours prior to dosing until 6 hours after dosing. Water was available a libitum. The animals were weighed one day before and at 2, 7 and 14 da after dosing. The rabbits were observed frequently the first day o	ECD SIDS			C	ALCIUN	1 CHLC	ORIDI
Trachea: haemorrhagic wall 3 mucoid/foam 3 Lungs: red areas 1 not collapsed 4 1 Stomach: funds with severe ulcers 4 haemorragic areas/spots 2 Interim deaths 5 1 Comparation 5 1 Comparatio to Optication 5 1 Comparatio to Optication 5 1 Type : Chical study for SIDS endpoint 10.06.2002 Type : LD ₅₀ 5 5 Species : rabbit 5 1 Strain : New Zealand white 5 5 Sex : rabbit 9 9 9 Vehicle : other; gelatin capsule Value 1986 0 Calcium choide dihydrate (CaClp-2H_O), a white powder, prepared from calcum choide dihydrate flakes (Bach No. Solvay Coullet 8/OCT198) Solutient 8/OCT198 Flag : (Test substance) Calcium choide dihydrate flakes (Bach No. Solvay Caullet 8/OCT198) Calcium choide dihydrate flakes (Bach No. Solvay Caullet 8/OCT198) </th <th>TOXICITY</th> <th></th> <th></th> <th></th> <th>II</th> <th>D: 1004</th> <th>3-52-</th>	TOXICITY				II	D: 1004	3-52-
Source Tokuyama Corporation Reliability : Tokuyama Corporation Reliability : (1) valid without restriction Comparable to OECD guideline study Flag : 10.06.2002 : Critical study for SiDS endpoint 10.05.2002 : : Type : LD ₅₀ Species : rabbit Strain : New Zealand white Sex : male Number of animals : 9 Vehicle : 000 mg/kg bw Method : other: Year : 1986 GLP : yes Test substance : Other TS Remark : [Test substance] Calcium chloride dihydrate flakes (Batch No. Solvay Couillet 8/OCT/198: FLAKES). The test sample was solid at the application time. Upon analy sample contained: 76.7% CaClc, 1.8% NaCl and 0.08% Ca(OH). [Method] The method was in principle equivalent to OECD Guideline 401, except that only 2 or 3 animals were used for each dose. [Test condition] Single doses of calcium chloride dihydrate mark a			Trachea: Lungs: red a not co Stomach:	haemorrhagic wall mucoid/foam reas ollapsed fundus with severe ulcers haemorragic areas/spots	3 3 1 4 2	1	-
Source : Tokuyama Corporation Reliability : (1) valid without restriction Comparable to DECD guideline study Flag : Critical study for SIDS endpoint 10.06.2002 Type : LD ₅₀ Species : rabbit Strain : New Zealand white Sex : male Number of animals : 9 Vehicle : other: gelatin capsule Yalue : 1000 mg/kg bw Method : other Year : 1986 GLP : yes Test substance : other TS Remark : [Test substance] Calcium chloride dihydrate (CaCL-2H ₂ O), a white powder, prepared from Calcium chloride dihydrate flakes (Batch No. Solvay Coullet 8/OCT/198: FLAKES). The test sample was solid at the application time. Upon analy sample contained: 76.7% CaCL, 1.8% NaCl and 0.08% Ca(OH) ₂ . [Method] The method was in principle equivalent to OECD Guideline 401, except that only 2 or 3 animals were used for each dose. [Test condition] Single doses of calcium chloride dihydrate were given with a dosing-gur fasted male rabbits. Two rabbits were used for each dose group, except three for the 2000 mg/kg group. During the experiments the animals had free access to food, except for 16 hours prior to dosing until 6 hours after dosing. Water was available i libitum. The animals were weighed one day before and at 2, 7 and 14 dd after dosing. The rabbits were observed frequently the first day of dosing and, therea on each day till the end of the experiment. Any sign of intoxication of the animals had free access to food, except for 16 hours prior to dosing until 6 hours after dosing. Water was available i libitum. The animals were weighed one day before and at 2, 7 and 14 dd after dosing. The rabbits were observed frequently the first day of dosing and, therea on each day till the end of the experiment. Any sign of intoxication of the animals that free accues oral toxicity study with calcium chloride dihydrate in rabbits. <u>Tobe</u> no.dead/ Signs levels no.treated				S 	5	1	-
Type : LD ₂₀ Species : rabbit Strain : New Zealand white Sex male Number of animals :9 Vehicle : other: gelatin capsule Value :1000 mg/kg bw Method : other Year : 1986 GLP : yes Test substance : other TS Remark : [Test substance] Calcium chloride dihydrate (CaCl ₂ -2H ₂ O), a white powder, prepared from calcium chloride dihydrate flakes (Batch No. Solvay Couliet 8/OCT/198: FLAKES). The test sample was solid at the application time. Upon analy sample contained: :76.7% CaCl ₂ , 1.8% NaCl and 0.08% Ca(OH) ₂ . [Method] The method was in principle equivalent to OECD Guideline 401, except that only 2 or 3 animals were used for each dose. [Test condition] Single doses of calcium chloride dihydrate were given with a dosing-gur fasted male rabbits. Two rabbits were used for each dose group, except three for the 2000 mg/kg group. During the experiments the animals had free access to food, except for 16 hours prior to dosing until 6 hours after dosing. Water was available e libitum. The animals were weighed one day before and at 2, 7 and 14 da after dosing. The rabbits were observed frequently the first day of dosing a	Source Reliability Flag 10.06.2002	: Tok : (1) Cor : Crit	uyama Corporatio valid without restr nparable to OECI cal study for SID	on iction D guideline study S endpoint			(5)
(mg/kg) M 	Type Species Strain Sex Number of animals Vehicle Value Method Year GLP Test substance Remark	 LD₅ rabif Nev mal 9 othe 100 othe 198 yes othe 198 yes othe 198 yes othe calc FLA sam [Me The that [Tes Sing fast thre Dur 16 h libit afte The that by h [Re Tai with - Tai <li< td=""><td>of v Zealand white v Zealand white v</td><td>ydrate (CaCl₂-2H₂O), a white p drate flakes (Batch No. Solvay ample was solid at the applica 3.7% CaCl₂, 1.8% NaCl and 0. rinciple equivalent to OECD G als were used for each dose. um chloride dihydrate were giv Two rabbits were used for each g/kg group. hts the animals had free access ing until 6 hours after dosing. N were weighed one day before erved frequently the first day of nd of the experiment. on of the animals during 14-da post-mortem examination was beservation period. The survivi on in the ear vein and autopsie of the observed signs in the ac dihydrate in rabbits.</td><td>owder, pr / Couillet : tion time. 08% Ca(C suideline 4 / en with a h dose gro s to food, Vater was and at 2, of dosing a s made or ng animal d. suite oral to</td><td>repared 1 8/OCT/1 Upon at DH)₂. 01, exce dosing- oup, exc except s availab 7 and 14 and, the ation per n all anir s were b oxicity s</td><td>from 1985 nalysi ept gun to cept from ble ad 4 days reafte fiod nals cilled tudy</td></li<>	of v Zealand white v	ydrate (CaCl ₂ -2H ₂ O), a white p drate flakes (Batch No. Solvay ample was solid at the applica 3.7% CaCl ₂ , 1.8% NaCl and 0. rinciple equivalent to OECD G als were used for each dose. um chloride dihydrate were giv Two rabbits were used for each g/kg group. hts the animals had free access ing until 6 hours after dosing. N were weighed one day before erved frequently the first day of nd of the experiment. on of the animals during 14-da post-mortem examination was beservation period. The survivi on in the ear vein and autopsie of the observed signs in the ac dihydrate in rabbits.	owder, pr / Couillet : tion time. 08% Ca(C suideline 4 / en with a h dose gro s to food, Vater was and at 2, of dosing a s made or ng animal d. suite oral to	repared 1 8/OCT/1 Upon at DH) ₂ . 01, exce dosing- oup, exc except s availab 7 and 14 and, the ation per n all anir s were b oxicity s	from 1985 nalysi ept gun to cept from ble ad 4 days reafte fiod nals cilled tudy

5. TOXICITY 5. Toxicity 6. Toxicity 7. To	DRIDE
following signs were observed: alternately in and decrease in respiratory rate, diminished tone, ptosis, miosis. The survivng rabbit did not eat very well fron days after dosing, till 6 days after dosing. Tir onset of most signs was between 0-2 hours dosing, and had disappeared 4 hours after d in the surviving rabbit.	3-52-4 1.2002
	rease body two ne of after osing
1000 1/2 One rabbit died three days after dosing. The following signs were observed: diminished locomotor activity, diminished respiratory rat respiratory difficulties, diminished startle-ress salivation, ptosis. The rabbits didn't eat after untill death (one rabbit) or until 6 days after of Signs in the survivng rabbit had disappeared days after dosing. Time of onset of most sign between 0-3 hours after dosing.	e and, ponse, losing losing. 5 is was
500 0/2 One rabbit did not eat well till three days after dosing. No other signs were observed.	r
250 0/2 No signs were observed.	

* One rabbit (No.2) not included in this table because it broke its back during dosing (received dose 932 mg/kg), and was killed for humane reasons 6 hours after dosing.

All surviving rabbits lost weight in the first two days after dosing, except one out of two rabbits of the 250 mg/kg group. Thereafter the rabbits recovered, but weight gain was rather poor.

- Table 2: Individual body weight of the rabbits (kg)

Dose (mg/kg)	Anima No.	al Pre- Dosing	2 days after dosing	7 days after dosing	s 14days after dosing
2000	1	2.75	2.36	2.41	2.68
	2	3.02	-(a)	-(a)	-(a)
	3	2.87	-(b)	-(b)	-(b)
1000	4	3.20	2.90	2.96	3.09
	5	3.43	2.88	-(a)	-(a)
500	6	3.03	2.99	3.01	3.04
	7	3.23	3.00	3.14	3.23
250	8	3.17	3.20	3.24	3.32
	9	3.56	3.50	3.51	3.67

(a) rabbit broke his back during dosing (received dose 932 mg/kg) and was killed 6 hours after dosing for humane reasons(b) rabbit died

- Table 3: Mean body weight-gain of the rabbits (kg)

Dose (mg/kg)	0-2 days after dosing	2-7 days after dosing	7-14 days after dosing

2000	-0.39(a)	0.05(a)	0.27(a)	
1000	-0.43(b)	0.06(a)	0.13(a)	
500	-0.13(b)	0.08(b)	0.06(b)	
250	-0.01(b)	0.03(b)	0.12(b)	
(a) n=1				
(b) n=2				

Autopsy of the rabbits that died as a result of treatment, mainly revealed haemorrhagic trachea, severe ulcers in the stomach, dark areas on the lungs and an accentuated hepatic pattern and pale areas in the liver. The surviving animals of the 500, 1000, 2000 mg/kg group had old ulcers in the stomach 14 days after dosing.

- Table 4: The autopsy findings of interim deaths

		Autopsy findings	2000 mg/kg	1000 mg/kg	
		Muzzle wet with blood Throat and tongue with scar-tissue Trachea partly haemorrhagic with white spots Lung: emphysema and dark areas Stomach: ulcers(s), severe distended Liver: hepatic pattern and pale arreas Autolysis Interim deaths	1 1 1 1 1 1	1 1 1 1 1 1 1	
Source Reliability	: Tokuy	ama Corporation			
	Comp	arable to OECD guideline study			
10.06.2002					(58)
Type Species Strain Sex Number of animals Vehicle Value Method Year GLP Test substance Remark	LD ₅₀ rabbit New Z male 8 other: 1000 other 1986 yes cother [Test s Calciu from c FLAKE sample	Cealand white gelatin capsule mg/kg bw TS substance] m chloride hexahydrate (CaCl ₂ -6H ₂ O), a white po alcium chloride dihydrate (Batch No. Solvay Coui ES). The test material was solid at application time e contained: 50.2% CaCl ₂ , 1.2% NaCl and 0.05%	wder, pr llet 8/OC e. Upon o Ca(OH)	epared T7/1985 analysi:	5
	[Metho The m that or	od] ethod was in principle equivalent to OECD Guide nly 1 or 2 animals were used for each dose group.	line 401,	except	
	[Test o Single capsul mg/kg	condition] doses of calcium chloride hexahydrate were give les with a dosing-gun. The doses were 100, 200, . During the experiments the animals had free acc	n in gela 500, 100 cess to f	itin 10 and 2 0od, exc	2000 cept

from 16 hours prior to dosing until 6 hours after dosing. Water was available ad libitum. The animals were weighed one day before and at 2, 7 and 14 days after dosing. The rabbits were observed frequently the first day of dosing and, thereafter on each day till the end of the experiment. Any sign of intoxication of the animals during 14-day observation period was recorded. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by Nembutal[®] injection in the ear vein and autopsied.

[Result]

- Table 1: Summary of the observed signs in the acute oral toxicity study with calcium chloride hexahydrate in rabbits.

Dose levels (mg/kg)	no.dead/ no.treated M	Signs
2000	1/1	The rabbit died during dosing in convulsion, after it had received 1.43 g/kg.
1000	1/2	One rabbit died eight days after dosing. The following signs were observed: diminished locomotor activity, dark skin colour at the first day, thereafter pale skin colour salvation, diminished respiratory rate and, respiratory difficulties, diminished alertness and startle-response, abnomal body posture and gait, ptosis, hypothermia. The died rabbit did not eat and from day 4 onwards also, no water consumption was noted. The survivng rabbit recovered after one day. Signs had disappeared 2 days after dosing. Time of onset of most signs was within 1 hour after dosing.
500	0/2	No signs were observed.
200	0/1	No signs were observed.
100	0/2	No signs were observed.

Especially the surviving rabbit of the 1000 mg/kg group lost weight in the first week after dosing, thereafter the rabbits recovered. In the other dose groups the effects on weight gain were less

- Table 2: Individual body weight of the rabbits (kg	g)
--	----

Dose (mg/kg)	Anima No.	al Pre- Dosing	2 days after dosing	7 days after dosing	14days after dosing
2000	1	2.45	-(a)	-(a)	-(a)
1000	2 3	2.47 2.45	2.13 2.23	1.74 2.30	-(a) 2.48
500	4 5	2.46 2.32	2.41 2.33	2.40 2.44	2.50 2.50
200	6	2.65	2.69	2.83	2.98

100	7	2.55	2.56	2.52	2.68
	8	2.16	2.23	2.20	2.47

(a) rabbit died

- Table 3: Mean body weight-gain of the rabbits (kg)

Dose (mg/kg)	0-2 days after dosing	2-7 days after dosing	7-14 days after dosing
2000	(a)	(a)	(a)
1000	-0.28(b)	-0.16(b)	0.18(c)
500	-0.02(b)	0.05(b)	0.08(b)
200	0.04(c)	0.14(c)	0.15(c)
100	0.04(b)	-0.04(b)	0.22(b)

(a) rabbit diet

(b) n=2

(c) n=1

Autopsy of the rabbits that died as a result of treatment or the rabbits, mainly revealed a haemorrhagic trachea and perforation and/or severe ulceration of the stomach. Two surviving rabbits, one in the 500, and another in the 1000 mg/kg group, had haemorrhagic tracheas, and the rabbit of the 200 mg/kg group had a white spot on the heart.

- Table 4: The autopsy findings of interim deaths

Autopsy findings	2000 mg/kg	1000 mg/kg
Muzzle with blood	1	
Trachea wall thickened, white precipitate		1
haemorrhagic and foam	1	
Lungs: tissue hardened	1	
not collapsed	1	1
partly gray staining and pale		1
dark	1	
Heart: right part with jelly, left is pale		1
Stomach: fundus with severe ulcers		1
haemorrhagic areas		1
brown mucus		1
perforated	1	
Spleen: small		1
Autolysis		1
Interim deaths	1	1

- Table 5: The autopsy findings of the surviving animals.

Autopsy findings	1000 mg/kg	500 mg/kg	200 mg/kg
Trachea:haemorrhagic Heart: white spot	1	1	1 1
Interim deaths	1	1	1

OECD SIDS				CALCIUM CHLORIDE		
5. TOXICITY				ID: 10043-52-4		
				DATE: 15.11.2002		
Source	: To	okuyar	ma Corporatio	on		
Reliability	: (1) valid	without restri	iction		
10.06.2002	C	ompar	able to DECL	J guideline study (50)		
10.00.2002				(59)		
Туре	: LC	D ₅₀				
Species	: ra	bbit				
Strain	: Ne	ew Ze	aland white			
Sex Number of animals	: m	ale				
Vehicle	: wa	ater				
Value	: 1	000	mg/kg bw			
Method	: ot	her				
Year	: 19	986				
GLP Test substance	: ye	s her TS	3			
Remark	: IT	est su	bstance]			
	Ca Ri Na	 [Pest substance] Calcium chloride 33%, a colorless, clear liquid (Batch No. Solvay (RS1 21/FEB/1986). Upon analysis sample contained: 33.1% CaCl NaCl and 0.07% Ca(OH)₂. [Method] The method was in principle equivalent to OECD Guideline 401, exthat only one or two animals were used for each dose. 				
	[N Th th					
	[T Tr nu m th pr th do th int Gi su au au	est con ne test imbers g/kg g e expe ior to o ne anin osing. ereafte toxical ross p irviving topsie esult]	ndition] t material was s of animals u roups; and 2 eriments the a dosing until 6 mals were we The rabbits w er on each da tion of the ani ost-mortem e g animals were ed.	a given by a gastric intubation via a cannula. The ised were as follows: 1 rabbit each for 250 and 500 rabbits each for 1000 and 2000 mg/kg groups. During animals had free access to food, except from 16 hours hours after dosing. Water was available ad libitum. ighed one day before and at 2, 7 and 14 days after vere observed frequently the first day of dosing and, by till the end of the experiment. Any sign of mals during 14-day observation period was recorded. xamination was made on all dead animals. The re killed by Nembutal [®] injection in the ear vein and		
	WI D(th cal 	no dead/	33 % In raddits. Signs		
	le ^v (m	vels ng/kg)	no.treated M	Cigito		
	2	000	1/2	One rabbit was found dead 29 hours after dosing. The following signs were observed: positional passivity, diminished respiratory rate and respiratory difficulties, diminished locomotor activity, abnomal body posture and gait, diminished alertness and startle-response. The onset of signs was between 7 and 24 hours. These signs were moderate to severe in intensity. In the other rabbit no signs were observed.		
		000	1/2	One rabbit was killed 5 days after dosing, because		

		of a broken back, this animal had less food-consumption. No signs were observed in the other rabbit.
500	0/1	No signs were observed.
250	0/1	No signs were observed.

The rabbits of all dose groups lost weight the first two days after dosing, except the surviving rabbit of the 2000 mg/kg group. Thereafter the rabbits recovered with exception of the surviving rabbit in the 2000 mg/kg group, which recovered in the second week after dosing.

- Table 2: Individual body weight of the rabbits (kg)

Dose (mg/kg)	Anim No.	al Pre- Dosing	2 da after dosin	ys 7 da after g dosin	nys 14days after ng dosing	
2000	1 2	3.12 2.98	3.30 -(a)	3.12 -(a)	3.24 -(a)	
1000	3 4	3.68 3.66	3.24 3.43	-(b) 3.56	-(b) 3.68	
500	5	3.60	3.49	3.53	3.60	
250	6	3.40	3.33	3.35	3.48	

(a) rabbit died

(b) rabbit was killed, because of a broken back

- Table 3: Mean body weight-gain of the rabbits (kg)

Dose (mg/kg)	0-2 days after dosing	2-7 days after dosing	s 7-14 days after dosing	
2000 1000 500 250	0.18(a) -0.33(b) -0.11(a) -0.07(a)	-0.18(a) 0.13(a) 0.04(a) 0.02(a)	0.12(a) 0.12(a) 0.07(a) 0.13(a)	
(a) n=1 (b) n=2				

Autopsy of the rabbits of the 2000 and 1000 mg/kg group, that died as a result of treatment or that were killed, mainly revealed perforation and ulcers of the stomach, haemorrhagic intestine and a distended urine bladder. In the surviving rabbits no abnormalities were detected.

- Table 4: The autopsy findings of interim deaths

Autopsy findings	2000 mg/kg	1000 mg/kg
 Hydrothorax, slight	1	
Stomach:perforation	1	
ulcers and haemorragic spots		1
Abdominal cavity: stomach contents	1	

OECD SIDS				CALCIUM	CHLO	RIDE
5. TOXICITY				ID	: 10043	3-52-4
				DATE	E: 15.11	.2002
		In	testine: visceral surfaces with petechia			
			haemorrages	1		
		UI	ne bladder servere distended	1	1	
				ا 	, 	
		In	terim deaths	1	1	
Source	:	Tokuvam	a Corporation			
Reliability	:	(1) valid v	vithout restriction			
-		Compara	ble to OECD guideline study			
10.06.2002						(57)
Type	:	LD_{50}				
Species	:	mouse				
Strain	:	ICR				
Sex	:	male				
Number of animals	:	15				
Vehicle	:	other: 5 %	Arabic gum in water			
Value	:	2045 m	g/kg bw			
Method	:	other				
rear CLP	÷	1977 no data				
GLF Test substance	:	no data				
Romark	:	Method]				
Kelliark	•	The meth	od was in principle equivalent to OECC) Guideline 4()1 exce	ent
		that morta	ality was determined by the up and dow	n method aft	er 3-dav	/
		period ob	servation.		,	,
		F				
		[Test con	dition]			
		Three gro	ups of 15 male mice were used. During	g the experim	ents the	e
		animals h	ad free access to food, except for 5-6 h	nours prior to	dosing.	
		Water wa	s available ad libitum.			
		Single do	ses of calcium chloride dissolved in 5%	Arabic gum	in H ₂ O	were
		given by s	stomach tube to the fasted animals. An	y sign of into	xication	of the
		animals w	as observed for 7 days.		~	
		Mortality	was determined after 3-day observation	n period, now	ever. Gi	ross
		post-mort	em examination was made on all dead	animais. The	survivi	ng
Source			e Corporation			
Reliability	:	(2) valid v	with restrictions			
Rendbinty	•	Comparal	ole to guideline study with acceptable r	estrictions		
10.06.2002		0 0p 0 0.				(1)
						()
Туре	:	LD ₅₀				
Species	:	mouse				
Strain	:	ICR				
Sex	:	female				
Number of animals	:	15				
Venicie	:	otner: 5 %	Arabic gum in water			
Value Method	:	1940 M	yrky bw			
Year		1077				
GLP	:	no data				
Test substance		no data				
Remark	:	[Method]				
	-	The meth	od was in principle equivalent to OECE) Guideline 40	01, exce	ept
		that morta	ality was determined by the up and dow	n method aft	er 3-day	
		period ob	servation.			
		[Test con	dition]			
		I hree gro	ups ot 15 temale mice were used. Duri	ing the experi	ments t	he

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
	animals had free access to food, except for 5-6 hours prior to dosing.
Source Reliability	 Water was available ad libitum. Single doses of calcium chloride dissolved in 5% Arabic gum in H₂O were given by stomach tube to the fasted animals. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined after 3-day observation period, however. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by ether and autopsied. Tokuyama Corporation (2) valid with restrictions
	Comparable to guideline study with acceptable restrictions
10.06.2002	(1)
Type Species Strain Sex Number of animals Vehicle Value Method Year GLP Test substance Remark	 LD₅₀ rat Wistar male 15 other: 5 % Arabic gum in water 3798 mg/kg bw other 1977 no data no data [Method] The method was in principle equivalent to OECD Guideline 401, except that mortality was determined by the up and down method after 3-day period observation.
Source Reliability	 [Test condition] Three groups of 15 male rats were used. During the experiments the animals had free access to food, except for 5-6 hours prior to dosing. Water was available ad libitum. Single doses of calcium chloride dissolved in 5% Arabic gum in H₂O were given by stomach tube to the fasted animals. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined after 3-day observation period, however. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by ether and autopsied. Tokuyama Corporation (2) valid with restrictions Comparable to guideline study with acceptable restrictions
10.06.2002	(1)
Type Species Strain Sex Number of animals Vehicle Value Method Year GLP Test substance Remark	 LD₅₀ rat Wistar female 15 other: 5 % Arabic gum in water 4179 mg/kg bw other 1977 no data no data [Method] The method was in principle equivalent to OECD Guideline 401, except that mortality was determined by the up and down method after 3-day period observation.

[Test condition]

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
Source Reliability	 Three groups of 15 female rats were used. During the experiments the animals had free access to food, except for 5-6 hours prior to dosing. Water was available ad libitum. Single doses of calcium chloride dissolved in 5% Arabic gum in H₂O were given by stomach tube to the fasted animals. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined after 3-day observation period, however. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by ether and autopsied. Tokuyama Corporation (2) valid with restrictions Comparable to guideline study with acceptable restrictions
10.06.2002	(1)
Type Species Strain Sex Number of animals Vehicle Method Year GLP Test substance Remark	 other rabbit no data no data 25 water other 1946 no data condata [Test condition] Twenty-five rabbits, from two days to six weeks of age, were used. The animals were fasted for 48 hr before gavage and permitted to eat six hr after gavage. A soft rubber catheter (French No. 8) was employed and the animals were sacrificed 48 hr after treatment. Anhydrous calcium chloride was administered in 5, 7.5, 10, 15, and 20% aqueous solutions. Two rabbits were intubated and the catheter manipulated roughly to determine whether this procedure alone would cause trauma. Gross and microscopic study of the stomach and intestines was performed in all instances.
Source Reliability 15.07.2002	 [Result] Rough intubation caused no lesions. All animals, independent of weight and age, receiving 20% solution of calcium chloride (0.75 to 1.5 g/kg) had severe gastric damage, which consisted of mucosal necrosis and ulceration, submucosal edema, cellular infiltration and angionecrosis. Necrosis and exudation occasionally extended through all coats and fibrinous exudates was present on the serosal surface. Perforation of the stomach of one of the larger rabbits occurred. The lesions were most marked along the greater curvature of the stomach, especially in the region of the fundus. No lesions were produced in the small or larger intestine. With doses of 15% calcium chloride (0.68 to 1.5 g/kg), lesions were not found in the older rabbits but severe ulcers, similar to those described above, occurred in the unweaned animals receiving over 0.75 g/kg. Similar results were obtained with the 10 and 5% solutions (0.75 to 1.5 g/kg). Tokuyama Corporation (3) invalid Documentation insufficient for assessment
_	. –
Type Species Strain Sex Number of animals Vehicle	: LD ₅₀ : rat : no data : no data : 150 : water

OECD SIDS		CALCIUM CHLORIDE
5. TOXICITY		ID: 10043-52-4
		DATE: 15.11.2002
Value	: > 1000 mg/kg bw	
Method	: other	
Year	: 1946	
GLP	: no data	
Test substance	: no data	
Source	: Tokuyama Corporation	
Reliability	: (3) invalid	
	Documentation insufficient for assessm	nent
10.06.2002		(11)
Туре	: LD ₅₀	
Species	: guinea pig	
Strain	: no data	
Sex	: no data	
Number of animals	: 150	
Vehicle	: water	
Value	: > 1000 mg/kg bw	
Method	: other	
Year	: 1946	
GLP	• no data	
Test substance	: no data	
Source	: Tokuyama Corporation	
Poliability	(3) invalid	
Reliability	. (3) Invalid Documentation insufficient for assessm	nent
10.06.2002	Documentation insuncient for assessin	(11)
10.00.2002		(11)
Туре	: LD ₅₀	
Species	: rabbit	
Strain	: no data	
Sex	: no data	
Number of animals	· 150	
Vehicle	: water	
Value	> 1000 mg/kg bw	
Method	• other	
Voar	1946	
	: no data	
Tost substanco	: no data	
Source	Tokuyama Corporation	
Boliability	. Tokuyama Corporation	
Reliability	. (3) Invalid	aant
10.06.2002	Documentation insuncient for assessin	(11)
10.00.2002		(11)
Туре	: LD ₅₀	
Species	: rat	
Strain	: no data	
Sex	: no data	
Number of animals	:	
Vehicle	: water	
Value	: 1000 - 2000 mg/kg bw	
Method	• other	
Year	1948	
GLP	no data	
Tost substance	• other TS: commercial grade	
Source	Tokuyama Corporation	
	· (3) invalid	
Reliability	Documentation insufficient for assessm	nent
10.06.2002		(30)
		(88)
Туре	: LD ₅₀	
Species	: rat	
Strain	: no data	

OECD SIDS			CALCIUM CHLORIDE
5. TOXICITY			ID: 10043-52-4
			DATE: 15.11.2002
Sex	:	no data	
Number of animals	:		
Vehicle	:	no data	
Value	:	1000 mg/kg bw	
Method	:	other	
Year	:	1988	
GLP	:	no data	
Test substance	:	no data	
Source	:	Tokuyama Corporation	
Reliability	:	(4) not assignable	
-		Only secondary literature	
10.06.2002			(41)
Туре	:	LD ₅₀	
Species	:	rat	
Strain	:	no data	
Sex	:	no data	
Number of animals	:		
Vehicle	:	no data	
Value	:	> 2500 mg/kg bw	
Method	:	other	
Year	:	1978	
GLP	:	no data	
Test substance	:	no data	
Source	:	Tokuyama Corporation	
Reliability	:	(4) not assignable	
-		Only secondary literature	
12.06.2002			(89)

```
12.06.2002
```

5.1.2 ACUTE INHALATION TOXICITY

-		
Type	:	
Species		rat na data
Strain		no data
Sex	:	no data
Number of animals	:	
Venicle	:	
Exposure time	:	4 hour(s)
Value	:	> 160 mg/m ³
Method	:	other
Year	:	1990
GLP	:	no data
Test substance	:	other TS: technical grade
Remark	:	[Test condition]
		Rats were exposed to 40 and 160 mg/m ^o CaCl ₂ for 4h.
		[Docult]
		[Result] No animal death was observed at 40 or 160 mg/m ³ CaCL during 8 day
		No animal dealin was observed at 40 or 100 mg/m CaCl ₂ during o-day
		observation period. Many signs of irritation of respiratory tract were
		observed at both doses. The signs observed were decreased respiration,
		deep respiration, decrease in peroxidase activity, increases in the number
		of leukocytes, catalase activity and calcium levels in blood, and so on. The
		animals exposed to 40 mg/m ² CaCl ₂ recovered 2 days after exposure,
		while the animals exposed to 160 mg/m CaCl ₂ still showed a couple of the
		signs, deep respiration, the increase in the number of leukocytes and the
Courses		decrease in peroxidase activity, 8 days after exposure.
Source	:	lokuyama Corporation
Reliability	:	
		Documentation insufficient for assessment

10.06.2002

5.1.3 ACUTE DERMAL TOXICITY

Type Species Strain Sex Number of animals Vehicle Value Method Year GLP	 LD₅₀ rabbit New Zealand white male/female 4 water > 5000 mg/kg bw other 1981 po
Test substance Remark	 as prescribed by 1.1 - 1.4 [Method] Twenty four hours prior to application of the test material, the entire trunk of 2 male and 2 female rabbits/dose level was clipped free of hair with electric clippers. Rabbits were treated with 5000 mg/kg of undiluted test material which was applied under a heavy-gauge SARAN* film sleeve held in place with rubber bands. Five ml distilled water was applied along with the test material to simulate moistened skin and enhance skin contact. The plastic sleeve was covered by a cloth bandage taped securely to the marginal hair. All rabbits on test were placed in individual holding cages with free access to food and water. After 24 hours, the sleeves were removed, and the skin was washed with a mild soap and water, rinsed thoroughly and dried with a soft disposable towel. The topical response at the site of application was evaluated after removal of the plastic sleeve. The animals were observed frequently during exposure and for the following 2 weeks for signs of toxicity. Body weights were recorded before and after the 24 hours exposure period and at 1 and 2 weeks post-treatment. All surviving rabbits were submitted for a gross pathological examination 2 weeks post-treatment.
Source	 The dermal LD₅₀ was >5000 mg/kg. All four rabbits topically treated with the test material survived. No adverse effects were observed following treatment. Topical responses observed on the application sites of test rabbits 24 hours post-treatment included slight (1/4) or moderate (3/4) redness, moderate (3/4) or marked (1/4) swelling and moderate (2/4) or marked (2/4) necrosis. Gross necropsy examination of rabbits 2 weeks post-treatment revealed skin lesions at or near the site of administration, characterized by scab formation, skin thickening and subchronic inflammation. Internal observations were not considered to be the result of compound exposure and/or absorption. Tokuyama Corporation
Reliability	: (2) valid with restrictions Study report that meets generally accepted scientific principles
11.06.2002	: Chucai study for SIDS endpoint (16)

5.1.4 ACUTE TOXICITY, OTHER ROUTES

:	LD_{50}
:	mouse
:	ICR
	:

5. TOXICITY	ID: 10043-52-4 DATE: 15 11 2002
Sex Number of animals Vehicle Route of admin. Exposure time Value Method Year GLP Test substance Remark	 male 15 other: 5 % Arabic gum in water s.c. 823 mg/kg bw other 1977 no data no data [Method] Study conducted in accordance with generally accepted scientific principles.
Source Reliability	 [Test condition] Three dose groups of 15 male mice were used. Single doses of calcium chloride dissolved in 5% Arabic gum in water were administered by subcutaneous injection in the neck area. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined by the up and down method after 3-day observation period, however. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by ether and autopsied. Tokuyama Corporation (2) valid with restrictions Study report that meets basic scientific principles
10.06.2002	(1)
Type Species Strain Sex Number of animals Vehicle Route of admin. Exposure time Value Method Year GLP Test substance Remark	 LD₅₀ mouse ICR female 15 other: 5 % Arabic gum in water s.c. 867 mg/kg bw other 1977 no data no data [Method] Study conducted in accordance with generally accepted scientific principles.
Source Reliability 10.06.2002	 [Test condition] Three dose groups of 15 female mice were used. Single doses of calcium chloride dissolved in 5% Arabic gum in water were administered by subcutaneous injection in the neck area. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined by the up and down method after 3-day observation period, however. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by ether and autopsied. Tokuyama Corporation (2) valid with restrictions Study report that meets basic scientific principles
Type	: LD ₅₀
Species	: rat

OECD SIDS

CALCIUM CHLORIDE

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
Strain	: Wistar
Sex	: male
Number of animals	: 15
Vehicle	: other: 5 % Arabic gum in water
Route of admin.	S.C.
Exposure time	
Value	: 2630 mg/kg bw
Method	: other
Year	: 1977
GLP	: no data
lest substance	: no data
Remark	: [Method] Study conducted in accordance with concrelly accorded ecientific
	Study conducted in accordance with generally accepted scientific
	principies.
	[Test condition]
	Three deep groups of 15 male rate wore used. Single deeps of calcium
	chloride dissolved in 5% Arabic gum in water were administered by
	subsutaneous injection in the neck area. Any sign of intoxication of the
	animale was observed for 7 days
	Mortality was determined by the up and down method after 3-day
	observation period however. Gross post-mortem examination was made
	on all dead animals. The surviving animals were killed by ether and
	autonsied
Source	: Tokuvama Corporation
Reliability	: (2) valid with restrictions
	Study report that meets basic scientific principles
10.06.2002	(1)
Туре	: LD ₅₀
Species	: rat
Strain	: Wistar
Sex	: female
Number of animals	: 15
Vehicle	: other: 5 % Arabic gum in water
Route of admin.	: S.C.
Exposure time	:
Value	: 3798 mg/kg bw
Method	: other
Year	: 1977
GLP	: no data
lest substance	: no data
Remark	: [Method]
	Study conducted in accordance with generally accepted scientific
	principies.
	[Test condition]
	Three does groups of 15 female rate were used. Single doese of coloium
	chlorido dissolved in 5%. Arabia gum in water were administered by
	subsutaneous injection in the neck area. Any sign of intoxication of the
	animals was observed for Z days
	Mortality was determined by the up and down method after 3-day
	observation period, however, Gross post-mortem examination was made
	on all dead animals. The surviving animals were killed by ether and
	autonsied
Source	· Tokuvama Corporation
Reliability	: (2) valid with restrictions
Nenability	Study report that meets basic scientific principles
10.06.2002	
10.00.2002	(')
Type	: LD ₅₀
* •	

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
Species	: mouse
Strain	: ICR
Sex	: male
Number of animals	: 15
Venicle Deuts of oducin	cother: 5 % Arabic gum in water
Route of admin.	: I.p.
Exposure time	200 ma/ka hu
Value	. Soz IIIy/ky Dw
Voar	· 1077
GLP	: no data
Test substance	: no data
Remark	: [Method]
	Study conducted in accordance with generally accepted scientific principles.
Source Reliability 10.06.2002	 [Test condition] Three dose groups of 15 male mice were used. Single doses of calcium chloride dissolved in 5% Arabic gum in water were administered by intraperitoneal injection. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined by the up and down method after 3-day observation period, however. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by ether and autopsied. Tokuyama Corporation (2) valid with restrictions Study report that meets basic scientific principles
_	
Type	: LD ₅₀
Species	
Strain	: IUR : female
Number of animals	• 15
Vehicle	. 15 . other: 5 % Arabic gum in water
Poute of admin	in
Exposure time	·
Value	: 402 ma/ka bw
Method	: other
Year	: 1977
GLP	: no data
Test substance	: no data
Remark	: [Method]
	Study conducted in accordance with generally accepted scientific principles.
	[Test condition] Three dose groups of 15 female mice were used. Single doses of calcium chloride dissolved in 5% Arabic gum in water were administered by intraperitoneal injection. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined by the up and down method after 3-day observation period, however. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by ether and autopsied.
Source	: Tokuyama Corporation
Reliability	: (2) valid with restrictions
	Study report that meets basic scientific principles
10.06.2002	(1)

5. TOXICITY	ID: 10043-:	52-4
Tuno	DATE: 15.11.2	2002
Type Species	. LD ₅₀	
Species	i Idl	
Strain		
Number of animals	: 15 sthem 5.0/ Analysis suggests	
	: Other: 5 % Arabic gum in water	
Route of admin.	I.p.	
Exposure time		
value	: 264 mg/kg bw	
Method	: other	
Year	: 1977	
GLP	: no data	
lest substance	: no data	
Remark	: [Method]	
	Study conducted in accordance with generally accepted scientific principles.	
Source Poliability	 [Test condition] Three dose groups of 15 male rats were used. Single doses of calcium chloride dissolved in 5% Arabic gum in water were administered by intraperitoneal injection. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined by the up and down method after 3-day observation period, however. Gross post-mortem examination was mac on all dead animals. The surviving animals were killed by ether and autopsied. Tokuyama Corporation (2) valid with restrictions 	le
Reliability	: (2) valid with restrictions	
40.00.0000	Study report that meets basic scientific principles	
10.06.2002		(1)
Туре	: LD ₅₀	
Species	: Tal	
Strain		
Sex	: female	
Number of animals		
Vehicle	other: 5 % Arabic gum in water	
Route of admin.	: i.p.	
Exposure time		
Value	: 342 mg/kg bw	
Method	: other	
Year	: 1977	
GLP	: no data	
lest substance		
Remark	: [Method]	
	Study conducted in accordance with generally accepted scientific	
	principies.	
	[Test condition] Three dose groups of 15 male mice were used. Single doses of calcium chloride dissolved in 5% Arabic gum in water were administered by intraperitoneal injection. Any sign of intoxication of the animals was observed for 7 days. Mortality was determined by the up and down method after 3-day observation period, however. Gross post-mortem examination was made on all dead animals. The surviving animals were killed by ether and autopsied	ו le
Source	: Tokuvama Corporation	
Reliability	: (2) valid with restrictions	
	Study report that meets basic scientific principles	
10.06.2002		(1)
		· · /

OECD SIDS

CALCIUM CHLORIDE

OECD SIDS	CALCIUM CHL	ORIDE
5. TOXICITY	ID: 100-	43-52-4
	DATE: 15.7	11.2002
Туре	: LD ₅₀	
Species	: rat	
Strain	: no data	
Sex Number of onimals		
Number of animals	: 112	
Pouto of admin		
Exposure time	• • •	
Exposure time	· 25 ma/ka hu	
Value Mothod	. 25 mg/kg bw	
Vear		
	. 1940 : no data	
Tost substance	: no data	
Source	Tokuvama Corporation	
Boliability	. Tokuyalila Corporation	
Reliability	Documentation insufficient for assessment	
10.06.2002		(11)
10.00.2002		(11)
Туре	: IDIO	
Species	: guinea pig	
Strain	no data	
Sex	no data	
Number of animals	· · · ·	
Vehicle	· water	
Route of admin		
Exposure time		
Value	150 - 160 ma/ka bw	
Method	: other	
Voar	• 1028	
	: 1920 : no data	
Test substance	: other TS	
Source	: Tokuvama Corporation	
Beliability	: (3) invalid	
Rendbinty	Does not meet important criteria of today's standard method	
10.06.2002	Boos not meet important ontend of today 5 standard method	(25)
10.00.2002		(_0)
Туре	: LDLo	
Species	: guinea pig	
Strain	: no data	
Sex	: no data	
Number of animals	:	
Vehicle	: water	
Route of admin.	: other: intraarterial	
Exposure time	:	
Value	: 300 - 350 mg/kg bw	
Method	: other	
Year	: 1928	
GLP	: no data	
Test substance	: no data	
Source	: Tokuyama Corporation	
Reliability	: (3) invalid	
	Does not meet important criteria of today's standard method	
10.06.2002		(25)
Turna		
i ype	. LU ₅₀	
Species Strain	i mouse	
Strain	i no data	
JUX Number of enimels	. no uala	
	• • water	
Venicie	. wale	

ECD SIDS	CALCIUM CHLORI	ID:
TOXICITY	ID: 10043-5	52-
Davita of admin	DATE. 13.11.2	.00
Route of admin.	I.p.	
Exposure time		
Value Mathad	: 210 mg/kg bw	
Method	: other	
Year	: 1990	
GLP	no data	
Test substance	: other TS: technical grade	
Source	: Tokuyama Corporation	
Reliability	: (3) invalid	
10 06 2002	Documentation insufficient for assessment	(Q
10.00.2002		(0
Туре	: LD ₅₀	
Species	: mouse	
Strain	: other: AGNES-BLUHM-Stamm	
Sex	: female	
Number of animals	: 56	
Vehicle	: water	
Route of admin.	: i.p.	
Exposure time	: 48 hour(s)	
Value	: 245 mg/kg bw	
Method	: other	
Year	· 1961	
GIP	: no data	
Test substance	: other TS: 10 % solution from VEB Pharm Werk Johannisthal	
Source	Tokuyama Corporation	
Reliability	Documentation insufficient for assessment	
10.06.2002		(5
Туре	: LDLo	
Species	: rat	
Strain	: no data	
Sex	: no data	
Number of animals	• 22	
Vehicle	: 22 : water	
Poute of admin		
Exposure time	· 1.V.	
Value	· 161 ma/ka bu	
value Mothod	. IOI IIIY/NY DW	
Ween		
Tear	: I929	
GLP	: no data	
Test substance	: no data	
Source	: Iokuyama Corporation	
Reliability	: (3) invalid	
10.06.2002	Does not meet important criteria of today's standard method	(6
Turne		
Type	: LD ₅₀	
Species	: mouse	
Strain		
Sex	: no data	
Number of animals	: 10	
Vehicle	: water	
Route of admin.	: i.v.	
Exposure time	: 720 hour(s)	
Value	: 42.4 mg/kg bw	
Method	: other	
Year	: 1972	
GLP	: no data	
Test substance	• no data	

OECD SIDS		CALCIUM CHLORIDE
5 TOXICITY		ID: 10043-52-4
		DATE: 15 11 2002
	T 1 O U	DATE: 15.11.2002
Source	: Tokuyama Corporation	
Reliability	: (3) invalid	
	Documentation insufficient for assessment	
10.06.2002		(97)
Туре	: LCLo	
Species	: rat	
Strain	: no data	
Sex	: no data	
Number of animals	:	
Vehicle	: no data	
Route of admin.	: i.p.	
Exposure time	: .	
Value	: 500 ma/ka bw	
Method	: no data	
Year	: 1988	
GLP	no data	
Test substance	no data	
Source	Tokuyama Corporation	
Poliability	: (1) not assignable	
Reliability	Only secondary literature	
10.06.2002	Only secondary merature	(11)
10.06.2002		(41)
Torres		
Type	: LDLO	
Species	: rat	
Strain	: no data	
Sex	: no data	
Number of animals	:	
Vehicle	: no data	
Route of admin.	: i.v.	
Exposure time	:	
Value	: 161 mg/kg bw	
Method	: other	
Year	: 1988	
GLP	: no data	
Test substance	: no data	
Source	: Tokuvama Corporation	
Reliability	: (4) not assignable	
· · · · · · · · · · · · · · · · · · ·	Only secondary literature	
10.06.2002		(41)
10.00.2002		()
Type	• 1 D _{ro}	
Species		
Strain	: no data	
Sox	: no data	
Number of animals	. 10 000	
Vohiolo	. no data	
Pouto of odmin		
Expedition time	• i.p.	
Exposure time		
Value Mathad	: 280 Mg/kg bw	
Wethod		
rear		
GLP	: no data	
lest substance	: no data	
Source	: I okuyama Corporation	
Reliability	: (4) not assignable	
	Only secondary literature	
10.06.2002		(41)
Туре	: LD ₅₀	
Species	: mouse	

OECD SIDS CALCIUM CHLORIDE 5. TOXICITY ID: 10043-52-4 DATE: 15.11.2002 Strain no data : Sex no data : Number of animals 5 no data Vehicle : Route of admin. : i.v. Exposure time 2 Value : 42 mg/kg bw Method : no data Year : 1988 GLP : no data : no data Test substance : Tokuyama Corporation Source : (4) not assignable Reliability Only secondary literature

10.06.2002

(41)

5.2.1 SKIN IRRITATION

Species	: rabbit	
Concentration	: undiluted	
Exposure	: Occlusive	
Exposure time	: 4 hour(s)	
Number of animals	: 3	
PDII	:	
Result	: not irritatin	g
EC classification	: not irritatin	g
Method	: OECD Gu	ide-line 404 "Acute Dermal Irritation/Corrosion"
Year	: 1986	
GLP	: yes	
Test substance	: other TS	
Remark	: [Test subs	tance]
	Anhydrous	calcium chloride (CaCl ₂) a white powder prepared from

Anhydrous calcium chloride (CaCl₂), a white powder, prepared from calcium chloride dihydrate flakes (Batch No. Couillet 8/OCT/1985 FLAKES). The test material was solid at the application time. Upon analysis sample contained: 97.0% CaCl₂, 2.2% NaCl and 0.11% Ca(OH)₂.

[Result]

- Table 1: Scores of the skin reaction of the rabbit after application of anhydrous calcium chloride at different times after patch removal.

		A	Animal No.	Symptom	score after					
					30-60 minutes	24 hours	48 hours	72 hours		
		-	1	erythema oedema	0 0	0 0	0 0	0 0		
		-	2	erythema oedema	0 0	0 0	0 0	0 0		
		-	3	erythema oedema	0 0	0 0	0 0	0 0		
Source Reliability	:	 Tokuyama Corporation (1) valid without restriction OFCD Guideline study 								
Flag 11.06.2002	:	Critical s	study fo	r SIDS endpoint				((
OECD SIDS						CALC	CIUM C	CHLOF	RIDE	
--	---	--	--	---	---	--	---	--	----------------------------	--
5. TOXICITY			ID: 10043-52-4 DATE: 15.11.2002							
Species Concentration Exposure Exposure time Number of animals PDII Result EC classification Method Year GLP Test substance Remark		rabbit undilut Occlus 4 hour(3 not irrit OECD 1986 yes other T [Test s Calciur calciun FLAKE sample [Result - Table	eed ive s) ating ating Guide-lin S ubstance n chloride S). The S). The contain 1: Score calciur	ne 404 "Acute e dihydrate (C e dihydrate fla test sample w ed: 76.7% Car es of the skin i n chloride dihy	Dermal Irritatio CaCl ₂ -2H ₂ O), a v kes (Batch No. as solid at the a Cl ₂ , 1.8% NaCl reaction of the r ydrate at differen	n/Corrosio vhite powd Solvay Co pplication and 0.08% abbit after nt times af	n" ler, prep uillet 8/0 time. Up Ca(OH applicat ter patch	ared fro DCT/19 Don ana) ₂ . ion of n remov	om 85 alysis /al.	
			Animal No.	Symptom	S	core after				
					30-60 minutes	24 hours	48 hours	72 hours	i	
			1	erythema oedema	0 0	0 0	0 0	0 0		
			2	erythema oedema	0 0	0 0	0 0	0 0		
			3	erythema oedema	0 0	-(a) -(a)	-			
Source Reliability 10.06.2002	:	Tokuya (1) vali OECD	(a) rabb becau ima Corr d withou Guidelin	it was killed or use of a broker poration t restriction e study	ne hour after ap n back.	plication			(65)	
Species Concentration Exposure Exposure time Number of animals PDII Result EC classification Method Year GLP Test substance Remark		rabbit undilut Occlus 4 hour(3 slightly not irrit OECD 1986 yes other T [Test s Calciur from ca FLAKE sample	ed ive s) irritating ating Guide-lin S ubstance n chlorid alcium ch S). The	e 404 "Acute e hexahydrate nloride dihydra test material v ed: 50.2% Ca	Dermal Irritatio e (CaCl ₂ -6H ₂ O), ite (Batch No. S vas solid at app Cl ₂ , 1.2% NaCl	n/Corrosio a white po olvay Cou lication tim and 0.05%	n" owder, p illet 8/O(ie. Upon o Ca(OH	reparec CT/198 analys) ₂ .	d 5 sis	

[Result]

A well-defined erythema and a slight oedema were noted at 1 and 24 hours after application in one rabbit. Thereafter the skin reactions diminished and at 72 hours there was only a slight erythema, which had disappeared seven days after treatment. Neither erythema nor oedema was observed in the other two rabbit.

- Table 1: Scores of the skin reaction of the rabbit after application of calcium chloride hexahydrate at different times after patch removal.

		Animal	Sympt	om		SCO	re after				
		No. 			30-60 minutes	24 hours	48 hours	72 hours	7 days	 14 days	
		1	erythei oedem	ma Ia	2 2	2 2	1 1	1 0	0(a) 0	0(a) 0	
		2	erythei oedem	ma la	0 0	0 0	0 0	0 0			
		3	erythei oedem	ma la	0 0	0 0	0 0	0 0			
Source Reliability 11.06.2002	:	(a) slig Tokuya (1) valic OECD (ht scalir ma Corr I withou Guidelin	ng of the poration t restrict e study	skin. ion						(€
Species Concentration Exposure Exposure time Number of animals PDII Result		rabbit 33 % Occlusir 4 hour(s 3 not irrita	ve 3)								
EC classification Method Gear GLP Fest substance Remark		not irrita OECD (1986 yes other TS [Test su Calcium RS1 21 NaCl ar	ating Guide-lin S Ibstance In chlorid (FEB/19 Ind 0.07%	ne 404 " e 33%, ; 986). Up 6 Ca(OF	Acute De a colorle on analy: 1) ₂ .	ermal Ir ss, clea sis sam	ritation/ Ir liquid Iple con	Corrosio (Batch N tained: 3	n" Io. Solva 33.1% Ci	ay Coui aCl ₂ , 1.	llet
		[Result] - Table	1: Score calciur	es of the n chloric	e skin rea le 33 % a	action of at differ	f the rab ent time	bit after s after p	applicat batch ren	ion of noval.	
			Animal No.	Sympt	om		SCO	re after			
						30-60 minute	s	24 hours	48 hours	72 hours	
			1	erythe	 ma	0		0	0	0	

OECD SIDS					CAL	<u>CIUM</u>	<u>CHLO</u>	<u>ride</u>
5. TOXICITY						ID: DATE:	10043	-52-4 .2002
			oedema	0	0	0	0	
		2	erythema oedema	0 0	0 0	0 0	0 0	
		3	erythema oedema	0 0	0 0	0 0	0 0	
Source Reliability 11.06.2002	:	Tokuyama Co (1) valid witho OECD Guidel	prporation out restriction ine study					(63)
Species Concentration Exposure Exposure time Number of animals PDII Result EC classification Method Year GLP Test substance Remark		rabbit undiluted Occlusive 24 hour(s) 6 moderately irr other: US Fec 1981 no as prescribed [Test substan PELADOW: c	itating leral Register 38 by 1.1 - 1.4 ce] alcium chloride	: 187, Part ⁻ (anhydrous,	1500, Sectior 94-97%)	1 41, 197	73.	
		[Method] The backs of hours prior to adhesive tape abraded site of piece of SAR/ plastic collar t the patches w reaction was n * Trademark of	6 rabbits were c use. Under a s on each animal. AN* Film to retain oprevent them vere removed an recorded then an of The Dow Che	lipped free c urgical gauz est material The patche d evaporatio from ingestin d each site nd at 72 hou mical Compa	of hair with ele e patch held was applied to s were loose on. The rabb ng any mater was assesse rs from the b any.	ectric clip in place to an inta ly covere its were ial. Afte d: the s eginning	ppers 2 with act and ed with fitted w r 24 ho everity g of the	an a vith a urs, of the test.
		[Result] Application of on the backs and slight (5/6 1.4 out of a po	the undiluted te of 6 rabbits resu 6) swelling. The ossible 8.0.	st material to Ited in slight primary irrita	o intact and f (3/6) or mod ation score w	reshly al lerate (3 vas calcu	braded /6) redr lated to	skin ness o be
Source Reliability	:	Comment: This report sta The report als material appli- material was a Tokuyama Co (2) valid with p	ates that 0.5 ml so states that the ed to the skin wa applied. orporation restrictions	of the test m e material wa as a solid. It	aterial was a as undiluted, is most likely	pplied to suggest that 0.5	o the sk ing that 5 g of te	in. the est
06.08.2002		Study report t	nat meets genei	ally accepte	a scientific p	rinciples		(16)
Species Concentration Exposure Exposure time Number of animals PDII	:	rabbit undiluted Occlusive 24 hour(s) 6						

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
Result	: moderately irritating
EC classification	:
Method	other: US Federal Hazardous Labeling Act. procedures recommended by
	the FDA_CFR. Part 191. Chapter 1. Title 21. January 1. 1970.
Year	: 1971
GLP	: no
Test substance	: as prescribed by 1.1 - 1.4
Remark	: [Test substance]
	DOWFLAKE*: calcium chloride (dihydrate)
	[Method]
	Twenty-four hours prior to application of the test material, the skin on the
	backs of 6 albino rabbits was carefully clipped free of hair using electric
	clippers. The animals were caged individually and were allowed to eat
	and drink ad libitum. During the exposure period, the rabbits were
	restrained in stocks. Test material, 0.5 grams, was introduced under a
	square gauze patch (1 inch square) to intact and abraded skin. The
	patches were secured in place by adhesive tape. The entire truck of the
	animals was wrapped in an impervious plastic cuff for the 24 hour exposure
	period. After the 24 hours of exposure, the patches were removed and the
	reactions evaluated according to the rating system recommended in the
	Federal Hazardous Labeling Act.
	0
	[Result]
	Application of DOWFLAKE* to intact skin of six rabbits produced very slight
	or slight erythema and edema in 5 of the animals and moderate erythema
	and edema in one animal. The abraded skin response was slight erythema
	in three animals and moderate to severe erythema in three animals.
	The edematous response was very slight or slight in three animals and
	moderate in three animals.
	* Trademark of The Dow Chemical Company.
Source	: Tokuyama Corporation
Reliability	: (2) valid with restrictions
-	Study report that meets generally accepted scientific principles
Flag	: Critical study for SIDS endpoint
06.08.2002	(76)
Species	: rabbit
Concentration	: undiluted
Exposure	: Occlusive
Exposure time	: 6 hour(s)
Number of animals	: 2
PDII	:
Result	: moderately irritating
EC classification	:
Method	: other
Year	: 1971
GLP	: no
Test substance	: as prescribed by 1.1 - 1.4
Remark	: [Test substance]
	DOWFLAKE*: calcium chloride (dihydrate)
	[Method]
	The abdominal skin of two albino rabbits was shaved free of hair. The
	animals were rested for several days to allow any abrasions to heal
	completely. During the 6 hour exposure period, the animals were placed in
	a stock ventral side up. Test material, 0.5 grams, was placed under a
	moist cotton pad, on two intact skin areas per rabbit. Skin reactions were
	observed periodically during the six hour exposure period.

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
	[Result] Application of DOWFLAKE* under a moistened pad to the intact skin resulted in, at the most, slight or moderate erythema, edema and slight necrosis (eschar) in four hours. At the termination of the test, two skin areas displayed necrosis. The two remaining skin areas were unchanged. * Trademark of The Dow Chemical Company.
Source	: Tokuyama Corporation
Reliability	: (2) valid with restrictions
06.08.2002	Study report that meets generally accepted scientific principles (76)
00.00.2002	(10)
Species	: rabbit
Concentration	: 38 %
Exposure	: Occlusive
Exposure time	: 24 hour(s)
Number of animals	: 6
PDII Bosult	: moderately irritating
FC classification	· · ·
Method	 other: US Federal Hazardous Labeling Act. procedures recommended by the FDA CFR, Part 191, Chapter 1, Title 21, January 1, 1970.
Year	: 1971
GLP	: no
Test substance	as prescribed by 1.1 - 1.4
Remark	: [Test substance]
	[Method] Twenty-four hours prior to application of the test material, the skin on the backs of 6 albino rabbits was carefully clipped free of hair using electric clippers. The animals were caged individually and were allowed to eat and drink ad libitum. During the exposure period, the rabbits were restrained in stocks. Test material, 0.5 grams, was introduced under a square gauze patch (1 inch square) to intact and abraded skin. The patches were secured in place by adhesive tape. The entire truck of the animals was wrapped in an impervious plastic cuff for the 24 hour exposure period. After the 24 hours of exposure, the patches were removed and the reactions evaluated according to the rating system recommended in the Federal Hazardous Labeling Act. [Result] Very slight or slight erythema was observed on the intact skin of 5 of 6 rabbits with the remaining rabbit displaying moderate necrosis, no edema by 2 rabbits, very slight to slight edema by 3 rabbits and moderate edema by the remaining rabbit. The abraded skin responded at 24 hours with severe erythema in 2 rabbits, moderate necrosis in 3 rabbits and moderate erythema in 1 rabbit. The edematous response was moderate in 5 of the 6 rabbits with the remaining animal displaying very slight edema. At the 72nd hour observations all inflammatory reactions had subsided and the necrotized skin areas were in the process of healing.
Source	* Trademark of The Dow Chemical Company.
Source Reliability	: (2) valid with restrictions
·······································	Study report that meets generally accepted scientific principles
06.08.2002	(77)

Species	: rabbit
Concentration	: undiluted
Dose	: 100 mg
Exposure Time	:
Comment	: not rinsed
Number of animals	: 3
Result	: highly irritating
EC classification	:
Method	: OECD Guide-line 405 "Acute Eve Irritation/Corrosion"
Year	: 1986
GLP	: ves
Test substance	: other TS
Remark	: [Test substance]
	Anhydrous calcium chloride (CaCl ₂), a white powder, prepared from calcium chloride dibydrate flakes (Batch No Solvay Couillet 8/OCT/1985

calcium chloride dihydrate flakes (Batch No.Solvay Couillet 8/OCT/1985 FLAKES). The test material was solid at the application time. Upon analysis sample contained: 97.0% CaCl₂, 2.2% NaCl and 0.11% Ca(OH)₂.

[Test condition]

Grading and scoring of irritation were performed in accordance with the following table:

- Table 1

### CORNEA ###	
 A. Opacity-degree of density(area taken for reading) No ulceration or opacity 	Grade 0
 Scattered or diffuse areas; details of iris clearly visible Easily discernible translucent areas, details 	1
of iris slightly obscured - Opalescent areas of opacity, no details of iris	2
visible, size of pupil barely discernible	3
- Opaque, ins invisible	4
B. Area of cornea involved	Grade
- No damaged cornea	0
- One quarter (or less) but not zero	1
- Greater than one quarter less than one half	2
- Greater than one half less than three quarters	3
- Greater than three quarters up to whole area	4

IRIS

A. Values	Grade
- Normal	0
- Folds above normal, congestion, swelling, circumcorneal injection (any one or all of these	
reacting to light (sluggish reaction is positive) - No reaction to light, hemorrhage, gross destruction	1
(any one or all of these)	2
(any one or all of these)	2

CONJUNCTIVA

 A. Redness (refers to palpebral cconjunctiva only) Vessels normal Vessels definitely injected above normal More diffuse, deeper crimson red, individual vessels not easily discernible Diffuse beefy red 	Grade 0 1 2 3
 B. Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of the lids Swelling with lids about half closed Swelling with lids about half closed to completely closed 	Grade 0 1 2 3 4
C. Discharq - Normal - Any amount different from normal (does not include small amount observed in inner canthus of normal animals) Discharze with meiotening of the lide and heire	Grade 0 1
 Discharge with moistening of the lids and hairs just adjacent to the lids Discharge with moistening of the lids and considerable area around the eye 	2 3

[Result]

OECD SIDS 5. TOXICITY

The cornea and conjunctiva were moderately to severely irritated all rabbits from one hour till 14 days after treatment. Thereafter the eye of one rabbit recovered, but there was still a slight haze on the cornea, 21 days after treatment. In the two other rabbits the cornea and conjunctiva were still moderately irritated 21 days after treatment.

- Table 2: Numerical grades awarded to the ocular reactions elicited by anhydrous calcium chloride.

Rab	bit Regi	h	hours(h)/days(d) after application										
	··		0h	1 1h	24	ŀh 4	8h	72h	n 7c	1 1	4d	21d	
1	Cornea	Opacity Area involved	0 0	2 4	2 4	2 4	2 4	1 4	1 4	2 3			
	Iris		0	2	1	1	1	1	0	0			-
	Conju- nctiva	Redness Chemosis Discharge	0 0 0	1 3 0\$	2* 3 0	2# 2 2	2# 2 2\$	# 2 2 5 0	# 2 \$	1# 1 1	1# 1	ŧ	-
2	Cornea	Opacity Area involved	0 0	2 4	2 4	2# 4	2# 4	ŧ 2 4	# 4 4	4 4	2		
	Iris		0	1	1	1	1	1	2	1			-
	Conju- nctiva	Redness Chemosis	0 0	1 2	1 2	2 2	3 2	3 2	2 3	2* 2			-

OECD SIDS								(CAI	LCI	UM	CHL	ORIDE
5. TOXICITY											ID:	100	43-52-4
										D	ATE	15.	11.2002
			Discharge	0	0\$	0	3	3	3	3	2		
		3 Cornea	Opacity Area involved	0 0	2 4	2 4	2 4	2# 4	2# 4	± 2 3	0@ 0	·	
		Iris		0	1	1	1	1	1	1	0		
		Conju- nctiva	Redness Chemosis Discharge	0 0 0	1 3 0\$	1 3 0\$	2 2 3	2 2 3	2 2 3	1 2 2	0 0 0\$		
Source Reliability Flag 11.06.2002 Species Concentration Dose Exposure Time Comment	: : : : : : : : : : : : : : : : : : : :	* - conjunct # - the eye \$ - lacrimat @ - slight h Tokuyama C (1) valid with OECD Guide Critical study rabbit undiluted 100 mg not rinsed	iva was damage was difficult to o ion aze on cornea corporation out restriction eline study ofor SIDS endpo	observ	re dı	ue to	o dis		rge.				(60)
Number of animals Result EC classification Method Year GLP Test substance Remark		3 irritating OECD Guide 1986 yes other TS [Test substa Calcium chlo calcium chlo FLAKES). Th sample conta	e-line 405 "Acute nce] pride dihydrate (ride dihydrate fi ne test sample v ained: 76.7% Ca	e Eye CaCl ₂ akes (vas sc aCl ₂ , 1	Irrita -2H ₂ Bato blid a .8%	eO), cO), ch N at th	a w lo. S e ap Cl a	hite Solva pplic	sion' pov ay C atio 0.08	vder Coui n tir % (r, preț llet 8/ me. U Ca(Oł	oarec OCT pon 1)2.	d from /1985 analysis
		[Result]											

The conjunctiva of the eye of one rabbit (No. 1) was moderately to severely irritated from one till 24 hours after treatment. Thereafter the irritation diminished and had disappeared at 14 days after treatment, although a slight lacrimation was still noted. The cornea of this rabbit was slightly opaque up to and including 72 hours. The conjunctiva of the eye of the second rabbit (No. 2), was moderately irritated at the one hour reading. Thereafter the irritation diminished, although the conjunctiva was still slightly damaged at the end of the observation period. In the third rabbit (No. 3), the cornea was moderately irritated from 24 till 72 hours. Thereafter the irritation diminished, but was still slight at the end of the experiment. The conjunctiva was moderately irritated from one till 72 hours. Thereafter the eye recovered, but the irritation was still present 21 days after application. The iris was slightly irritated from one hour up to 14 days after treatment.

- Table 1: Numerical grades awarded to the ocular reactions elicited by calcium chloride dihydrate.

Rabbit Region of eye hours(h)/days(d) after application

OECD SIDS
5. TOXICITY

		~										
	N	0.		0h	1h	24h	48h	72h	7d	14d	21d	
	 1	Cornea	Opacity Area involved	0 0	0 0	1 1	1 1	1 1	0 0	0 0		
		Iris		0	0	0	0	0	0	0		
		Conju- nctiva	Redness Chemosis Discharge	0 0 0	1 2 0\$	3* 3 0\$	2 2 1\$	2 2 1	1 1 5 0\$	0 0 6 0\$		
	2	Cornea	Opacity Area involved	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
		Iris		0	0	0	0	0	0	0	0	
		Conju- nctiva	Redness Chemosis Discharge	0 0 0	2 2 0\$	1* 1 0\$	0* 1 0\$	0* 1 0	0* 1 0	0* 0 0	0* 0 0	
	3	Cornea	Opacity Area involved	0 0	0 0	2 4	2 4	2 1	1 1	1 2	1 2	
		Iris		0	2	1	1	1	1	0	0	
		Conju- nctiva	Redness Chemosis Discharge	0 0 0	2 2 0\$	2* 2 0\$	2* 2 1\$	2* 1 1\$	1* 0 0\$	2* 0 0\$	2 0 0\$	
Source Reliability 06.02.2002 Species Concentration Dose Exposure Time Comment Number of animals Result EC classification Method Year GLP Test substance Remark	* \$: To : (1) OE : rat : 100 : not : 100 : 0E : 190 : yes : oth : [Te Ca fro FL san	- conjunct - lacrimat kuyama C valid with CD Guide obit idiluted 0 mg t rinsed derately in CD Guide 86 set substa lcium chlc m calcium AKES). Th mple conta esult]	rritating e-line 405 "Acute orde hexahydrate ordide hexahydrate ochloride dihydrat he test material w ained: 50.2% CaC	Eye I (CaC e (Ba as sc J ₂ , 1.	rritaf Cl ₂ -6i atch Jid a 2% I	ion/(H₂O) No. { t app NaCl	Corro , a w Solva Dlicati l and	sion' hite ţ y Co ion ti 0.05	oowc uille me. 1 % C	ler, p t 8/O Upor a(OH	repare CT/19 analy 1) ₂ .	(64) ed 85 sis
	Th irrit	e conjunct	tiva was slightly ir disappeared at 7	ritate 2 hοι	d in urs. ⁻	one i The c	rabbi corne	t (No a wa	. 2), s slig	till 48 ghtly	3 hour irritate	s; the ed at

24 hours after treatment. In a second rabbit (No. 1), the conjunctiva was moderately irritated from one till 48 hours after treatment, thereafter the conjunctiva recovered. The cornea was slightly irritated from one till 72 hours. The irritation of cornea and conjunctiva had disappeared at 7 days after treatment. In the third rabbit (No. 3), the cornea was slightly irritated from 24 hours till 72 hours after treatment. The conjunctiva was slightly irritated from 1 hour till 14 days. At day 21 only some lacrimation was noted in this rabbit.

- Tabl	e 1: Nu	umerical	grades	awarded	to the	ocular	reactions	elicited	by
	calc	ium chlo	oride he	xahydrate	ə.				

		Rab app	bit Regi lication	on of eye	hours(h)/days(d) after								
		INC).		0h	1h	24h	48h	72h	7d	14d	21d	
		1	Cornea	Opacity Area involved	0 0	0 0	1 1	1 1	1 1	0 0			
			Iris		0	0	0	0	0	0			
			Conju- nctiva	Redness Chemosis Discharge	0 0 0	1 2 0\$	2* 2 0\$	1* 1 0\$	0* 1 0\$	0 0 0			
		2	Cornea	Opacity Area involved	0 0	0 0	1 2	0 0	0 0				
			Iris		0	0	0	0	0				
			Conju- nctiva	Redness Chemosis Discharge	0 0 0	1 2 0\$	1 1 0\$	0 0 0\$	0 0 0				
		3	Cornea	Opacity Area involved	0 0	0 0	2 1	1 1	1 0	0 0	0 0	0 0	
			Iris		0	0	0	0	0	0	0	0	
			Conju- nctiva	Redness Chemosis Discharge	0 0 0	1 2 0\$	1 1 0\$	0 0 1\$	1 1 1\$	0 0 0\$	1 0 0\$	0 0 0\$	
Source Reliability 11.06.2002	:	* - \$ - Tok (1) OE(conjuncti lacrimati uyama Co valid witho CD Guide	va was damaged. on orporation out restriction line study									(66)
Species Concentration Dose Exposure Time Comment Number of animals Result		rabl 33 9 .1 m not 3 mod	bit % hl rinsed derately ir	ritating									

OECD SIDS									CAI	LCII	JM (CHLC	RIDE
5. TOXICITY										D/	ID:	1004	3-52-4
EC classification Method Year GLP Test substance Remark		OE0 198 yes othe [Tes Calo RS ² Na0	CD Guide 6 er TS st substar cium chlo 1 21/FEB, Cl and 0.0	-line 405 "Acute nce] ride 33%, a colo /1986). Upon ana /7% Ca(OH) ₂ .	Eye rless alysis	Irrita , clea s san	ation/ ar liqu	Corro uid (B conta	sion' atch	No.: 33.	Solv 1% C	ay Cor caCl ₂ ,	uillet 1.1%
		[Re: The hou som con reco thire 72 h afte - Ta	sult] conjunct rs after tr la lacrima junctiva v overed an d rabbit (N nours. Th r treatme able 1: Nu calc	iva was slightly i eatment. The irri ation was still not vere moderately d the irritation ha lo. 1), the cornea ereafter, the corr nt, the cornea wa merical grades a ium chloride 33 °	rritate tation ed. I irritat ad dis a and nea a as sti awarc %.	ed in n had n a s ted ti sapp d cor ind c ill slig ded t	one d disa ecor ll 48 eare junct onjur ghtly o the	rabbi appea id rab hours d 14 o tiva w nctiva irritat	t (No ared a bit (f s. The days vere r reco ed. ar rea	o. 3), at 48 No. 2 erea after node overe actio	from hou 2), the fter th r trea erate ed, bu	1 till 4 rs, altr corne te eye tment. ly irrita ut 21 d icited l	l8 lough ea and In the ted till lays by
		Rabbit Region of eye hours(h)/days(d) after application											
					0h 	1 1h	24h	48h 	72h	7d	14d	21d	
		1	Cornea	Opacity Area involved	0 0	2 4	2 4	2 2	2 2	1 1	1 1	1 1	
			Iris		0	1	0	0	0	0	0	0	
			Conju- nctiva	Redness Chemosis Discharge	0 0 0	1 2 0\$	2* 2 0\$	1* 2 0\$	1* 2 0\$	1 1 0\$	1 1 1\$	0 0 0\$	
		2	Cornea	Opacity Area involved	0 0	2 4	2 4	2 4	2 1	1 0	0 0		
			Iris		0	1	0	1	0	0	0		-
			Conju- nctiva	Redness Chemosis Discharge	0 0 0	2 2 0\$	1* 2 0\$	2* 1 0\$	1* 1 0	1 0 0	0 0 0		
		3	Cornea	Opacity Area involved	0 0	0 0	0 0	0 0	0 0				
			Iris		0	0	0	0	0				•
			Conju- nctiva	Redness Chemosis Discharge	0 0 0	1 2 0\$	1* 1 0\$	0 0 0\$	0 0 0				
Source	:	 * - \$ - Tok	conjuncti lacrimati uyama C	va was damage on orporation	d.								

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
Reliability	: (1) valid without restriction
11.00.0000	OECD Guideline study
11.06.2002	(62)
Species	: rabbit
Concentration	: undiluted
Dose	· 1 other: a
Exposure Time	· · · · · · · · · · · · · · · · · · ·
Comment	. not rinsed
Number of animals	· 6
Regult	: moderately irritating
EC classification	. moderately initiating
Method	. other: US Federal Hazardous Labeling Act, procedures recommended by
Methoa	the EDA CEP Part 101 Chapter 1 Title 21 January 1 1070
Voor	• 1071
	. 1971
GLF Toot outotonoo	. IIU
Pomork	. as prescribed by 1.1 - 1.4
Remark	: [Test substance]
	DOWFLAKE". calcium chionde (dinydrate)
	[Method]
	l est material, 0.1 grams, was instilled in the conjunctival sac of the right
	eye of 6 albino rabbits. The left eye of each animal served as an untreated
	control. Both eyes of each rabbit were considered to be without defects or
	irritation prior to the study. The eyes were examined 24, 48, 72 hours, and
	7 days post-installation. Ocular reaction was graded in accordance with
	the rating system recommended under the Federal Hazardous Labeling
	Act.
	[Result]
	Instillation of DOWFLAKE* into the eyes of 6 rabbits produced corneal
	opacity with details of the iris slightly obscured, congestion and
	circumcorneal injection of the iris, diffuse conjunctival redness and
	conjunctival chemosis causing the eye lids to be half or more closed.
	* Trademark of The Dow Chemical Company.
Source	: Tokuyama Corporation
Reliability	: (2) valid with restrictions
-	Study report that meets generally accepted scientific principles
06.08.2002	(76)
Species	: rabbit
Concentration	: 38 %
Dose	: .1 other: g
Exposure Time	
Comment	: not rinsed
Number of animals	: 6
Result	: moderately irritating
EC classification	
Method	: other: US Federal Hazardous Labeling Act. procedures recommended by
	the FDA CFR, Part 191, Chapter 1, Title 21, January 1, 1970.
Year	: 1971
GLP	: no
Test substance	: as prescribed by 1.1 - 1.4
Remark	: [Test substance]
	LIQUIDOW*: liquid calcium chloride (38% CaCl ₂ and 62% water)
	[Method]
	Test material, 0.1 grams, was instilled in the conjunctival sac of the right
	eve of 6 albino rabbits. The left eve of each animal served as an untreated
	control. Both eyes of each rabbit were considered to be without defects or

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
	irritation prior to the study The eyes were examined 24, 48, 72 hours, and 7 days post-installation. Ocular reaction was graded in accordance with the rating system recommended under the Federal Hazardous Labeling Act.
	[Result] Instillation of LIQUIDOW* into the eyes of 6 rabbits produced diffuse corneal opacities in 5 of the 6 eyes with no discernible corneal effect in the remaining eye, slight iritis in 4 of the 6 eyes with no discernible effect in the remaining 2 eyes, slight conjunctival redness in 3 eyes and moderate conjunctival redness in the remaining 3 eyes, and no chemosis in one eye, slight chemosis causing inversions of the lids in 2 eyes and moderate chemosis causing the lids to be half closed in 3 eyes. The ocular reactions at 48 hours were essentially the same as at 24 hours. The reactions at 72 hours were the same as or less than those reactions observed at 24 hours except in the case of 2 eyes which displayed marked chemosis causing the eye lids to be more than half closed.
Source :	* Trademark of The Dow Chemical Company. Tokuyama Corporation (2) valid with restrictions
06.08.2002	Study report that meets generally accepted scientific principles (77)
5.5 SENSITIZATION	
TypeSpeciesNumber of animalsVehicleResultClassificationMethodYearGLPTest substanceSourceReliability10.06.2002	Skin painting test guinea pig no data not sensitizing other 1990 no data other TS: technical grade Tokuyama Corporation (3) invalid Documentation insufficient for assessment (96)
	νιατγ
Species Sex Strain Route of admin. Exposure period Frequency of treatment Post obs. period Doses	rat no data oral feed 12 months daily 20000 ppm
Control group : NOAEL : Method : Year : GLP : Test substance :	yes >= 2000 ppm other 1977 no data other TS
	UNEP PUBLICATIONS 121

OECD SIDS							CALCIUM CHLORIDE					
5. TOXICITY							ID: 10043-52-4 DATE: 15.11.2002					
Remark	:	[Test sub Obtained	stance from S] Sigma Ch	emical C	ompany, S	St. Louis, MO.					
		[Test con Twenty 4 the exper the first 3 the termin histologic and splee	dition] 0-day-(imenta month nation (al sect	old rats re I period on s and mo of the exp ions of g e prepare	eceived d of 12 mor onthly the periment astrointes d and stu	liet contain hths. The i ereafter. R were necr stinal tract udied from	ning 20 mg CaCl ₂ per g diet for rats were weighed biweekly for ats that died or were killed at opsied. Representative , urinary tract, liver, heart, brain all available animals.					
		[Result] No difference control ar supplement The avera throughout in the org	ences i nd the f ents, w age we ut the e ans sti	n daily fo test group hich corre- ights and experime udied his	od consu os. Each espondec d survival ntal perio tologically	Imption we rat consul to 440 m s of both (d. No neo y.	ere detected between the med about 22 g basic diet with g of CaCl ₂ as the daily intake. groups were comparable plastic lesions were observed					
		- Table. E	 o. of	No. of I	t CaCl ₂ on the survival of rats							
		Group	rats sed	6-8	8-10	10-12						
		Control CaCl ₂	20 20	2 1	0 1	18 18						
Source Reliability	:	Tokuyam (3) invalic Documen	a Corp 1 Itation	oration	nt for ass	essment						
10.06.2002							(81)					
Species Sex Strain Route of admin. Exposure period Frequency of treatment		rat male/fem oral feed 12 weeks daily	ale									
Post obs. period Doses Control group NOAEL Method Year GLP Test substance Remark		20000 ppm in basal diet or 10000 ppm in drinking water yes >= 20000 ppm other 1940 no data other TS [Test substance] Calcium chloride was prepared from calcium oxide and hydrochloric a										
		[Test con Both male kept sepa Littermate per cent of with the w Seventy-of the drinkin control gr	dition] e and f arate an es were calcium vater, 1 one an ng wat roup.	emale ra nd two or e distribu n chloride l% calciu d twenty- er group,	ts, 4 to 5 three an ted throug was add m chlorid four rats respectiv	weeks old imals wer gh the die led to the le was add were used vely, while	d, were used. The sexes were e placed in each cage. ts as much as possible. Two basal diet. In the experiment ded to the drinking water. d for the basal diet group and e 212 rats were used for the					

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
Source	[Result] Calcium salts added to the basal diet or drinking water did not affect growth and survival of rats. The thyroid weight, iodine content and concentration for rats fed the different calcium salts were recorded. None of the calcium salts produced a real enlargement of the thyroid. The iodine concentration on the dry weight basis was almost identical for all diets. Examination of some glands from each group showed no real differences in the microscopic structure. The results demonstrate that a high calcium intake does not affect the size of the thyroid. However, along with vitamin D calcium chloride produced an increase in thyroid weight.
Reliability	: (3) invalid
•	Documentation insufficient for assessment
10.06.2002	(88)
Species Sex Strain Route of admin. Exposure period Frequency of treatment Post obs. period Doses Control group Method Year GLP Test substance Remark	 rat no data no data gavage 70 days 6 days/week 1.1, 2.8, 5.6 g/kg-bw no other 1942 no data no data condata Ino data Calcium chloride in solution was administered by stomach tube to rats six days weekly throughout the experiment. Ten animals comprised each group. The animals were weighed at least once a week. Certain tissues from animals dying during the experiments, as well as those surviving for its duration, were examined histologically.
Source Reliability 10.06.2002	 [Result] All the animals of the 5.6 g/kg group died after a single dose. Administration of calcium chloride at 2.8 g/kg also produced death after one or two doses. In the 1.1 g/kg group, 5 of the original 10 rats survived the entire period (70 days). No apparent histological change was observed in the heart, kidney or liver of the surviving rats. Tokuyama Corporation (3) invalid Documentation insufficient for assessment
Species	: rat
Sex Strain	: no data
Route of admin.	inhalation
Exposure period	: 4 months, 4 hours/day
Frequency of	: 5 days/week
treatment	
Post obs. period Doses	8.5. 14.9. 43.1 mg/m ³
Control group	: no data specified
LOAEL	: 8.5 mg/m ³
Method	: other
Year CLP	: 1990 : no data
GLF	. no uata

ECD SIDS	CALCIUM CHLORIDI
TOXICITY	ID: 10043-52-
	DATE: 15.11.200
Test substance Remark	 other TS: technical grade [Result] Marked toxic symptoms were observed in rats administered at 43.1 mg/m³ most of which were not recovered during the post observation period. Those included decreases in the number of leukocytes, phagocytic activity in blood, lysozyme level in serum, and catalase activity, plasma recalcification, shortening of clotting, clot retraction, an increase in peroxidase activity, and so on. Similar symptoms were also observed in th rats of the 14.9 mg/m³ group, although the symptoms were considerably weaker than those at 43.1 mg/m³ and disappeared during the post observation period. At 8.5 mg/m³, only a few parameters of physiological and biochemical functions of rate were abanged
Source	: Tokuyama Corporation
Reliability	: (3) invalid
•	Documentation insufficient for assessment
10.06.2002	(96
Species	: rabbit
Sex	: no data
Strain	: no data
Route of admin.	: gavage
Exposure period	: 4 days
Frequency of	
Post obs period	
Doses	: 15 18 22 25 α/kg/dav
Control group	: no
Method	: other
Year	: 1949
GLP	: no data
Test substance	: no data
Remark	: [1 est condition] Twelve rabbits were used in the experiment. These were housed in urine cages. Calcium chloride in a 10% solution was administered daily by stomach-tube. Two animals received 1.5 g/kg, two received 1.8 g/kg, two received 2.2 g/kg, and six received 2.5 g/kg. Urines were collected daily fo the estimation of urea, chlorides, phosphates, ammonia and pH. Routine tests for albumen were carried out. Blood was withdrawn every second day for analysis. For histological analysis, formol saline was used as a routine fixative for paraffin and frozen sections.
-	[Result] Group 1: All of the animals receiving 1.5 or 1.8 g/kg and one animal receiving 2.2 g/kg showed no signs of toxaemia, ate their food and appeared to be healthy in every way. Histological analysis showed minor abnormalities in lung and kidney of these animals. Group 2: Five animals receiving 2.5 g/kg died on the 5th day. The remaining two animals, one receiving 2.5 g/kg and another receiving 2.2 g/kg were comatose on the 5th day. All of the animals in this group showed gross abnormalities in lung, myocardium, liver, and kidney at autopsy. Because no irritation was observed, it is probable that older rabbits were used in this study.
Reliability	: (3) invalid
	Does not meet important criteria of today's standard method
10.06.2002	(33

5.5 GENETIC TOXICITY 'IN VITRO'

Type : System of testing :	Ames test <i>Salmonella typhimurium</i> strains TA92, TA1535, TA100, TA1537, TA94,
Concentration :	TA98 max 5.0 mg/plate
Cycotoxic conc. :	
Metabolic activation :	with
Result :	negative
Method :	other
Year :	1984
GLP :	no data
Test substance :	other TS
Remark :	[Test substance]
	Supplied from the Japan Food Additives Association, Tokyo, at the request of the Ministry of Health and Welfare of Japan, where the purity and quality of the sample was checked. The purity of $CaCl_2$ used was 74.5%.
	[Method] The method was in principle equivalent to OECD Guideline 471, except that the test was carried out only with metabolic activation
	[Test condition] Duplicate plates were used for each of six different concentrations of the sample. The liver microsome fraction (S9) was prepared from the liver of Fischer rats pretreated 5 days before with polychlorinated biphenyls (500
	considered positive if the number of colonies found was twice the number of colonies of the control, which was exposed to phosphate buffer, the solvent for CaCl ₂ .
	[Result] A negative result indicates that no significant increases in the number of revertant colonies were detected in any <i>S. Typhimurium</i> strains at the maximum dose.
Source :	Tokuyama Corporation
Reliability :	(2) valid with restrictions
	Comparable to guideline study with acceptable restrictions
Flag :	Critical study for SIDS endpoint
11.06.2002	(42)
Type :	Ames test
System of testing :	Salmonella typhimurium TA97, TA102
Concentration :	0.1 - 10 mg/plate
Cycotoxic conc. :	
Metabolic activation :	with and without
Result :	negative
Method :	other
Year :	1987
GLP :	no data
lest substance :	other IS
Remark :	[Test substance] Obtained from Wako Pure Chemicals Co., Japan (lot No. DCG 7053).
	[Method] The method was in principle equivalent to OECD Guideline 471, except that some of the recommended test strains were not included.
	[Test condition] Triplicate plates were used for each of five different concentrations of the

sample. The liver microsome fraction (S9) was prepared from the liver of male SD rats pretreated with Aroclor 1254.

[Result]

Table. Mutation test with CaCl₂

		D *	No	of Rev	ertants			
		Dose* (mg/plate)	TA97	′ TA10)2			
			-S9	+S9	-S9	+S9		
		 10	140	173	168	287		
		5	141	170	230	340		
		1	132	206	291	376		
		0.5	140	213	286	424		
		0.1	149	225	313	437		
		0	146	212	325	447		
		PC**	205	2292	4930	1428		
Source Reliability Flag	** Pos S9; 2- µg/pla TA102 : Tokuy : (2) va Basic : Critica	sitive controls us aminoanthracer ate) for TA102 w 2 with S9. ama Corporatio lid with restrictio data given: com al study for SIDS	ed: 9-am ne (5 µg/p ithout S9 n ns nparable t endpoin	inoacrid late) for ; and 2- ; o guide t	line (20 µ r TA97 w aminoan line stud	ug/plate) <i>i</i> ith S9; m thracene y	for TA97 w nytomycin C (5 µg/plate	ithout > (0.5 >) for (31)
10.06.2002								(31)
Type System of testing Concentration Cycotoxic conc. Metabolic activation Result Method Year GLP Test substance Remark	: Bacilli Bacilli : 0.005 : : withou : negat : other : 1980 : no da : other : [Test CaCl ₂	us subtilis recom us subtilis H17 (r -0.5 M ut ive ta TS substance] of highest purity	nbination rec+), H4 / commen	assay 5 (rec-) rcially av	vailable			
Source	[Test CaCl ₂ bacter B-2 ag dropp placer 24h a growtl of wild mutag : Tokuy	condition] was dissolved i rial stock was m gar. A 0.05-ml p ed on to a filter p d on the starting nd then incubate h of recombination d-type cells (H17 genicity. rama Corporatio	n distilled elted and ortion of e paper dis point of t ed at 37°C on-deficie ' cells), th	l water. streake each me k (diame he strea C overni ent cells ne chem	On the c ed radiall etal solut eter 10 n ak. The p ght. Who (H45 ce ical is co	day of the ly from sr ion (0.00 nm), and blates we en a cher ells) much onsiderec	e experimer mall pipette 5-0.5 M) wa the disk wa re kept at 4 mical inhibit stronger th positive fo	nts, each s onto as as ⊱°C for ts the han that or
Reliability	: (3) inv	alid nentation insuffi	cient for <i>i</i>	accocc	nent			
11.06.2002	Docui			10000001				(48)

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
Type System of testing Concentration Cycotoxic conc. Metabolic activation Result Method Year GLP Test substance Remark	DATE: 15.11.2002 : other: SOS Chromotest : Escherichia coli PQ37 : 1 - 1000 µmol/l (0.1-111 mg/l) : : without : negative : other : 1987 : no data : other TS : [Test substance] Obtained from Merck
Source Reliability 11.06.2002	 [Test condition] The SOS Chromotest is a simple colorimetric assay of the induction of the bacterial gene <i>sfiA</i> in <i>E. coli</i>. The <i>sfiA</i> expression is induced after DNA damage as part of the SOS system. In the Chromotest the <i>sfiA</i> expression is monitored by assaying β-galactosidase activity in a tester strain as PQ37, which has a <i>sfiA-lacZ</i> gene fusion. An exponentially growing culture of PQ37 was incubated for 2h with 100 µl of a CaCl₂ solution in L medium. After the incubation, β-galactosidase activity was determined as the <i>sfiA</i> expression and alkaline phosphatase as a bacterial survival. The mutagenic activity at a concentration, C, is expressed by the ratio, R(C)= β/p, where β represents the β-galactosidase activity and p the alkaline phosphatase activity. The induction factor for a compound at the concentration, C, was defined as I(C)=R(C)/R(O) in which R(O) is the mutagenic activity measured in the absence of CaCl₂. At least 3 experiments were carried out to determine the mutagenic activity of CaCl₂. Tokuyama Corporation (3) invalid Documentation insufficient for assessment
Type System of testing Concentration Cycotoxic conc. Metabolic activation Result Method Year GLP Test substance Remark	 Chromosomal aberration test Chinese hamster fibroblast cell line CHL max. 4 mg/plate without negative other 1984 no data other TS [Test substance] Supplied from the Japan Food Additives Association, Tokyo, at the request of the Ministry of Health and Welfare of Japan, where the purity and quality of the sample was checked. The purity of CaCl₂ used was 74.5%.
	[Method] The method was in principle equivalent to OECD Guideline 473, except that no test was carried out with metabolic activation. [Test condition] The doubling time of CHL cells was approximately 15 hr. The cells were exposed to CaCl ₂ at three different doses for 24 and 48 h. The maximum dose was selected by a preliminary test, in which the dose needed for 50% cell-growth inhibition was estimated using a cell densitometer. Colcemid (final concn 0.2 mg/ml) was added to the culture 2hr before cell harvesting and chromosome preparations were made. A hundred well-spread metaphases were observed under the microscope. The incidence of polyploid cells as well as of cells with structural chromosomal aberrations

OECD SIDS				CALCIUI	M CHLORIDE
5. TOXICITY] DA	D: 10043-52-4 ГЕ: 15.11.2002
		such as chromatid or chromoso formations, fragmentations and solvent (physiological saline)-tro which the incidence of aberration were considered to be negative	ome gaps, brea others, was re eated cells serv ons was usually if the incidenc	ks, exchange corded. Untre ved as negativ / less than 3.0 e was less that	s, ring eated cells and ve controls, in 0%. The results an 4.9%.
		[Result] Table: Mutagenicity of CaCl₂ in	chromosomal	aberration tes	st <i>in vitr</i> o
		Max dose Solvent Polyploid Structural abberation Result	4.0 mg/ml Physiological 0 % 1.0 % (48 hr) Negative	saline	
Source Reliability	:	Tokuyama Corporation (2) valid with restrictions Comparable to guideline study	with acceptable	e restrictions	
Flag 11.06.2002	:	Critical study for SIDS endpoint	t		(42)
Type System of testing Concentration Cycotoxic conc. Metabolic activation Result Method Year GLP Test substance Remark		other: anchorage independence Cultured primary human diploid 1.00 µM (0.1mg/l) without negative other 1987 no data no data [Test condition] Primary-cultured human foreski mg/l CaCl ₂ . At the optimal expr 3 ml of 0.3% agar supplemente of 5 ml of a 0.5% agar base lay dish. Cells were fed every 6 dar fetal calf serum. Four weeks lat iodonitrotetrazolium violet in PE diameter were scored as ancho microscopic examination. [Result] Table. Induction of AI in primari fibroblasts.	e assay I foreskin cells I foreskin cells I foreskin cells I foreskin cells Version time, 1 I of d with growth r er containing g ys with 0.5 ml of ter, cells were s SS, and colonie orage-independ	vere treated f x 10 ⁵ cells we nedium and s rowth medium of H-MEM cor stained with 1 s greater than ent (AI) colon	or 48 h with 0.1 re suspended in solidified on top n in a 60-mm ntaining 15% mg/ml n 0.1 mm in sies by
		Treatment		None	CaCl ₂
		Cytotoxicity: relative plating effi	ciency (%)	100	95
		Absolute no. of Al colonies per	dish*	4±2	6±2
		Frequency of AI per 10 ⁵ survivo	Drs**	19	24
Source Reliability	:	 * 10⁵ cells were seeded per dis ** Total number of AI colonies/(reseeded cells on plastic). Tokuyama Corporation (3) invalid Documentation insufficient for a 	h into soft agar (10 ⁵ cells seede assessment	ed x plating ef	fficiency of

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
12.06.2002	(7)
Type	: other: viral transformation assav
System of testing	: Cultured Primary Syrian hamster embryo cells
Concentration	and a max = mmol/l (0.75 g/l)
Cycotoxic conc.	:
Metabolic activation	: without
Result	: negative
Method	: other
Year	: 1979
GLP	: no data
Test substance	: no data
Remark	: [Test condition]
	Two plates of primary-cultured Syrian hamster embryo cells (HEC) were treated with metal salts for 18 hr prior to inoculation of simian adenovirus SA7. After the treatment, HEC were rinsed with complete medium and inoculated with SA7. Three hours later, the cells were harvested, plated into 60-mm dishes at 2×10^5 cells /dish, and incubated for 6 days. Then the plates were overlaid with the medium containing Bacto-agar 6 days. At intervals of 4, 5,and 6 days, additional agar medium were added. Final focus counts were made 25 to 30 days from the beginning of the experiment. Enhancement was expressed as the ratio between the transformation frequency of treated, surviving cells and that of control cells.
Source	: Tokuyama Corporation
Reliability	: (3) invalid
	Documentation insufficient for assessment
12.06.2002	(17)
Туре	 other: recombination and production of disomic and/or diploid spores during meiosis
System of testing	: Saccharomyces cerevisiae DIS13
Concentration	: 10 - 300 mM (1-33 g/l)
Cycotoxic conc.	
Recult	
Mothod	: positive
Voar	· 1096
GLP	: no data
Test substance	: no data
Remark	: [Test substance]
	Substance of the analytical reagent grade obtained from Farmitalia-Carlo Erba, Milan, Italy.
	[Test condition] The experimental procedure used involves the selection of meiotic products carrying two copies of chromosome V and which are consequently prototrophic for the nutritional requirements specified by markers located in alternate trans positions along the right arm of chromosome V. Such clones can be both diploid or disomic. The analysis of the segregation of the markers <i>leul</i> (chromosome VII), <i>ade2</i> (chromosome XV) and MAT (chromosome III) allows us to attribute the selected clones to one or other class, to confirm their meiotic origin and whether they are the product of the Meiosis 1 or Meiosis 2. The phenotypes of 96 colonies per dose were actually analysed. The recombination frequency was also determined from the frequency of prototrophs for the markers <i>hom3</i> and <i>his1</i> present in the trans position on chromosome V. CaCl ₂ was dissolved in the sporulation medium and added at the time of cell transfer from the vegetative to the sporulation medium. [Result]
	Chromosomal segregation was seriously disturbed by calcium chloride,

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
Source : Reliability : 11.06.2002	which caused a clear increase in diploid spore occurrence. Calcium chloride also showed a toxic effect on sporulation at 300 mM. Tokuyama Corporation (3) invalid Relevant methodological deficiencies (92)

5.6 GENETIC TOXICITY 'IN VIVO'

5.7 CARCINOGENITY

5.8 TOXICITY TO REPRODUCTION

5.9 DEVELOPMENTAL TOXICITY/TERATOGENICITY

Species:Sex:Strain:Route of admin.:Exposure period:Frequency of:treatment:Duration of test:Doses:Control group:NOAEL Maternalt.:NOAEL Teratogen:Method:Year:GLP:Test substance:Remark:	rat female Wistar gavage 6th to 15th day of pregnancy daily up to the last day of pregnancy 1.76, 8.18, 38.0, 176 mg/kg/day other: sham-treated > 176 mg/kg bw/day > 176 mg/kg bw/day > 176 mg/kg bw/day other 1974 no data other TS [Test substance] Fine white granular material marked with FDA 71-87
--	---

[Method] The method was in principle equivalent to OECD Guideline 414.

[Test condition]

Virgin adult female albino rats were mated with young adult males and observation of the vaginal sperm plug was considered Day 0 of gestation. Beginning on Day 6 and continuing daily through Day 15 of gestation, the females were dosed with the indicated dosages by oral intubations. The controls were sham treated with the vehicle at a level equivalent to the group receiving the highest test dose. The test material prepared and doses calculated according to the following table:

Dosage (mg/kg)	Dose (ml/kg)	Concentration (mg/ml)
<= 250	1	<= 250
251-500	2	125-250
501-750	3	133-250
751-1000	4	187-250
1001-1250	5	200-250

OECD SIDS			CA	LCIUM CHLORIDE
5. TOXICITY				ID: 10043-52-4
				DATE: 15.11.2002
	1251-1500	6	208-250	

1501-1600 6.4 235-250

Body weights were recorded on Day 0, 6, 11, 15, and 20 of gestation. All animals were observed daily for appearance and behavior with particular attention to food consumption and weight, in order to rule out any abnormalities that may have occurred as a result of anorexic effects in the pregnant female animal. On Day 20 all dams were subjected to Caesarean section under surgical anesthesia, and the numbers of implantation sites, resorption sites, and live and dead fetuses were recorded. The body weights of the live pups were also recorded. The urogenital tract of each dam was examined in detail for anatomical normality.

All fetuses were examined grossly for the presence of external congenital abnormalities. One-third of the fetuses of each litter underwent detailed visceral examinations employing the Wilson technique. The remaining two-thirds were cleared in potassium hydroxide (KOH), stained with alizarin red S dye and examined for skeletal defects.

[Result]

- Table 1: Fate Summary

Group	Material	Dose***	•	Total	Sı	urvivin	g at Ter	m
		mg/kg	Mateo	Pregnant	To	otal	Pregna	nt*
341 342 347 348 349 350	Sham Aspirin** CaCl ₂ CaCl ₂ CaCl ₂ CaCl ₂ CaCl ₂	0.0 250.0 1.76 8.18 38.0 176.0	25 25 25 25 25 25 25	25 23 22 24 22 24 22 24	2: 2: 2: 2: 2: 2: 2: 2:	5 5 5 5 5 5 4	25 23 22 24 22 23	_

* Includes all dams examined at term

** Positive Control: 250.0 mg/kg

*** Administered as a water solution

- Table 2: Reproduction Data

Group Dose (mg/kg)	341 Sham	342 Aspirin*	347 1.76	348 8.18	349 38.0	350 376.0
Pregnancies						
Total No.	25	23	22	24	22	24
Died or Aborted (before Day 2	0)					
	0	0	0	0	0	1
To term (on Day 20)	25	23	22	24	22	23
Live Litters						
Total No.**	25	18	22	24	22	23
Implant Sites						
Total No.	279	231	234	261	254	246
Average/dam**	11.2	10.0	10.6	10.9	11.6	10.7
Resorptions						
Total No.**	4	62	3	1	1	2
Dams with 1 or more sites res	orbed					
	3	11	2	1	1	2
Dams with all sites resorbed	-	4	-	-	-	-
% partial resorptions	12.0	47.8	9.09	4.17	4.55	8.70
% complete resorptions Live Fetuses	- 1	7.4	-	-	-	-
Total No.	275	168	231	260	253	244
Average/dam**	11.0	7.30	10.5	10.8	11.5	10.6

UNEP PUBLICATIONS

			CAL	CIUM C	CHLO	RIDE
				ID:	10043	-52-4
				DATE:	15.11	.2002
Sex ratio (M/F)	1.07	1.06	1.10	0.95	0.90	0.89
Dead Fetuses						
Total* *	-	1	-	-	-	-
Dams with 1 or more dead	-	1	-	-	-	-
Dams with all dead	-	1	-	-	-	-
% partial dead	-	4.35	-	-	-	-
% all dead	-	4.35	-	-	-	-
Average Fetus Weight (g)-						
S S (0)	3.68	2.39	4.13	3.80	3.84	3.72

* Positive Control: Aspirin 250.0 mg/kg ** Includes only those dams examined at term.

- Table 3: Summary of Skeletal Findings**

Group No. Dose (mg/kg)	341 Sham	342 Aspirin*	347 1.76	348 8.18	349 38.0	350 176.0
Live Fetuses Examined	 d					
(at term) Sternebrae	191/25	120/18	161/22	180/24	176/22	173/23
Incomplete oss. Scrambled	86/22	44/15	34/13	53/14	51/16	47/17
Bipartite Fused Extra	1/1	2/2	-	1/1	-	1/1
Missing Other Bids	34/17	103/18	15/9	19/10	18/9	12/7
Incomplete oss. Fused/split	-	15/9	1/1	3/2	-	1/1
Wavy	22/10	41/16	13/9	11/6	34/17	19/10
Less than 12	-	1/1	-	3/1	-	-
More than 13 Other	-	95/17	-	4/3	1/1	2/2
Vertebrae Incomplete oss. Scrambled Fused	24/14	76/18	23/10	12/7	34/13	20/9
Extra ctrs. oss. Scoliosis	-	1/1	-	-	-	-
Other; spina bifida	-	1/1	-	-	-	-
Incomplete closure Missing Craniostosis Other	36/13 -	54/17 2/2	25/11 -	54/19 -	40/17 -	31/13 -
Extremities Incomplete oss. Missing Extra	-	3/3	-	-	-	-
Miscellaneous Hyoid; missing Hyoid; reduced	26/14 17/12	57/17 8/4	14/9 18/7	9/7 33/17	25/9 23/12	15/9 16/10

* Positive Control: 250.0 mg/kg

** Numerator = Number of fetuses affected;

Denominator = Numbre of litters affected.

- Table 4: Summary of Soft Tissue Abnormalities

OECD SIDS

5. TOXICITY

Method

Test substance

Year

GLP

						1	JATE.	13.11.2002
	Group	Material	Dose Level (mg/kg)	Dam	Number of Pu	Descrip Ips	otion	
	342	Aspirin*	250.0	A70 A70)88)93	1 Meni 3 Ence umbil 1 Hydr exopl	ingoence ephalom ical herr ocephal hthalmos	ephalocele yelocele; nia us; s;
				A71	107	gastro 1 Meni	oschisis ingoence	ephalocele;
	347	CaCl ₂	1.76	N60	016	1 Gast	roschisi	S
	* Posit	ive Contro	ol: 250.0 mg/ł	ĸg				
	- Table	5: Averag	ge Body Weig	hts*** (g)			
	Group	Material	Dose Level (mg/kg	Day0 g)	Day6	Day11	Day15	Day20**
	341 342 347	Sham Aspirin' CaCl ₂	0.0 250.0 1.76	232 226 229	252 247 248	268 253 265	295 268 286	353 (25) 311 (23) 353 (22)
	348 349 350	CaCl ₂ CaCl ₂ CaCl ₂	8.18 38.0 176.0	226 226 231	246 247 251	261 264 262	279 285 280	345 (24) 357 (22) 346 (23)
Sourco	* Posit ** Num *** Of [Conclu The ad pregna nidatior in eithe number	ive Contro aber of sup pregnant of usion] ministration nt rats for n or on ma r soft or s	on of up to 17 10 consecution ternal or feta keletal tissue g spontaneou	g in parer 6 mg/kg ve days ا surviv s of the sly in th	ntheses (c g (body we s had no c al. The nu test grou ne sham-tr	c.f. Table eight) of learly dis umber of ps did no reated co	the test scernible abnorma ot differ f ontrols.	material to effect on alities seen rom the
Reliability	: (1) valio	d without i	restriction	o study	,			
Flag 15.11.2002	: Critical	study for	SIDS endpoir	nt				(29)
Species Sex Strain Route of admin. Exposure period Frequency of treatment	: mouse : female : CD-1 : gavage : 6th to 1 : daily	5th day o	f pregnancy					
Duration of test Doses Control group NOAEL Maternalt. NOAEL Teratogen	: up to th : 1.89, 8 : other: s : > 189 : > 189	e last day 78, 40.8, ham-treat mg/kg bw mg/kg bw	/ of pregnanc 189 mg/kg/da ted ı/day ı/day	y ay				

: other

: 1974

: no data

: other TS

OECD SIDS	CALCIUM CHLORIDE									
5. TOXICITY							ID DATE	: 10043	3-52-4	
Remark	: [Test substance] Fine white granular material marked with FDA 71-87									
	[Method]									
	Tost									
	Virgin adult female albino outbred mice were mated with young adult males, and observation of the vaginal sperm plug was considered Da gestation. Beginning on Day 6 and continuing daily through Day 15 of gestation, the females were dosed with the indicated dosages by oral intubations. The controls were sham treated with the vehicle (water) a level equivalent to the group receiving the highest test dose. Body weights were recorded on Day 0, 6, 11, 15, and 17 of gestation. animals were observed daily for appearance and behavior with particle attention to food consumption and weight, in order to rule out any abnormalities that may have occurred as a result of anorexic effects i pregnant female animal. On Day 17 all dams were subjected to Caesarean section under surg anesthesia, and the numbers of implantation sites, resorption sites, a and dead fetuses were recorded. The body weights of the live pups w also recorded. The urogenital tract of each dam was examined in deta anatomical normality. All fetuses were examined grossly for the presence of external conge abnormalities. One-third of the fetuses of each litter underwent details visceral examinations employing the Wilson technique. The remaining thirds were cleared in potassium hydroxide (KOH), stained with alizar S dye and examined for skeletal defects. [Result]							y 0 of f at a . All ular n the ical nd live vere ail for enital ed g two- in red		
	 Group	Group Material Dose*			 *** Total			Surviving at Term		
			mg/kg	Mateo	d Pregn	ant	 Total	Preg	nant*	
	341 342 347 348 349 350	Sham Aspirin** CaCl ₂ CaCl ₂ CaCl ₂ CaCl ₂	0.0 150.0 1.89 8.78 40.8 189.0	25 25 25 25 25 25 25	22 19 22 21 21 23		25 25 25 24 25 25 25	22 19 22 20 21 23		
	 * Incl ** Po *** Ac	udes all dams of sitive Control: 7 dministered as	examined 150.0 mg/l a water so tion Data	at term kg plution (10 ml/kg	J-pm)				
	Group	(mg/kg)		341 Sham	342 Aspirin	347 * 1.89	348 8.78	349 40.8	350 189.0	
	Pr Total Died	egnancies No. or Aborted (bef	fore Day 1	22 7)	19	22	21	21	2:	
	To te Liv	rm (on Day 17) /e Litters)	0 22	0 19	0 22	1 20	0 21	0 23	
	Total	No.** plant Sites		21	29 240	21	20	21	21	
10.4	TOTAL	INU.		201	24U	244	24ŏ	230	212	

OECD SIDS				CAL	CIUM (CHLO	RIDE			
5. TOXICITY					ID:	10043	-52-4			
					DATE:	15.11	.2002			
	Average/dam**	11.4	12.6	11.6	12.4	11.2	11.8			
	Total No.**	19	8	12	7	5	35			
	Dams with 1 or more sites resorbed									
		6	5	8	6	4	13			
	Dams with all sites resorbed	1	-	1	-	-	2			
	% partial resorptions	27.3	26.3	36.4	30.0	19.1	56.5			
	% complete resorptions	4.55	-	4.55	-	- 8	8.70			
	Total No.	229	224	229	238	227	234			
	Average/dam**	10.4	11.8	10.4	11.9	10.8	10.2			
	Sex ratio (M/F) Dead Fetuses	1.16	1.07	0.80	0.84	0.89	0.93			
	Total* *	3	8	3	3	3	3			
	Dams with 1 or more dead	2	6	3	3	3	3			
	Per cent nartial dead	9 09	31.6	13.6	15.0	14 3	13.0			
	Per cent all dead Average Fetus Weight (g)-	-	-	-	-	-	-			
		0.89	0.87	0.90	0.93	0.91	0.90			
	* Positive Control: 150.0 mg/k	 g								

** Includes only those dams examined at term.

- Table 3: Summary of Skeletal Findings**

Group No. Dose (mg/kg)	341 Sham	342 Aspirin'	347 * 1.89	348 8.78	349 40.8	350 189.0
Live Fetuses Examin (at term)	ed 158/21	160/19	160/21	162/20	159/21	161/21
Incomplete oss.	25/10	28/10	21/11	15/6	24/10	12/5
Bipartite Fused	11/9	9/7	3/3	12/8	13/10	7/6
Extra Missing Other	9/7	11/5	16/10	12/5	10/6	12/5
Rids Incomplete oss. Fused/split Wavy	-	-	-	-	1/1	_
Less than 12 More than 13 Other	41/14	30/12	28/12	42/14	35/14	20/12
Vertebrae Incomplete oss. Scrambled Fused Extra ctrs. oss.	3/3	1/1	2/2	-	-	2/2
Scoliosis Tail defects Other Skull						
Incomplete closure Missing Craniostosis						
Other;facial bones,ir	nc 1/1	-	-	-	-	-
Incomplete oss.	1/1	1/1	1/1	-	-	2/2

(29)

Missing Extra

-----Miscellaneous-----

Hyoid; missing 23/14 23/11 33/14 26/11 20/10 30/1	Miloconariooao						
	Hyoid; missing	23/14	23/11	33/14	26/11	20/10	30/13
Hyoid; reduced 23/13 4/4 22/14 12/9 23/12 12/5	Hyoid; reduced	23/13	4/4	22/14	12/9	23/12	12/9

* Positive Control: 150.0 mg/kg

** Numerator = Number of fetuses affected

Denominator = Number of litters affected

- Table 4: Summary of Soft Tissue Abnormalities

Group	Material	Dose Level (mg/kg)	Dam Nun	nber [of Pups	Description	
342	Aspirin*	150.0	A6102	1	Gas	troschisis
349	CaCl ₂	40.8	N5070	1	Uml	pilical hernia
350	CaCl ₂	189.0	N5112	1	Clef	t palate

* Positive Control: 150.0 mg/kg

- Table 5: Average body Weights*** (g)

Group	Material	Dose Level (mg/kg	Day0)	Day6	Day11	Day15	Day17**
341	Sham	0.0	27.7	30.6	34.5	41.1	46.8 (22)
342	Aspirin*	150.0	28.7	31.9	35.0	43.4	50.2 (19)
347	CaCl ₂	1.89	29.3	31.3	35.4	43.6	49.2 (22)
348	CaCl ₂	8.78	28.7	30.7	35.2	45.2	51.5 (20)
349	CaCl ₂	40.8	29.0	30.9	35.8	44.1	50.2 (21)
350	CaCl ₂	189.0	30.9	33.6	37.4	45.4	50.4 (23)

* Positive Control: 150.0 mg/kg

** Number of surviving dams in parentheses (c.f. Table 1)

*** Of pregnant dams

[Conclusion] The administration of up to 189 mg/kg (body weight) of the test material to pregnant mice for 10 consecutive days had no clearly discernible effect on nidation or on maternal or fetal survival. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring spontaneously in the sham-treated controls.

Source	: Tokuyama Corporation	
Reliability	: (1) valid without restriction	
	Comparable to OECD guideline study	
Flag	: Critical study for SIDS endpoint	
11.06.2002		
Species	: rabbit	
Sex	: female	
Strain	: Dutch	
Route of admin.	: gavage	
Exposure period	: 6th to 18th day of pregnancy	
Frequency of	: daily	
treatment		
Duration of test	: up to the last day of pregnancy	
Doses	: 1.69, 7.85, 35.6, 169 mg/kg/day	

: other: sham-treated

: > 169 mg/kg bw/day

Control group

NOAEL Maternalt.

OECD SIDS					С	ALC	IUM C	CHLORIDE
5. TOXICITY							ID:	10043-52-4
						Γ	DATE:	15.11.2002
NOAEL Teratogen Method Year GLP Test substance Remark	> 169 other 1974 no data other T [Test su Fine wh	mg/kg bw/day S ubstance] nite granular m	/ naterial ma	rked wit	:h FDA 71-8	87		
	The me	ethod was in p	rinciple eq	uivalent	to OECD (Guidel	ine 414	ŀ.
	[Test co On Day of huma hours la semen sperm a (Pharm through intubati equival Body w animals attentio abnorm pregnal On Day anesthe resorpti the live examin All fetus externa placed All surv abnorm hydroxi defects [Result] - Table	ondition] (0, each virgin (0, each virgin (1, each doe from a proven according to th acologist 11, 2 (1, 2) (1, 2)	n, adult, fer onadotropi was insen donor buc he procedu 282 (1969) emales wer sup receivin ecorded on ed daily for sumption a ay have och hal. vere subject numbers of live and de so recorded r normalities or for 24 ho re sacrifice section). A ined with a	male rat n (400 l ninated k using re desc). Begin re dosed ham tre g the hig Day 0, appear nd weig curred a ted to C corpora ad fetus d. The u l gross o s. The l urs for t ed, and ll fetuse	obits was gi U) via the r artificially w approxima ribed by Vc ining on Da d with the ir eated with the ghest test of 6, 12, 18, a rance and b ht, in order as a result of Caesarean s a lutea, imp ses were re- irogenital tr examination ive fetuses the evaluati all pups exa s were ther ed S dye an	iven a margir vith 0.1 bitely 20 bigin et bigin et bigin et volte of anoi bien dese. and 29 bien avi- to rule of anoi section blantat ecorde ract of amine n clear nd exa	n inject hal ear 3 ml of 0 x 106 al. nd conti- ed dosa nicle at o of ges or with e out a rexic ef n unde ion site d. Bod each a he pres ch litter neonat d for vi- red in p amined	tion of 0.4 ml vein. Three diluted motile inuing daily ages by oral a level station. All particular ny fects in the r surgical ss, y weights of mimal was ence of were then al survival. sceral potassium for skeletal
	Group	Material	Dose***		Total		Surviv	ing at Term
			mg/kg	Mated	Pregnant		Total	Pregnant*
	 341	Sham	0.0	18	13		18	13

UNEP PUBLICATIONS

* Includes all dams examined at term

*** Administered as a water solution

- Table 2: Reproduction Data

2.5

1.69

7.85

35.6

169.0

20

22

22

17

16

** Positive Control: 2.5 mg/kg of 6-aminonicotinamide dosed

10

13

14

14

16

341 342 347 348 349 350

19

18

16

14

14

10

12

11

12

14

342

347

348

349

350

on Day 9

Group

6-AN**

 $CaCl_2$

CaCl₂

CaCl₂

 $CaCl_2$

OECD SIDS				CAL	CIUM	CHLO	RIDE
5. TOXICITY					ID:	10043	-52-4
					DATE	: 15.11	.2002
	Dose (mg/kg)	Sham 6-	AN*	1.69	7.85	35.6 10	69.0
	Pregnancies						
	Total No. Died or Aborted (before Da	13 v 29)	10	13	14	14	16
		0	1	1	3	2	2
	To term (on Day 29)	13	10	12	11	12	14
	Total No.	174	122	148	129	138	146
	Average/dam mated	9.67	6.42	7.40	7.17	8.63	10.4
	Total No.**	12	10	12	9	11	12
	Total No.	69	56	86	63	69	72
	Average/dam**	5.31	5.60	7.17	5.73	5.75	5.14
	Total No.**	4	2	12	8	8	4
	Dams with 1 or more sites r	resorbed					
		3	1	4	4	6	3
	Dams with all sites resorbe	d 1	-	-	2	1	-
	Per cent partial resorptions Per cent complete resorption	23.1 ons	10.0	33.3	36.4	50.0	21.4
		7.69	-	-	18.2	8.33	-
	Live Fetuses						
	Total No.	65	54	74	55	61	58
	Average/dam**	5.00	5.40	6.17	5.00	5.55	4.83
	Sex ratio (M/F)Dead Fetuses	0.86	0.74	1.47	1.04	1.16	1.24
	Total* *	-	-	-	-	-	10
	Dams with 1 or more dead	-	-	-	-	-	2
	Dams with all dead	-	-	-	-	-	1
	Per cent partial dead	-	-	-	-	- 1	4.3
	Per cent all dead	-	-	-	-	- 7	'.14
	Average Fetus Weight (g)					
	- • • •	38.2	33.8	37.3	38.0	36.8	39.2
	* Positive Control: 2.5 mg/k ** Includes only those dams	g of 6-an s examine	ninonicoti ed at terr	inamide (n.	dosed oi	n Day 9)

- Table 3: Summary of Skeletal Findings***

Group No. Dose (mg/kg)	341 Sham	342 6-AN**	347 1.69	348 7.85	349 35.6	350 169.0
Live Fetuses Examin	ed					
(at term)	65/12	53/10*	74/12	54/9*	61/11	58/12
Sternebrae						
Incomplete oss.	-	-	2/1	-	1/1	-
Scrambled						
Bipartite	-	-	1/1	-	-	-
Fused -	1/1	-	-	-	-	
Extra						
Missing						
Other						
Rids						
Incomplete oss.						
Fused/split	-	2/1	-	-	-	-
Wavy						
Less than 12						
More than 13						
Other						

						Ι	DATE:	15.11.2002
	Ver	tebrae						
	Incomp	olete oss.						
	Scram	bled	-	5/1	-	-	-	-
	Fused							
	Extra c	trs. oss.						
	Scolios	sis	_	1/1	-	-	-	-
	Tail de	fects	_	10/3	-	_	-	_
	Other:	spina hifida		10/0				
	Sku	ali a bilida						
	SKU	III	4 / 4					
	Missin		1/1	-	-	-	-	-
	IVIISSIN	9, .			0/4			
	Cranio	Stosis	-	-	2/1	-	-	-
	Other							
	Exti	remities						
	Incomp	olete oss.						
	Missing	g						
	Extra							
	Mis	cellaneous						
	* One ** Posi on Day *** Nur	pup lost in pro- tive Control: 2 9 merator = Num	cessing .5 mg/kg iber of fe f Soft Tis	of 6-am tuses af	inonicoti fected	inamide c	losed	
	- Table	4: Summary o	T SOIT TIS	sue Abr	ormaliti	es 		
	Group	Material D (m	ose Leve ng/kg)	el Dam	am Number of Pups		Description	
	342 * Posit	6-AN*	2.5 5 mg/kg (2764 of 6-amir	10 nonicotir	2 namide de	Medial of hind osed on	rotation limbs Day 9
	342 * Posit - Table	6-AN* ive Control: 2.9 5: Average bo	2.5 5 mg/kg o dy Weigl	Z764 of 6-amir nts*** (g)	10 nonicotir)	2 namide de	Medial of hind osed on	rotation limbs Day 9
	342 * Posit - Table Group	6-AN* ive Control: 2.4 5: Average bo Material	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg	Z764 of 6-amir nts*** (g) Day0	10 nonicotir) Day6	2 namide de Day12	Medial of hind osed on Day18	rotation limbs Day 9 Day29**
	342 * Posit - Table Group	6-AN* ive Control: 2.4 5: Average bo Material	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg	Z764 of 6-amin nts*** (g) Day0	10 nonicotir) Day6	2 namide de Day12	Medial of hind osed on Day18	rotation limbs Day 9 Day29**
	342 * Posit - Table Group 341	6-AN* ive Control: 2.4 5: Average bo Material Sham 0.0	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg 2.23	Z764 of 6-amin nts*** (g) Day0 I) 2.32	10 nonicotir) Day6 2.40	2 namide de Day12 2.48	Medial of hind osed on Day18 2.59 (11	rotation limbs Day 9 Day29**
	342 * Posit - Table Group 341 342	6-AN* ive Control: 2.4 5: Average bo Material Sham 0.0 6-AN*2.5	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg 2.23 1.86	Z764 of 6-amin nts*** (g) Day0 1) 2.32 1.94	10 nonicotir) Day6 2.40 2.40 2.03	2 namide de Day12 2.48 2.08	Medial of hind osed on Day18 2.59 (11 2.59 (12 2.59 (13	rotation limbs Day 9 Day29** 3)
	342 * Posit - Table Group 341 342 347	6-AN* ive Control: 2.4 5: Average bo Material Sham 0.0 6-AN*2.5 CaCl ₂ 1.69	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg 2.23 1.86 2.20	Z764 of 6-amin nts*** (g) Day0 1) 2.32 1.94 2.31	10 nonicotir) Day6 2.40 2.03 2.43	2 namide de Day12 2.48 2.08 2.51	Medial of hind osed on Day18 2.59 (11 2.18 (11 2.64 (1)	rotation limbs Day 9 Day29** Day29** 3) 0)
	342 * Posit - Table Group 341 342 347 348	6-AN* ive Control: 2.4 5: Average bo Material Sham 0.0 6-AN*2.5 CaCl ₂ 1.69 CaCl ₂ 7.85	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg 2.23 1.86 2.20 2.12	Z764 of 6-amin nts*** (g) Day0 1) 2.32 1.94 2.31 2.16	IO nonicotir Day6 2.40 2.03 2.43 2.16	2 namide de Day12 2.48 2.08 2.51 2.25	Medial of hind osed on Day18 2.59 (11 2.18 (11 2.64 (11 2.33 (1	rotation limbs Day 9 Day29** Day29** 3) 0) 2)
	342 * Posit - Table Group 341 342 347 348 349	6-AN* ive Control: 2.4 5: Average bo Material Sham 0.0 6-AN*2.5 CaCl ₂ 1.69 CaCl ₂ 7.85 CaCl ₂ 35.6	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg 2.23 1.86 2.20 2.12 2.22	Z764 of 6-amin nts*** (g) Day0 1) 2.32 1.94 2.31 2.16 2.31	IO nonicotir) Day6 2.40 2.03 2.43 2.43 2.16 2.34	2 namide de Day12 2.48 2.08 2.51 2.25 2.40	Medial of hind osed on Day18 2.59 (11 2.18 (11 2.64 (11 2.33 (1 2.50 (12	rotation limbs Day 9 Day29** Day29** 3) 0) 2) 1) 2)
	342 * Posit - Table Group 341 342 347 348 349 350	6-AN* ive Control: 2.3 5: Average bo Material Sham 0.0 6-AN*2.5 CaCl ₂ 1.69 CaCl ₂ 7.85 CaCl ₂ 35.6 CaCl ₂ 169.0	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg 2.23 1.86 2.20 2.12 2.22 2.27	Z764 of 6-amin Day0 Day0 1) 2.32 1.94 2.31 2.31 2.31 2.39	10 nonicotir Day6 2.40 2.03 2.43 2.16 2.34 2.41	2 namide de Day12 2.48 2.08 2.51 2.25 2.40 2.46	Medial of hind osed on Day18 2.59 (1) 2.64 (1) 2.33 (1) 2.50 (1) 2.50 (1)	rotation limbs Day 9 Day29** Day29** 3) 0) 2) 1) 2)
	342 * Posit - Table Group 341 342 347 348 349 350 	6-AN* ive Control: 2.3 5: Average bo Material Sham 0.0 6-AN*2.5 CaCl ₂ 1.69 CaCl ₂ 7.85 CaCl ₂ 35.6 CaCl ₂ 35.6 CaCl ₂ 169.0 ive Control: 2.3 ber of survivir pregnant dams	2.5 5 mg/kg o dy Weigl Dose Level (mg/kg 2.23 1.86 2.20 2.12 2.22 2.27 5 mg/kg o ig dams i	Z764 of 6-amin nts*** (g) Day0 1) 2.32 1.94 2.31 2.30 2.31 2.39 of 6-anin n parent	10 nonicotir Day6 2.40 2.03 2.43 2.16 2.34 2.41 onicotin theses (n	2 namide do Day12 2.48 2.08 2.51 2.25 2.40 2.46 amide do c.f. Table	Medial of hind osed on Day18 2.59 (1) 2.64 (1) 2.64 (1) 2.50 (1) 2.50 (1) 2.50 (1) 2.50 (1) 2.50 (1) 2.50 (1) 2.50 (1)	rotation limbs Day 9 Day 29** Day29** 3) 0) 2) 1) 2) 1) 2) 4) 2) 2) 2) 2) 2) 3) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2)
	342 * Posit - Table Group 341 342 347 348 349 350 * Posit ** Num *** Of p [Conclu The adu pregnan nidatior in eithe number	6-AN* ive Control: 2.3 5: Average bo Material Sham 0.0 6-AN*2.5 CaCl ₂ 1.69 CaCl ₂ 7.85 CaCl ₂ 35.6 CaCl ₂ 35.6 CaCl ₂ 169.0 ve Control: 2.3 ber of survivir pregnant dams usion] ministration of nt rats for 13 c n or on maternar r soft or skelet	2.5 5 mg/kg of 5 mg/kg of 0 y Weigl Dose Level (mg/kg 2.23 1.86 2.20 2.12 2.22 2.27 5 mg/kg of onsecutive al or feta al tissues ontaneous	Z764 of 6-amin nts*** (g) Day0 1) 2.32 1.94 2.31 2.30 2.31 2.39 of 6-anin n parent 9 mg/kg ve days I surviva s of the t sly in the	40 	2 mamide do Day12 2.48 2.08 2.51 2.25 2.40 2.46 amide do c.f. Table eight) of clearly dis umber of ups did no reated co	Medial of hind osed on Day18 2.59 (1) 2.64 (1) 2.33 (1) 2.50 (1) 2	rotation limbs Day 9 Day 9 Day29** Day29** 3) 0) 2) 1) 2) 1) 2) 4) Day 9 material to effect on alities seen rom the
Source Reliability	342 * Posit - Table Group 341 342 347 348 349 350 * Posit ** Num *** Of p [Conclu The adu pregnan nidatior in eithe number : Tokuya : (1) valio	6-AN* ive Control: 2.3 5: Average bo Material Sham 0.0 6-AN*2.5 CaCl ₂ 1.69 CaCl ₂ 7.85 CaCl ₂ 7.85 CaCl ₂ 35.6 CaCl ₂ 35.6 CaCl ₂ 35.6 CaCl ₂ 169.0 ive Control: 2.3 iber of survivir pregnant dams usion] ministration of nt rats for 13 c n or on maternar r soft or skelet occurring spo ma Corporatio d without restri	2.5 mg/kg of dy Weigl Dose Level (mg/kg 2.23 1.86 2.20 2.12 2.27 2.27 2.27 5 mg/kg of onsecutive al or feta al tissues ntaneous n	Z764 of 6-amin Day0 1) 2.32 1.94 2.31 2.16 2.31 2.39 of 6-anin n parent 0 mg/kg ve days I surviva s of the t sly in the	10 nonicotir Day6 2.40 2.03 2.43 2.43 2.43 2.43 2.44 2.41 onicotin theses (noise) (body whad no color) these groups sham-t	2 mamide do Day12 2.48 2.08 2.51 2.25 2.40 2.46 2.46 c.f. Table eight) of clearly dis umber of ips did no reated co	Medial of hind osed on Day18 2.59 (1: 2.59 (1: 2.50 (1: 2	rotation limbs Day 9 Day29** Day29** 3) 0) 2) 1) 2) 4) Day 9 material to effect on alities seen rom the
Source Reliability	342 * Posit - Table Group 341 342 347 348 349 350 * Posit ** Num *** Of p [Conclu The adu pregnan nidatior in eithe number : Tokuya : (1) valio Compa	6-AN* ive Control: 2.3 5: Average bo Material Sham 0.0 6-AN*2.5 CaCl ₂ 1.69 CaCl ₂ 7.85 CaCl ₂ 35.6 CaCl ₂ 35.6 CaCl ₂ 35.6 CaCl ₂ 169.0 ive Control: 2.3 iber of survivir pregnant dams usion] ministration of nt rats for 13 c n or on maternar r soft or skelet occurring spo ma Corporatio d without restri rable to OECD	2.5 mg/kg of dy Weigl Dose Level (mg/kg 2.23 1.86 2.20 2.12 2.27 2.27 2.27 5 mg/kg of onsecutive al or feta al tissues ntaneous n ction 9 guidelin	Z764 of 6-amin Day0 1) 2.32 1.94 2.31 2.16 2.31 2.39 of 6-anin n parent 0 mg/kg ve days I surviva s of the t sly in the e study	40 	2 mamide do Day12 2.48 2.08 2.51 2.25 2.40 2.46 amide do c.f. Table eight) of clearly dis umber of ips did no reated co	Medial of hind osed on Day18 2.59 (1: 2.59 (1: 2.50 (1: 2	rotation limbs Day 9 Day29** Day29** 3) 0) 2) 1) 2) 4) Day 9 material to effect on alities seen rom the

OECD SIDS

5. TOXICITY

CALCIUM CHLORIDE

ID: 10043-52-4

5.10 OTHER RELEVA	NT INFORMATION
Type Remark	 other: cytotoxicity to testicular cells <i>in vitro</i> Toxicity of six metal salts, including calcium chloride, to testicular cells was investigated using four assay systems: 1) inhibition of cellular respiration, as indicated by the reduction of a tetrazolium dye MTT; 2) uptake of neutral red, a supravital dye; 3) lactate production; and 4) germ cell release from Sertoli cell-germ cell co-cultures. For this purpose, two primary cell culture systems were prepared from rat testes. One was the Sertoli cell culture system, which was used for the assays 1 to 3 and another the Sertoli-germ cell co-culture system, used for the assay 4. By these assays, calcium chloride was shown to be non-toxic to rat spermatogenic cells when added at concentrations up to 10 mM, while the assays indicated that cadmium chloride was the most toxic, effective at concentrations lower than 10 μM.
Source	: Tokuyama Corporation (12)
10.00.2002	(12)
Type Remark	 other: cytotoxicity to tumor cells transplanted in rats Twenty-three kinds of inorganic compounds including CaCl₂ were examined for their inhibitory effect on the MTK-sarcoma III, a rat ascites tumor. The tumor cells were transplanted in Wistar, Long-Evans and Gifuagouti rats of both sexes. All the animals with the tumor cells died within 9 days after tranfer. The test compounds were administered intraperitoneally to rats, starting on the 3rd or 4th day of tumor transfer, at dosages determined after several trials. Rats of control groups received intraperitoneal injection of physiological saline. Cytological preparations were made at appropriate intervals following application of the chemicals. Autopsy was made in some cases to examine any accompanying effect of the chemicals. Single administration of CaCl₂ (3.5 g/kg) exerted a marked damaging effect on the cytoplasm and nuclei of the tumor cells. Most cells generally underwent metaphase block by the effect of the single dosage for 7 consecutive days caused a marked decrease in the number of dividing cells in the ascites of the tumor-bearing animals and resulted in slight prolongation of the life span of the animals.
Source 10.06.2002	: Tokuyama Corporation (53)
Type Remark	 other: ultrastructural changes of parathyroid gland Ultrastructural changes of the parathyroid glands of 18-day-old mouse fetuses after administration of calcium chloride or ethylenediaminetetraacetic acid (EDTA) were examined. Pregnant mice at 18 days of gestation were anesthetized and their uteri were surgically opened, thereby exposing fetuses. The operation was performed in such a way as to enable the fetuses to remain alive as well as to keep the umbilical cords and placenta intact. Mouse fetuses were divided into three groups of 6 animals each. One group was given 10 µl of distilled water intraperitoneally as a control. The remaining groups were given intraperitoneally either 10 µl of 5% CaCl₂ solution or 10 µl of 5% EDTA solution. The parathyroid glands of each group were removed 10 min after injection, fixed, and examined with an electron microscope. The morphology of the parathyroid gland of control mouse fetuses resembled that of 1-day-old mice. Many chief cells in the parathyroid glands of the CaCl₂-treated mouse fetuses contained poorly developed Golgi complexes and cisternae of the granular endoplasmic reticulum and many prosecretory granules as compared with those of the control fetuses.

CALCIUM CHLORIDE

ID: 10043-52-4 DATE: 15.11.2002

(29)

OECD SIDS

5. TOXICITY

11.06.2002

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4 DATE: 15.11.2002
Source 10.06.2002	: Tokuyama Corporation (43)
Type Remark	 other: meiotic chromosome aberrations in grasshoppers The effect of CaCl₂ on the spermatocyte chromosomes of grasshoppers was studied. Adult males of <i>Spathosternum prasiniferum</i> were injected individually with 0.05 ml of 1% calcium chloride solution and their testes fixed at 4, 8 and 12 hours. As no single individual of the series survived beyond 12 hours, the pertinent tissues could not be fixed at 16, 20 or 24 hours. As a control, distilled water was injected to the grasshoppers. No casualty was observed in the control series at 24 hours after injection. Chromosomal aberrations of any type were not seen in the control series. In the CaCl₂-treated series, on the other hand, the manifestation of general stickiness was readily seen, reflected in clumping of chromosomes in all divisional stages. Interbivalent connections were also observed in the diakinesis stage. No chromosome or chromatid type breaks were observed in the divisional stages. Very thin chromatin bridges were encountered, however, in most anaphase I cells. The frequency of aberrations, as seen at 12-hour treatment, is more than at 4- or 8-hour treatment.
10.06.2002	: Tokuyama Corporation (82)
Type Remark	 other: meiotic chromosome aberrations in sandhoppers The effect of CaCl₂ on the spermatocyte chromosomes of sandhoppers was studied. Adult males of <i>Chrotogonus trachypterus</i> were injected individually with CaCl₂ or with distilled water as a control. They were sacrificed 24 hours after injection and the testes were dissected and fixed. Hundreds of cells examined in the control series did not reveal any true gap or break type aberration. In the treated cells aberrations like chromatid type gap and break, chromosome type gap and break, constrictions etc. were observed. The frequency of aberration has been found to be 5.2% (18/388 cells). Regarding stage sensitivity anaphase I and anaphase II divisional stages were more affected. No exchange type of aberration was observed.
Source 10.06.2002	: Tokuyama Corporation (6)
Type Remark	 other: goiter production Goiter was experimentally produced in one year old rats by feeding on 2% calcium chloride added to the basal diet with or without potassium iodide for 140 days. The estimated daily intake of calcium chloride was about 0.2 g per animal. The animals received a calcium-rich and iodine-poor diet presented a marked enlargement of the thyroid. Two large adenomas were found in this group. The thyroids in the animals received a calcium-rich and iodine-rich and iodine-rich diet were also definitely enlarged. The glands in this group presented the microscopic picture of colloid goiter, however.
Source 10.06.2002	: Tokuyama Corporation (38)
Type Remark	 other: tumor promotion The effect of some chemicals on promotion of chemical tumorigenesis was studied. Tumor initiation was carried out by painting right cheek pouches of Syrian golden hamsters with dimethylbenzanthracene (DMBA) solution (0.2% in dimethylsulfoxide (DMSO)) 3 times per week for 2-4 weeks. A test substance for promotion was then painted for another 4-6 weeks. Control animals were also initiated with DMBA but painted with DMSO alone during the promotion period. The animals were sacrificed and cheek pouches were excised, fixed and examined. Calcium chloride (0.2 M), calcium ionophore 23187 (20 µM) and the menbrane labilizing agents such as triton X-100 (0.2%), trypsin (1 mg/ml) and phospholipase C (1 mg/ml) promoted benign hyperplastic lesions (BHLs) but rarely advanced tumors in hamster

OECD SIDS		CALCIUM CHLORIDE
5. TOXICITY		ID: 10043-52-4
	neek pouch mucosa initiated with DM	DATE: 15.11.2002 IBA. On the other hand, retinyl
	etate (50 mM) and croton oil marked lvanced tumors. These results sugge tracellular calcium cause the promot echanisms are required for the proge mors.	ally promoted both BHLs and est that pathways modulated by ion of BHLs, while additional ression of BHLs to more advanced
Source 10.06.2002	okuyama Corporation	(71)
_		()
Type Remark	her: embryotoxicity (chicken eggs) ne toxicity of 80 chemicals which havestigated by their administration to st conditions were used: injection via nes, preincubation (0 hr) and 96 hr. I nbryos per dose level were treated a opropriate groups of vehicle controls cluded in all experiments. All compo 100 µl or less, and solvent controls the solvent only. LD ₅₀ values were of nbryos and hatched chicks were exa development, both functional and st bulated and compared with values for ratogenicity. Calcium chloride showe eveloping embryo under the four con ghest concentration tested.	ve food additive use has been developing chicken embryos. Four a the air cell and via the yolk; and two For each condition, at least 100 at a minimum of five dose levels. and untreated controls were unds were administered in a volume were treated with the same volume letermined for each test condition. All umined grossly for any abnormalities ructural. All abnormalities were or the vehicle controls to determine ed no teratogenic effects on the ditions even at 10 mg/egg, the
Source	kuyama Corporation	(106)
10.00.2002		(108)
Type Remark Source	her: embryotoxicity (chicken eggs) aratogenic effect of calcium salts on nbryos 2 and 3 days of age, 0.01-0.0 0) was injected into the subgerminal iderneath the embryo. Otherwise, at to the allantois. The windows were the turned to the incubator. The eggs we camined as soon as death was detect jection. It became apparent that very plution injected into either the subger lantois produced pronounced abnorr zarre phenomenon could be offered.	chick embryos were studied. In 04 ml of 0.01 M calcium chloride (pH fluid of the york sac, immediately 4 and 5 days, the fluid was injected ben sealed with paraffin and the egg ere checked daily and the embryos sted or, in survivors, 7 days after 9 small quantities of calcium chloride minal area of the yolk sac or the nalities. No explanation of this
10.06.2002		(34)
5.11 EXPERIENCE WIT	AN EXPOSURE	
Memo Remark	rect observations (clinical cases) rree cases of gastro-intestinal lesion Iministered by gavage to infants for t	s due to calcium chloride he treatment of tetany are described.
	ase 1] A female baby weighing 2,90 loride by gavage. Blood-stained von nock occurred in 4.5 hours, and perit omited repeatedly and died on the 36 (amination revealed ulceration and n ubmucosa of stomach and small inte	00 g was given 4 g of calcium nitus appeared two hours later. onitis was suspected. The child th day of life. Microscopic ecrosis of the mucosa and stines.
	ase 2] A male baby weighing 3,060 llowed by 1 g at each four-hour feed e infant vomited the feedings and re	g was given 3 g of the substance ing thereafter. On the following day spiratory difficulty was observed. This

OECD SIDS	CALCIUM CHLORIDI
5. TOXICITY	ID: 10043-52-4 DATE: 15.11.2002
	was attributed to aspiration. Signs of collapse ensued, and despite transfusions and other supportive measures, death occurred on the 7th day of life. Microscopically, sections of the damaged portion of the stomach showed necrosis and disappearance of the mucosa with edema, polymorphonuclear cellular infiltration, and necrosis of the blood vessel walls in the submucosa and muscularis.
11 06 2002	[Case 3] A female baby was given 2 g of calcium chloride in water before the 10 a.m. and 2 p.m. feedings. Both feedings were promptly vomited, and the vomitus was blood streaked. She took and retained one-half of the 6 p.m. feeding, which contained 2 g of calcium chloride. Saline clysis, transfusion, and hykinone were given because of the hematemesis. The baby did well on the regular formula without added calcium, and saline clyses for the next 2 days. No convulsions occurred. On the 11th day of life, 0.5 ml of 50% calcium chloride were added to each feeding, and continued for 2 days without incident. Discharge diagnosis was hypocalcemic tetany. The infant gained weight since discharge and showed no subsequent gastro-intestinal symptomatology.
11.00.2002	
Memo Remark	 Direct observation (occupational exposure) A 30-year-old oil worker spent a day loading calcium chloride powder into containers. Although he was wearing protective clothing some powder had come into contact with his skin. He had experienced no discomfort and had therefore taken no action. The same evening he presented to hospital with severely painful areas over both thighs. Examination revealed many small erythematous patches scattered over both thighs and patches that were larger and appeared to be of deep partial or full thickness skin loss affecting both thighs and the right arm. The patient was treated with copious prolonged irrigation in a shower and dressed on a regular basis for 14 days. During this time the wounds failed to show any signs of healing and seven larger areas were surgically removed. Four areas were small enough to allow excision to underlying fascia and direct closure. These areas healed slowly but uneventfully. The remaining three larger areas were tangentially shaved to apparently healthy tissue and meshed split-thickness skin grafts applied. Healing was completed by secondary intention. Finally, the scattered smallest wounds which were not excised, developed into punctate areas of full thickness skin loss which took a total of 5 months to heal.
10.06.2002	affected area should be washed immediately with soap and copious water and all contaminated clothing be removed.
Memo Remark	 Direct observations (occupational exposure) [Case 1] A 29-year-old coal-miner had developed a most unusual looking but symptomless eruption on his back, which had been abraded by a slight fall of roof three weeks before. He had had no treatment for the abrasions, which were no worse than he had sustained on many previous occasions, and he had continued working as a filler at the coal face. The eruption covered a large area of his back and consisted of many fine white firm papules 2-3 mm in diameter, some in ring formation and others linear, the majority of the papules having an erythematous flare around them. The epidermis appeared to be intact over the papules. There was no itching or pain. Most of the lesions were on the exact area where his skin had been abraded, but a few had developed on the posterior axillary fold where he was sure there had been no abrasions. The rest of his skin was normal. He felt in good health and there was nothing else relevant in his history.

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4 DATE: 15.11.2002
	[Case 2] A 21-year-old miner had two groups of lesions on his left elbow. The eruption had been present for several weeks. Here again, a series of whitish papules 2 mm in diameter were arranged in a line 1.5 cm long. He could not remember any particular injury to the elbow but it was reasonable to suppose that he had abraded it. The histology in this case was not identical with the first since there was a break in the epidermis and the gap was filled with metachromatic staining structureless material that did not stain completely with Von Kossa reagent. However, the two cases were so similar it was concluded that they must be variants of the same pathology.
	It was then discovered that these men worked at the same colliery and were at the same part of the coal face, where there was a lot of water dripping from the roof but the conditions were not unusual. Samples of the roof water were analyzed and contained approximately 3.5% calcium chloride, 1% magnesium chloride and 10% sodium chloride.
	The skin of the forearm of a doctor was experimentally scarified with a cutting needle as deeply as pain would allow and gauze dressing soaked in a solution of the same mineral content as the roof water was applied. This was kept moist with fresh lotion for 72 hours. As that time obvious calcium deposits appeared in the scratch marks with a considerable inflammatory reaction around them. The calcium deposits remained clinically visible for six weeks, being gradually extruded. This was a speedier recovery than the coal-miners had, presumably because the abrasions were not so deep.
10.06.2002	(91)
Memo Remark	 Direct observations (occupational exposure) A man, while engaged in spraying in a coal mine, allowed some of 40% calcium chloride solution to contaminate his skin. Immediately after exposure, which lasted 8 hours, he experienced burning pain accompanied by the formation of wheals on the upper eyelids, forearms, and thighs. Similar effects were noticed on his hands and legs, where abrasions occurred during the work, those on the legs being due to friction from the tops of his rubber boots. Eleven days later the lesions on the legs and hands broke down. When first examined 16 days after exposure there were large sloughing ulcers with raised, dark red edges running transversely across the upper parts of both legs and smaller round ones on the backs of both hands, with crusts which, when removed, left deep pits. The lesions on the eyelids, forearms, and thighs were not ulcerated but consisted of pearly yellow, raised spots measuring 1-2 mm, some of them round and others shaped like splashes. These lesions have been observed for over 5 months. The ulcers were indolent, and epithelialization was not completed until after 13 weeks. From the seventh week onwards, the lesions on the legs were outlined by narrow zones of yellow discolouration in the deeper tissues. The appearance of the non-ulcerated lesions did not change for the first 4 months, but they finally disappeared.
11.06.2002	in about a week. (40)
Memo Remark	 Direct observation (accidental exposure) A white boy of four and a half years had a painless black patch on the
	anterior surface of the left thigh when he was undressed at about 10:30 p.m. His mother examined the boy's clothing to determine the cause and found wet slag in the left pocket of his blue jeans. The mother had helped him dress at about 11:00 a.m. with clean and recently laundered cloths and then the boy had played with his friends in or near a slag road treated with
DECD SIDS 5. TOXICITY	<u>CALCIUM CHLORIDE</u> ID: 10043-52-4 DATE: 15.11.2002
--------------------------	---
	calcium chloride flakes to reduce the dust. The mother was unaware of a previous injury or abrasion of the skin in the involved area. When the boy was seen by a doctor on the next day, the area of dry gangrene was more than 2.5 cm in diameter on the anterior surface adjacent to the area where the pocket came in contact with the skin. Thirty-two days later, with separation at the edges, most of the necrotic area was excised. After excision, a greenish-grey base with several aggregations of brownish-black punctae was noted. The necrosis obviously extended into the subcutaneous fat. Six days later all of the necrotic tissue had sloughed out. Healing occurred by secondary intention.
10.06.2002	(10)
Memo Remark	 Direct observations (accidental exposure) Two cases of necrosis of the skin due to contact with calcium chloride powder are described.
	[Case 1] A middle-aged white man visited a doctor, presenting popular lesions on both forearms. He stated that he had carried bags of calcium chloride on his bare forearms a few weeks before, and that there had been subsequent development of the lesions. Examination revealed peculiar firm pink-red papules up to pea size, single or in groups and streaks on both forearms, mainly the flexor surfaces. There were obtuse large horny plugs in some. Others showed whitish material under the surface. Two weeks after the first visit many of the lesions had disappeared, though there was still some pus and whitish necrotic material in the remaining lesions. Biopsy revealed epithelial proliferation and fibroblastic response. The lesion was apparently in the stage of repair.
	[Case 2] A white boy, aged 7 years, was seen by a doctor, presenting an elevated plaque on the anterior left thigh. Three weeks before, he had put in his left pants pocket some calcium chloride powder obtained from a 25 lb. bag of the substance kept in the basement as dehumidifier. The mother noticed reddening of the anterior thigh that evening when the child took a bath. The lesion began as a red area about 3 inches in diameter, with a gray-green center about 1 inch wide. Raised papules were noted in this area about two weeks later. Examination showed a moderately elevated erythematous plaque about 2.5 by 1.5 cm in diameter. The lesion was studded throughout with small discrete and confluent white papules just under the skin surface. There was no noticeable surrounding inflammatory reaction. A month later, a gradual flattenig of the lesion without ulceration was observed. Four months later, there remained only a smooth, slightly pink atrophic scar without infiltration. The lesion had been asymptomatic throughout. Sections of the biopsy specimen showed that in corresponding areas the structure of collagenous and elastic fibers, but relatively few cells, were presented. There was some chronic inflammatory reaction in the upper corium.
10.06.2002	(109)
Memo Remark	 Direct observation (clinical case) A 27-year-old woman with hypoparathyroidism developed multiple firm white-yellow papules along the path of an infiltrated calcium chloride intravenous infusion. A biopsy specimen obtained ten days after the extravasation revealed an ulticarial reaction. A subsequent biopsy specimen, obtained 25 days after the extravasation, showed diffuse dermal calcification, confirmed by roentgenographic analysis, with incipient transepidermal elimination. A biopsy specimen obtained 40 days after the extravasation was consistent with an elimination reaction. An increase in

OECD SIDS	CALCIUM CHLORIDE
5. TOXICITY	ID: 10043-52-4
	DATE: 15.11.2002
11.06.2002	mast cells was not noted. Electron microscopy showed mineral deposits along collagen fibrils without significant collagenous degeneration. There was no history of collagen or renal disease, hypervitaminosis D, or neoplasm. This episode was not associated with an elevated serum calcium or phosphate level. The patient's serum bicarbonate level was normal. She was afebrile, without lymphadenopathy or leukocytosis. The skin lesions were treated with warm soaks, with gradual improvement over four months as whitish material was eliminated from their centers. (32)
Memo	Brief summary of occupational exposure
Remark	 Calcium chloride has a powerful irritant action on the skin and mucous membranes and cases have been reported, amongst workers packing dry calcium chloride, of irritation accompanied by erythema and peeling of facial skin, lacrimation, eye discharge, burning sensation and pain in the nasal cavities, occasional nose bleeding and tickling in the throat. Cases of perforation of the nasal septum have also been reported.
10.06.2002	(83)
Memo Remark	 Brief summary of health effects Calcium chloride is a nonvolatile substance under normal conditions, thus limiting routes of exposure. Consequently, no data have been accumulated on the health effects of inhalation of calcium chloride in man or in animals. Published literature indicates that exposure to calcium chloride dust causes irritation to the eyes and throat while solutions can cause burns and eye damages when tissue contact is made. Prolonged exposure can cause serious burns, especially on previously injured tissue.
10.06.2002	(28)
Memo Remark	 Brief summary of side effects Calcium chloride has been used for medical treatment of hypocalcemic tetany, calcium deficit in citrated blood, serum sickness after injection of antitoxins and antisera, and allergic diseases such as hay fever, urticaria and asthma. As an electrolyte replenisher calcium chloride is a pharmaceutical necessity for Ringer's solutions. Side effects result from too rapid injection; these include vasodilation and a burning sensation in the skin. Overdosage can cause hypercalcemia. Because of the danger of overdosage, calcium chloride is contraindicated in renal insufficiency even if hypocalcemia exists. It should be given cautiously to the digitalized patient and the electrocardiogram should be monitored. Extravasation can cause tissue necrosis.
11.06.2002	(80)

OECD SII	DS CALCIUM CHLORIDE
6. REFER	ENCES ID: 10043-52-4 DATE: 15 11 2002
	DITTE: 10.11.2002
(1)	Akatsuka, K., Hashimoto, T. and Takeuchi, K. (1977) Pharmacological studies on Ca meso-tartrate I. Acute and subacute toxicity tests. Ouyou-Yakuri, 14, 963-975. (in Japanese)
(2)	Anderson, B.G. (1944) The toxicity thresholds of various substances found in industrial wastes as determined by the use of <i>Daphnia magna</i> . Sewage Works J., 16(6), 1156-1165.
(3)	Anderson, B.G. (1948) The apparent thresholds of toxicity to <i>Daphnia magna</i> for chlorides of various metals when added to lake Erie water. Trans. Am. Fish. Soc., 78, 96-113.
(4)	Baudouin, M.F. and Scoppa, P. (1974) Acute toxicity of various metals to freshwater zooplankton. Bull. Env. Contam. Toxicol., 12(6), 745-751.
(5)	Bengtsson, BE. (1978) Use of a harpacticoid copepod in toxicity tests. Mar. Pollut. Bull., 9, 238-241.
(6)	Bhynya, S.P. and Acharya, D. (1973) Spermatocytic chromosome aberrations induced by CaCl ₂ in a sandhopper, <i>Chrotogonus trachypterus</i> . Proc. 60th Ind. Sc. Cong., Part III, 417-418.
(7)	Biedermann, K.A. and Landolph, J.R. (1987) Induction of anchorage independence in human diploid foreskin fibroblasts by carcinogenic metal salts. Cancer Res., 47, 3815-3823.
(8)	Biesinger, K.E. and Christensen, G.M. (1972) Effects of various metals on survival, growth, reproduction, and metabolism of <i>Daphnia magna</i> . J. Fish. Res. Bd. Canada, 29(12), 1691-1700.
(9)	Bogemans, J., Neirinckx, L. and Stassart, J.M. (1989) Effect of deicing NaCl and CaCl ₂ on spruce (<i>Picea abies</i> (L.) sp.). Plant and Soil, 120, 203-211.
(10)	Botvinick, I., Smith, R.G. and Stein, S.C. (1961) Calcium chloride necrosis of the skin. J. Mich. Med. Soc., 60, 743-744.
(11)	Boyd, E.M. and Seymour, K.G.W. (1946) Ethylenediamine dihydrochloride or "chlor-ethamine". Exp. Med. Surg., 4, 223-227.
(12)	Brown, C.D., Li, Q. and Brabec, M.J. (1988/89) Cytotoxicity of six divalent metals to testicular cells <i>in vitro</i> . <i>In Vitro</i> Toxicol., 2(2), 129-137.
(13)	Buccini, J.A. (2000) Summary of the draft report of the assessment of the substance, road salts, specified on the priority substances list. Canada Gazette Part I, 134(33), 2522-2525.
(14)	Bundesminister des Innern (1996) Gemeinsames, Ministerialblatt Nr. 16, 47. Jahrgang, 331, Kenn-Nr. 220 (29.04.1996)
(15)	Coince I. In and Colorism A. (1060) The relationship of the still over 6, 1, 1, 1, 1

(15) Cairns, J., Jr. and Scheier, A. (1959) The relationship of bluegill sunfish body size to tolerance for some common chemicals. Proc. 13th Ind. Waste Conf., Purdue Univ. Eng. Bull., 96, 243-252.

OECD SIDS	CALCIUM CHLORIDE
6. REFEREN	CES ID: 10043-52-4
	DATE: 15.11.2002
(16)	Carreon, R.E., Yano, B.L. and New, M.A. (1981) Peladow calcium chloride (94- 97%): acute toxicological properties and industrial handling hazards. Unpublished Dow Chemical Company report.
(17)	Casto, B.C, Meyers, J. and DiPaolo, J.A. (1979) Enhancement of viral transformation for evaluation of the carcinogenic or mutagenic potential of inorganic metal salts. Cancer Res., 39, 193-198.
(18)	Chemical Market Reporter (2002) Chemical Profile 'Calcium Chloride', March 4, 2002. (http://63.236.84.14/news/profile020304.cfm)
(19)	de Groot, W.A. (1998) The toxicity of sodium chloride and calcium chloride to algae (<i>Selenastrum capricornutum</i>). Solvay Pharmaceuticals Study No. C.SOL.51.113/Int.Doc. No. 56834/56/98.
(20)	de Groot, W.A. and Groeneveld, A.H.C. (1998) The acute toxicity of sodium chloride and calcium chloride to <i>Daphnia magna</i> . Solvay Pharmaceuticals Study No. C.SOL.51.112/Int. Doc. No. 56834/45/98.
(21)	de Jong, L.E.D.D. (1965) Tolerance of <i>Chlorella vulgaris</i> for metallic and non- metallic ions. Antonie van Leeuwenhoek (J. Microbiol. Serol.), 31, 301-313.
(22)	Dowden, B.F. and Bennett, H.J. (1965) Toxicity of selected chemicals to certain animals. J. Water Pollut. Control Fed., 37(9), 1308-1316.
(23)	Drever, J.I. (1982) The Geochemistry of Natural Waters, 3rd ed., Prentice Hall, Inc., Upper Saddle River, NJ
(24)	Durlacher, S.H., Harrison, W., Jr. and Darrow, D.C. (1946) The effects of calcium chloride and of calcium lactate administered by gavage. Yale J. Biol. Med., 18, 135-143.
(25)	Ehrismann, O. (1928) Vergleichende Untersuchungen uber die intraarterielle und intravenose Application von Giften. Naunyn-Schmiedenberg's Archiv fur Experimentelle Pathologie und Pharmakologie, 131, 171-185.
(26)	Ellis, M.M. (1937) Detection and measurement of stream pollution. <i>In</i> Bull. Bur. Fish., U.S. Dpt. Commerce, Washington, D.C., Vol. 22, pp. 365-437.
(27)	Environment Canada and Health Canada (2001) Priority substances list assessment report: road salts.
(28)	Environmental Protection Service Ottawa (1984) Calcium chloride; environmental and technical information for problem spills.
(29)	Food and Drug Research Laboratoires, Inc. (1974) Teratologic evaluation of FDA 71-87 (calcium chloride) in mice, rats and rabbits. Report No. FDABF-GRAS-251. NTIS PB-234 879.
(30)	Frank, J.F. (1948) The toxicity of sodium chlorate herbicides. Can. J. Comp. Med.,

OECD SIE	DS CALCIUM CHLORIDE
6. REFERI	ENCES ID: 10043-52-4 DATE: 15.11.2002
(31)	Fujita, H. and Sasaki, M. (1987) Mutagenicity test of food additives with <i>Salmonella typhimurium</i> TA97 and TA102 (II). Ann. Rep. Tokyo Metr. Res. Lab. P.H., 38, 423-430. (in Japanese)
(32)	Goldminz, D., Barnhill, R., McGuire, J. and Stenn, K.S. (1988) Calcinosis cutis following extravasation of calcium chloride. Arch. Dermatol., 124, 922-925.
(33)	Govan, A.D.T. and Parkes, J. (1949) Acute experimental calcium chloride acidosis. Br. J. Exp. Pathol., 30,105-114.
(34)	Grabowski, C.T. (1966) Teratogenic effects of calcium salts on chick embryos. J. Embryol. Exp. Morphol., 15(2), 113-118.
(35)	Haruki, M. (1999) Effects of deicing materials on plants and soil animals in north Japan. Cold Region Technol. Conf. 1999, 824-830. (in Japanese)
(36)	Haruki, M. (2000) Effects of deicing materials on evergreen plants in north Japan. Proc. Cold Region Technol. Conf. 2000, 601-605. (in Japanese)
(37)	Haruki, M., Tokura, S. and Ueno, Y. (1997) Environmental effects of deicers in Hokkaido, Japan. Proc. Cold Region Technol. Conf. 1997, 725-730. (in Japanese)
(38)	Hellwig, C.A. (1935) Thyroid adenoma in experimental animals. Am. J. Cancer, 23, 550-555.
(39)	Hem, J. (1970) Study and interpretation of chemical characteristics of natural water, 2nd ed., Geological Survay Water-Supply Paper 1473, U.S. Government Printing Office, Washington D.C.
(40)	Heppleston, A.G. (1946) Calcium necrosis of the skin. Br. J. Ind. Med., 3(4), 253-254.
(41)	International Technical Information Institute (ITII) (1988) Toxic and Hazardous Industrial Chemicals Safety Manual, ITII, Tokyo, Japan, p. 101.
(42)	Ishidate, M., Jr., Sofumi, T., Yoshikawa, K., Hayashi, M., Nohmi, T., Sawada, M. and Matsuoka, A. (1984) Primary mutagenicity screening of food additives currently used in Japan. Fd Chem. Toxic., 22, 623-636.
(43)	Ishizaki, N., Shoumura, S., Emura, S., Yamahira, T., Ito, M., Chen, H., Kanbara, K., Arakawa, M. and Isono, H. (1989) Ultrastructure of the parathyroid gland of the mouse fetus after calcium chloride or ethylenediaminetetraacetic acid administration. Acta Anat., 135,164-170.
(44)	Itakura, C. (1975) Experimental investigations on effects of chemical spreading to prevent roadway accidents caused by formation of ice on paved road surface in winter and influence of the chemicals to growing of several trees. Proc. Hokkaido Inst. Technol., 3(7), 1-25. (in Japanese)
(45)	Joint FAO/WHO Expert Committee on Food Additives (1974) Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. WHO Food Additives Series, 5, 415-416.

OECD SID	S CALCIUM CHLORIDE
6. REFERE	ID: 10043-52-4 DATE: 15.11.2002
(46)	Joint FAO/WHO Expert Committee on Food Additives (2001) Summary of evaluations performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA 1956-2001) (First through fifty-seventh meetings) (http://jecfa.ilsi.org/)
(47)	Jones, J.R.E. (1940) A further study of the relation between toxicity and solution pressure, with <i>Polycelis nigra</i> as test animal. J. Exp. Biol., 17, 408-415.
(48)	Kanematsu, N., Hara, M. and Kada, T. (1980) Rec assay and mutagenicity studies on metal compounds. Mutation Res., 77, 109-116.
(49)	Kanta, S. and Sarma, T.A. (1980) Biochemical studies on sporulation in blue-green algae. II. Factors affecting glycogen accumulation. Zeit. Allg. Mikrobiol., 20(7), 459-463.
(50)	Kemp, R. and Keegan, S.E. (1985) Calcium chloride. <i>In</i> Ullmann's Encyclopedia of Industrial Chemistry, 5th completely revised ed. (Gerhartz, W., exec. ed.), VCH Publishers, Vol. A4, pp. 547-553.
(51)	Khangarot, B.S. (1991) Toxicity of metals to a freshwater tubificid worm, <i>Tubifex tubifex</i> (Muller). Bull. Env. Contam. Toxicol., 46, 906-912.
(52)	Khangarot, B.S. and Ray, P.K. (1989) Investigation of correlation between physicochemical properties of metals and their toxicity to the water flea <i>Daphnia</i> magna Straus. Ecotoxicol. Env. Safety, 18(2), 109-120.
(53)	Kimura, Y. and Makino, S. (1963) Cytological effect of chemicals on tumors. XVI. Effect of some inorganic compound on the MTK-sarcoma III <i>in vivo</i> . Gann, 54, 155-161.
(54)	Klinger, W. and Kersten, I. (1961) Untersuchungen uber die Wirkung von Calciumthiosulfat und Dicalcium- und Dinatoriumcalcium-Versenat. Acta Biol. Med. Germ., 6, 447-452.
(55)	Koga, Y. (1962) The effect of calcium chloride on vegetation. Unpublished Tokuyama Corporation report. (in Japanese)
(56)	Koopman, T.S.M. and Pot, T.E. (1986) Acute oral toxicity study with anhydrous calcium chloride in male rabbits. Duphar Report No. 56645/52/86.
(57)	Koopman, T.S.M. and Pot, T.E. (1986) Acute oral toxicity study with calcium chloride 33% in male rabbits. Duphar Report No. 56645/50/86.
(58)	Koopman, T.S.M. and Pot, T.E. (1986) Acute oral toxicity study with calcium chloride dihydrate in male rabbits. Duphar Report No. 56645/51/86.
(59)	Koopman, T.S.M. and Pot, T.E. (1986) Acute oral toxicity study with calcium chloride hexahydrate in male rabbits. Duphar Report No. 56645/49/86.
(60)	Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of anhydrous calcium chloride to the eye of the male rabbit. Duphar Report No. 56645/42/86.
(61)	Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of anhydrous calcium chloride to the skin of the male rabbit. Duphar Report No. 56645/30/86.

OECD SIDS	CALCIUM CHLORIDE
6. REFERENC	CES ID: 10043-52-4
	DATE: 15.11.2002
(62)	Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride 33% to the eye of the male rabbit. Duphar Report No. 56645/45/86.
(63)	Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride 33% to the skin of the male rabbit. Duphar Report No. 56645/31/86.
(64)	Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride dihydrate to the eye of the male rabbit. Duphar Report No. 56645/43/86.
(65)	Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride dihydrate to the skin of the male rabbit. Duphar Report No. 56645/29/86.
(66)	Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride hexahydrate to the eye of the male rabbit. Duphar Report No. 56645/44/86.
(67)	Koopman, T.S.M. and Pot, T.E. (1986) Primary irritation study of calcium chloride hexahydrate to the skin of the male rabbit. Duphar Report No. 56645/32/86.
(68)	Lide, D.R. (ed. in chief) (1995) CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Cleveland, OH.
(69)	Loeser, D. and Konwiser, A.L. (1929) A study of the toxicity of strontium and comparison with other cations employed in therapeutics. J. Lab. Clin. Med., 15, 35-41.
(70)	Marschner, H. (1995) Calcium. In Mineral Nutrition of Higher Plants, 2nd ed., Academic Press, London, Chapter 12, pp. 341-361.
(71)	McGaughey, C. and Jensen, J.L. (1980) Promotion of benign hyperplastic lesions in hamster cheek pouch by membrane labilizing agents and calcium ion: evidence that intracellular calcium-induced release from growth control is an obligatory preliminary stage of tumor promotion. Res. Commun. Chem. Pathol. Pharmacol., 27(2), 277-292.
(72)	Ministry of Labour, Ontario, Canada (2002) Updated and New OELs in Part 4 of Regulation 833, effective September 30, 2000. (http://www.gov.on.ca/LAB/ohs/00-oelte.pdf)
(73)	Morel, F.M.M. (1983) Principles of Aquatic Chemistry, John Wiley and Sons, New York.
(74)	Mount, D.R., Gulley, D.D., Hockett, J.R., Garrison, T.D. and Evans, J.M. (1997) Statistical models to predict the toxicity of major ions to <i>Ceriodaphnia dubia</i> , <i>Daphnia magna</i> and <i>Pimephales promelas</i> (fathead minnows). Env. Toxicol. Chem., 16(10), 2009-2019.
(75)	National Library of Medicine, U.S.A. (2001) Hazardous Substances Data Bank (HSDB).
(76)	Norris, J.M. (1971) Eye and skin irritation properties of DOWFLAKE calcium chloride. Unpublished Dow Chemical Company report.
(77)	Norris, J.M. (1971) Eye and skin irritation properties of LIQUIDOW liquid calcium chloride. Unpublished Dow Chemical Company report.

OECD SII	DS CALCIUM CHLORIDE
6. REFER	ENCES ID: 10043-52-4 DATE: 15.11.2002
(78)	O'neil, M.J., Smith, A. and Heckelman, P.E. (eds.) (2001) The Merck Index, 13th ed., Merck & Co., Inc., Whitehouse Station, NJ.
(79)	Olivier, Ph. and Marzin, D. (1987) Study of the genotoxic potential of 48 inorganic derivatives with the SOS chromotest. Mutation Res., 189, 263-269.
(80)	Osol, A. (ed.) (1980) Calcium chloride. <i>In</i> Remington's Pharmaceutical Sciences, 16th ed., Mack Publishing Company, Easton, PA, p. 772.
(81)	Pamukcu, A.M., Yalciner, S. and Bryan, G.T. (1977) Inhibition of carcinogenic effect of bracken fern (<i>Pteridium aquilinum</i>) by various chemicals. Cancer, 40, 2450-2454.
(82)	Parida, B.B., Das, C.C. and Baig, S. (1972) Calcium chloride induced meiotic chromosome aberrations in grasshopper, <i>Spathosternum prasiniferum</i> . Curr. Sci., 41(12), 457-458.
(83)	Parmeggiani, L. (ed.) (1983) Encyclopedia of Occupational Health and Safety, 3rd revided ed., International Labour Office, Geneva, p. 358.
(84)	Patrick, R., Cairns, J., Jr. and Scheier, A. (1968) The relative sensitivity of diatoms snails and fish to twenty common constituents of industrial wastes. Prog. Fish-Cult., 30(3), 137-140.
(85)	Rahimian, H. (1972) The effect of calcium chloride on growth and morphogenesis of <i>Chlorella</i> , <i>Golenkinia</i> , and <i>Scenedesmus</i> . Ph.D. Thesis, Washington State Univ.
(86)	Saeed, W.R., Distante, S., Holmes, J.D. and Kolhe, P.S. (1997) Skin injuries afflicting three oil workers following contact with calcium bromide and/or calcium chloride. Burns, 23(7/8), 634-637.
(87)	Selected Committee on GRAS Substances (1975) Evaluation of the health aspects of certain calcium salts as food ingredients (SCOGS-45). Report No. FDA/HFF-76/66. Life Sciences Research Office, Federation of American Societies for Experimental Biology, Bethesda, MD.
(88)	Sharpless, G.R., Sabol, M., Anthony, E.K. and Argetsinger, H.L. (1942) Goitrogenic action of calcium and vitamin D. J. Nutr., 25, 119-126.
(89)	Shearer, W.L. (1978) Calcium chloride. <i>In</i> Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., John Wiley & Sons, New York, Vol. 4, pp. 432-436.
(90)	Smith, E.R.B. (1942) A comparison of the effects of large doses of calcium gluconate-idonate, calcium gluconate, and calcium chloride. J. Lab. Clin. Med., 25, 1018-1021.
(91)	Sneddon, I.B. and Archibald, R.McL. (1958) Traumatic calcinosis of the skin. Br. J. Dermatol., 70, 211-214.
(92)	Sora, S., Luisa, M., Carbone, A., Pacciarini, M. and Magni, G.E. (1986) Disomic and diploid meiotic products induced in <i>Saccharomyces cerevisiae</i> by the salts of 27 elements. Mutagenesis, 1(1), 21-28.

<u>OECD SID</u>	S CALCIUM CHLORIDE
6. REFERE	NCES ID: 10043-52-4 DATE: 15 11 2002
(93)	Stangenberg, M. (1975) The influence of the chemical composition of water on the pike perch (<i>Lucioperca lucioperca</i> L.) fry from the lake Goplo. Limnologica, 9(3), 421-426.
(94)	Stoerfall-Verordnung vom 20.09.1991.
(95)	Stumm, W. and Morgan, J.J (1981) Aquatic Chemistry, 2nd ed., John Wiley and Sons, New York.
(96)	Sukhanov, V.V., Petul'ko, S.N., Bolonova, L.N. and Yulish, N.R. (1990) Toxicological assessment of calcium chloride and calcium chloride-containing products. Gigiena Truda I Professional'nye Zabolevaniya (Labor Hygiene and Occupational Diseases), 34(5), 51-52.
(97)	Syed, I.B. and Hosain, F. (1972) Determination of LD_{50} of barium chloride and allied agents. Toxicol. Appl. Pharmacol., 22, 150-152.
(98)	Takiguchi, H. (1985) Bulking of activated sludge and its regulation. Technical Information Center. (in Japanese)
(99)	Tatara, C.P., Newman, M.C., McCloskey, J.T. and Williams, P.L. (1997) Predicting relative metal toxicity with ion characteristics: <i>Caenorhabditis elegans</i> LC ₅₀ . Aqua. Toxicol., 39, 279-290.
(100)	Tkalec, M., Vidakovic-Cifrek, V. and Regula, I. (1998) The effect of oil industry high density brines on duckweed <i>Lemna minor</i> L. Chemosphere, 37(13), 2703-2715.
(101)	Todd, D.K. (ed.) (1970) The Water Encyclopedia, Water Information Center, Inc., New York.
(102)	Trama, F.B. (1954) The acute toxicity of some common salts of sodium, potassium and calcium to the common bluegill (<i>Lepomis macrochirus</i> Rafinesque). Proc. Acad. Natur. Sci. Philadelphia, 106, 185-205.
(103)	Umweltbundesamt (1990/91) Daten zur Umwelt, Erich-Schmidt-Verlag, Berlin.
(104)	United Nations Environment Programme (UNEP) (1995) Water quality of world river basins, UNEP Environment Library No. 14.
(105)	Van Hoof, F. (1994) Jaarverslag 1993; Maas, Albertkanaal en Kempische kanalen; i.v. Antwerpse waterwerken n.v. Laboratorium.
(106)	Verrett, M.J., Scott, W.F., Reynaldo, E.F., Alterman, E.K. and Thomas, C.A. (1980) Toxicity and teratogenicity of food additive chemicals in the developing chicken embryo. Toxicol. Appl. Pharmacol., 56, 265-273.
(107)	Wallen, I.E., Greer, W.C. and Lasater, R. (1957) Toxicity to <i>Gambusia affinis</i> of certain pure chemicals in turbid waters. Sewage Ind. Wastes, 29(6), 695-711.
(108)	Wooldridge, C.R. and Wooldridge, D.P. (1969) Internal damage in an aquatic beetle exposed to sublethal concentrations of inorganic ions. Ann. Entomol. Soc. Am., 62(4), 921-933.

OECD SID	S				CALCIUM CHLORIDE
6. REFERE	ENCES				ID: 10043-52-4
					DATE: 15.11.2002
(1.0.0)		TT O	1	XX (10.55) C 1 :	

(109) Zackheim, H.S. and Pinkus, H. (1957) Calcium chloride necrosis of the skin. Am. Med. Assoc. Arch. Dermatol., 76, 244-246.